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Introduction
.

I wrote this text for a one semester course at the sophomore-junior level. Our experience with
students taking our junior physics courses is that even if they’ve had the mathematical prerequisites,
they usually need more experience using the mathematics to handle it efficiently and to possess usable
intuition about the processes involved. If you’ve seen infinite series in a calculus course, you may have
no idea that they’re good for anything. If you’ve taken a differential equations course, which of the
scores of techniques that you’ve seen are really used a lot?

The world is (at least) three dimensional so you clearly need to understand multiple integrals,
but will everything be rectangular?

How do you learn intuition?

When you’ve finished a problem and your answer agrees with the back of the book or with
your friends or even a teacher, you’re not done. The way to get an intuitive understanding of the
mathematics and of the physics is to analyze your solution thoroughly. Does it make sense? There
are almost always several parameters that enter the problem, so what happens to your solution when
you push these parameters to their limits? In a mechanics problem, what if one mass is much larger
than another? Does your solution do the right thing? In electromagnetism, if you make a couple of
parameters equal to each other does it reduce everything to a simple, special case? When you’re doing
a surface integral should the answer be positive or negative and does your answer agree?

When you address these questions to every problem you ever solve, you do several things. First,
you’ll find your own mistakes before someone else does. Second, you acquire an intuition about how
the equations ought to behave and how the world that they describe ought to behave. Third, It makes
all your later efforts easier because you will then have some clue about why the equations work the way
they do. It reifies the algebra.

Does it take extra time? Of course. It will however be some of the most valuable extra time you
can spend.

Is it only the students in my classes, or is it a widespread phenomenon that no one is willing to
sketch a graph? (“Pulling teeth” is the cliché that comes to mind.) Maybe you’ve never been taught
that there are a few basic methods that work, so look at section 1.8. And keep referring to it. This is
one of those basic tools that is far more important than you’ve ever been told. It is astounding how
many problems become simpler after you’ve sketched a graph. Also, until you’ve sketched some graphs
of functions you really don’t know how they behave.

When I taught this course I didn’t do everything that I’m presenting here. The two chapters,
Numerical Analysis and Tensors, were not in my one semester course, and I didn’t cover all of the topics
along the way. Several more chapters were added after the class was over, so this is now far beyond a
one semester text. There is enough here to select from if this is a course text, but if you are reading
it on your own then you can move through it as you please, though you will find that the first five
chapters are used more in the later parts than are chapters six and seven. Chapters 8, 9, and 13 form a
sort of package. I’ve tried to use examples that are not all repetitions of the ones in traditional physics
texts but that do provide practice in the same tools that you need in that context.

The pdf file that I’ve placed online is hyperlinked, so that you can click on an equation or section
reference to go to that point in the text. To return, there’s a Previous View button at the top or
bottom of the reader or a keyboard shortcut to do the same thing. [Command← on Mac, Alt← on
Windows, Control← on Linux-GNU] The index pages are hyperlinked, and the contents also appear in
the bookmark window.
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I chose this font for the display versions of the text because it appears better on the screen than
does the more common Times font. The choice of available mathematics fonts is more limited.

I’d like to thank the students who found some, but probably not all, of the mistakes in the
text. Also Howard Gordon, who used it in his course and provided me with many suggestions for
improvements. Prof. Joseph Tenn of Sonoma State University has given me many very helpful ideas,
correcting mistakes, improving notation, and suggesting ways to help the students.

2008
A change in notation in this edition: For polar and cylindrical coordinate systems it is common to use
theta for the polar angle in one and phi for the polar angle in the other. I had tried to make them the
same (θ) to avoid confusion, but probably made it less rather than more helpful because it differed from
the spherical azimuthal coordinate. In this edition all three systems (plane polar, cylindrical, spherical)
use phi as φ = tan−1(y/x). In line integrals it is common to use ds for an element of length, and
many authors will use dS for an element of area. I have tried to avoid this confusion by sticking to d`
and dA respectively (with rare exceptions).

In many of the chapters there are “exercises” that precede the “problems.” These are supposed
to be simpler and mostly designed to establish some of the definitions that appeared in the text.

This text is now available in print from Dover Publishers. They have agreed that the electronic
version will remain available online.
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Basic Stuff
.

1.1 Trigonometry
The common trigonometric functions are familiar to you, but do you know some of the tricks to
remember (or to derive quickly) the common identities among them? Given the sine of an angle, what
is its tangent? Given its tangent, what is its cosine? All of these simple but occasionally useful relations
can be derived in about two seconds if you understand the idea behind one picture. Suppose for example
that you know the tangent of θ, what is sin θ? Draw a right triangle and designate the tangent of θ as
x, so you can draw a triangle with tan θ = x/1.

1

θ
x

The Pythagorean theorem says that the third side is
√

1 + x2. You now
read the sine from the triangle as x/

√
1 + x2, so

sin θ =
tan θ√

1 + tan2 θ

Any other such relation is done the same way. You know the cosine, so what’s the cotangent? Draw a
different triangle where the cosine is x/1.

Radians
When you take the sine or cosine of an angle, what units do you use? Degrees? Radians? Cycles? And
who invented radians? Why is this the unit you see so often in calculus texts? That there are 360◦ in
a circle is something that you can blame on the Sumerians, but where did this other unit come from?

R 2R

s
θ

2θ

It results from one figure and the relation between the radius of the circle, the angle drawn,
and the length of the arc shown. If you remember the equation s = Rθ, does that mean that for a
full circle θ = 360◦ so s = 360R? No. For some reason this equation is valid only in radians. The
reasoning comes down to a couple of observations. You can see from the drawing that s is proportional
to θ — double θ and you double s. The same observation holds about the relation between s and R,
a direct proportionality. Put these together in a single equation and you can conclude that

s = CRθ

where C is some constant of proportionality. Now what is C?
You know that the whole circumference of the circle is 2πR, so if θ = 360◦, then

2πR = CR 360◦, and C =
π

180
degree−1

It has to have these units so that the left side, s, comes out as a length when the degree units
cancel. This is an awkward equation to work with, and it becomes very awkward when you try to do
calculus. An increment of one in ∆θ is big if you’re in radians, and small if you’re in degrees, so it
should be no surprise that ∆ sin θ/∆θ is much smaller in the latter units:

d
dθ

sin θ =
π

180
cos θ in degrees

1



1—Basic Stuff 2

This is the reason that the radian was invented. The radian is the unit designed so that the propor-
tionality constant is one.

C = 1 radian−1 then s =
(
1 radian−1

)
Rθ

In practice, no one ever writes it this way. It’s the custom simply to omit the C and to say that
s = Rθ with θ restricted to radians — it saves a lot of writing. How big is a radian? A full circle has
circumference 2πR, and this equals Rθ when you’ve taken C to be one. It says that the angle for a
full circle has 2π radians. One radian is then 360/2π degrees, a bit under 60◦. Why do you always use
radians in calculus? Only in this unit do you get simple relations for derivatives and integrals of the
trigonometric functions.

Hyperbolic Functions
The circular trigonometric functions, the sines, cosines, tangents, and their reciprocals are familiar, but
their hyperbolic counterparts are probably less so. They are related to the exponential function as

coshx =
ex + e−x

2
, sinhx =

ex − e−x

2
, tanhx =

sinhx
coshx

=
ex − e−x

ex + e−x
(1.1)

The other three functions are

sechx =
1

coshx
, cschx =

1

sinhx
, cothx =

1

tanhx

Drawing these is left to problem 1.4, with a stopover in section 1.8 of this chapter.

Just as with the circular functions there are a bunch of identities relating these functions. For
the analog of cos2 θ + sin2 θ = 1 you have

cosh2 θ − sinh2 θ = 1 (1.2)

For a proof, simply substitute the definitions of cosh and sinh in terms of exponentials and watch
the terms cancel. (See problem 4.23 for a different approach to these functions.) Similarly the other
common trig identities have their counterpart here.

1 + tan2 θ = sec2 θ has the analog 1− tanh2 θ = sech2 θ (1.3)

The reason for this close parallel lies in the complex plane, because cos(ix) = coshx and sin(ix) =
i sinhx. See chapter three.

The inverse hyperbolic functions are easier to evaluate than are the corresponding circular func-
tions. I’ll solve for the inverse hyperbolic sine as an example

y = sinhx means x = sinh−1 y, y =
ex − e−x

2
, solve for x.

Multiply by 2ex to get the quadratic equation

2exy = e2x − 1 or
(
ex
)2 − 2y

(
ex
)
− 1 = 0
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The solutions to this are ex = y±
√
y2 + 1, and because

√
y2 + 1 is always greater than |y|, you must

take the positive sign to get a positive ex. Take the logarithm of ex and

sinh

sinh−1

x = sinh−1 y = ln
(
y +

√
y2 + 1

)
(−∞ < y < +∞)

As x goes through the values −∞ to +∞, the values that sinhx takes on go over the range −∞ to
+∞. This implies that the domain of sinh−1 y is −∞ < y < +∞. The graph of an inverse function
is the mirror image of the original function in the 45◦ line y = x, so if you have sketched the graphs of
the original functions, the corresponding inverse functions are just the reflections in this diagonal line.

The other inverse functions are found similarly; see problem 1.3

sinh−1 y = ln
(
y +

√
y2 + 1

)
cosh−1 y = ln

(
y ±

√
y2 − 1

)
, y ≥ 1

tanh−1 y =
1

2
ln

1 + y
1− y

, |y| < 1 (1.4)

coth−1 y =
1

2
ln
y + 1

y − 1
, |y| > 1

The cosh−1 function is commonly written with only the + sign before the square root. What does the
other sign do? Draw a graph and find out. Also, what happens if you add the two versions of the
cosh−1?

The calculus of these functions parallels that of the circular functions.

d
dx

sinhx =
d
dx
ex − e−x

2
=
ex + e−x

2
= coshx

Similarly the derivative of coshx is sinhx. Note the plus sign here, not minus.

Where do hyperbolic functions occur? If you have a mass in equilibrium, the total force on it
is zero. If it’s in stable equilibrium then if you push it a little to one side and release it, the force will
push it back to the center. If it is unstable then when it’s a bit to one side it will be pushed farther
away from the equilibrium point. In the first case, it will oscillate about the equilibrium position and for
small oscillations the function of time will be a circular trigonometric function — the common sines or
cosines of time, A cosωt. If the point is unstable, the motion will be described by hyperbolic functions
of time, sinhωt instead of sinωt. An ordinary ruler held at one end will swing back and forth, but if
you try to balance it at the other end it will fall over. That’s the difference between cos and cosh. For
a deeper understanding of the relation between the circular and the hyperbolic functions, see section
3.3
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1.2 Parametric Differentiation
The integration techniques that appear in introductory calculus courses include a variety of methods of
varying usefulness. There’s one however that is for some reason not commonly done in calculus courses:
parametric differentiation. It’s best introduced by an example.∫ ∞

0
xne−x dx

You could integrate by parts n times and that will work. For example, n = 2:

= −x2e−x
∣∣∣∣∞
0

+

∫ ∞
0

2xe−x dx = 0− 2xe−x
∣∣∣∣∞
0

+

∫ ∞
0

2e−x dx = 0− 2e−x
∣∣∣∣∞
0

= 2

Instead of this method, do something completely different. Consider the integral∫ ∞
0

e−αx dx (1.5)

It has the parameter α in it. The reason for this will be clear in a few lines. It is easy to evaluate, and is∫ ∞
0

e−αx dx =
1

−α
e−αx

∣∣∣∣∞
0

=
1

α

Now differentiate this integral with respect to α,

d
dα

∫ ∞
0

e−αx dx =
d
dα

1

α
or −

∫ ∞
0

xe−αx dx =
−1

α2

And again and again: +

∫ ∞
0

x2e−αx dx =
+2

α3
, −

∫ ∞
0

x3e−αx dx =
−2 . 3

α4

The nth derivative is

±
∫ ∞

0
xne−αx dx =

±n!

αn+1
(1.6)

Set α = 1 and you see that the original integral is n!. This result is compatible with the standard
definition for 0!. From the equation n! = n .(n− 1)!, you take the case n = 1, and it requires 0! = 1
in order to make any sense. This integral gives the same answer for n = 0.

The idea of this method is to change the original problem into another by introducing a parameter.
Then differentiate with respect to that parameter in order to recover the problem that you really want
to solve. With a little practice you’ll find this easier than partial integration. Also see problem 1.47 for
a variation on this theme.

Notice that I did this using definite integrals. If you try to use it for an integral without limits
you can sometimes get into trouble. See for example problem 1.42.

1.3 Gaussian Integrals
Gaussian integrals are an important class of integrals that show up in kinetic theory, statistical mechan-
ics, quantum mechanics, and any other place with a remotely statistical aspect.∫

dxxne−αx
2

The simplest and most common case is the definite integral from −∞ to +∞ or maybe from 0 to ∞.
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If n is a positive odd integer, these are elementary,

n = 1

∫ ∞
−∞

dxxne−αx
2

= 0 (n odd) (1.7)

To see why this is true, sketch graphs of the integrand for a few more odd n.
For the integral over positive x and still for odd n, do the substitution t = αx2.∫ ∞

0
dxxne−αx

2
=

1

2α(n+1)/2

∫ ∞
0

dt t(n−1)/2e−t =
1

2α(n+1)/2

(
(n− 1)/2

)
! (1.8)

Because n is odd, (n− 1)/2 is an integer and its factorial makes sense.
If n is even then doing this integral requires a special preliminary trick. Evaluate the special case

n = 0 and α = 1. Denote the integral by I , then

I =

∫ ∞
−∞

dx e−x
2
, and I2 =

(∫ ∞
−∞

dx e−x
2

)(∫ ∞
−∞

dy e−y
2

)
In squaring the integral you must use a different label for the integration variable in the second factor
or it will get confused with the variable in the first factor. Rearrange this and you have a conventional
double integral.

I2 =

∫ ∞
−∞

dx
∫ ∞
−∞

dy e−(x2+y2)

This is something that you can recognize as an integral over the entire x-y plane. Now the trick is
to switch to polar coordinates*. The element of area dxdy now becomes r dr dφ, and the respective
limits on these coordinates are 0 to ∞ and 0 to 2π. The exponent is just r2 = x2 + y2.

I2 =

∫ ∞
0

r dr
∫ 2π

0
dφ e−r

2

The φ integral simply gives 2π. For the r integral substitute r2 = z and the result is 1/2. [Or use
Eq. (1.8).] The two integrals together give you π.

I2 = π, so

∫ ∞
−∞

dx e−x
2

=
√
π (1.9)

Now do the rest of these integrals by parametric differentiation, introducing a parameter with
which to carry out the derivatives. Change e−x

2
to e−αx

2
, then in the resulting integral change variables

to reduce it to Eq. (1.9). You get∫ ∞
−∞

dx e−αx
2

=

√
π
α
, so

∫ ∞
−∞

dxx2e−αx
2

= − d
dα

√
π
α

=
1

2

( √
π

α3/2

)
(1.10)

You can now get the results for all the higher even powers of x by further differentiation with respect
to α.

* See section 1.7 in this chapter
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1.4 erf and Gamma
What about the same integral, but with other limits? The odd-n case is easy to do in just the same
way as when the limits are zero and infinity: just do the same substitution that led to Eq. (1.8). The
even-n case is different because it can’t be done in terms of elementary functions. It is used to define
an entirely new function.

erf(x) =
2√
π

∫ x

0
dt e−t

2
(1.11)

x 0. 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
erf 0. 0.276 0.520 0.711 0.843 0.923 0.967 0.987 0.995

This is called the error function. It’s well studied and tabulated and even shows up as a button
on some* pocket calculators, right along with the sine and cosine. (Is erf odd or even or neither?)
(What is erf(±∞)?)

A related integral worthy of its own name is the Gamma function.

Γ(x) =

∫ ∞
0

dt tx−1e−t (1.12)

The special case in which x is a positive integer is the one that I did as an example of parametric
differentiation to get Eq. (1.6). It is

Γ(n) = (n− 1)!

The factorial is not defined if its argument isn’t an integer, but the Gamma function is perfectly
well defined for any argument as long as the integral converges. One special case is notable: x = 1/2.

Γ(1/2) =

∫ ∞
0

dt t−1/2e−t =

∫ ∞
0

2uduu−1e−u
2

= 2

∫ ∞
0

du e−u
2

=
√
π (1.13)

I used t = u2 and then the result for the Gaussian integral, Eq. (1.9). You can use parametric
differentiation to derive a simple and useful recursion relation. (See problem 1.14 or 1.47.)

xΓ(x) = Γ(x+ 1) (1.14)

From this you can get the value of Γ(11/2), Γ(21/2), etc. In fact, if you know the value of the function
in the interval between one and two, you can use this relationship to get it anywhere else on the axis.
You already know that Γ(1) = 1 = Γ(2). (You do? How?) As x approaches zero, use the relation
Γ(x) = Γ(x + 1)/x and because the numerator for small x is approximately 1, you immediately have
that

Γ(x) ∼ 1/x for small x (1.15)

The integral definition, Eq. (1.12), for the Gamma function is defined only for the case that
x > 0. [The behavior of the integrand near t = 0 is approximately tx−1. Integrate this from zero to
something and see how it depends on x.] Even though the original definition of the Gamma function
fails for negative x, you can extend the definition by using Eq. (1.14) to define Γ for negative arguments.
What is Γ(−1/2) for example? Put x = −1/2 in Eq. (1.14).

−1

2
Γ(−1/2) = Γ(−(1/2) + 1) = Γ(1/2) =

√
π, so Γ(−1/2) = −2

√
π (1.16)

* See for example rpncalculator (v1.96 the latest). It is the best desktop calculator that I’ve found
(Mac and Windows). This main site seems (2008) to have disappeared, but I did find other sources
by searching the web for the pair “rpncalculator” and baker. The latter is the author’s name. I found
mac.rbytes.net/cat/mac/scientific/rpn-calculator-x/

http://mac.rbytes.net/cat/mac/scientific/rpn-calculator-x/
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The same procedure works for other negative x, though it can take several integer steps to get to a
positive value of x for which you can use the integral definition Eq. (1.12).

The reason for introducing these two functions now is not that they are so much more important
than a hundred other functions that I could use, though they are among the more common ones.
The point is that the world doesn’t end with polynomials, sines, cosines, and exponentials. There are
an infinite number of other functions out there waiting for you and some of them are useful. These
functions can’t be expressed in terms of the elementary functions that you’ve grown to know and love.
They’re different and have their distinctive behaviors.

erf
2−2

1

−1

4−4

5

−5
Γ

4−4

5

−5
1/Γ

There are zeta functions and Fresnel integrals and Legendre functions and Exponential integrals
and Mathieu functions and Confluent Hypergeometric functions and . . . you get the idea. When one of
these shows up, you learn to look up its properties and to use them. If you’re interested you may even try
to understand how some of these properties are derived, but probably not the first time that you confront
them. That’s why there are tables, and the “Handbook of Mathematical Functions” by Abramowitz
and Stegun is a premier example of such a tabulation, and it’s reprinted by Dover Publications. There’s
also a copy on the internet* www.math.sfu.ca/˜cbm/aands/ as a set of scanned page images.

Why erf?
What can you do with this function? The most likely application is probably to probability. If you flip
a coin 1000 times, you expect it to come up heads about 500 times. But just how close to 500 will
it be? If you flip it twice, you wouldn’t be surprised to see two heads or two tails, in fact the equally
likely possibilities are

TT HT TH HH

This says that in 1 out of 22 = 4 such experiments you expect to see two heads and in 1 out of 4 you
expect two tails. For just 2 out of 4 times you do the double flip do you expect exactly one head. All
this is an average. You have to try the experiment many times to see your expectation verified, and then
only by averaging many experiments.

It’s easier to visualize the counting if you flip N coins at once and see how they come up. The
number of coins that come up heads won’t always be N/2, but it should be close. If you repeat the
process, flipping N coins again and again, you get a distribution of numbers of heads that will vary
around N/2 in a characteristic pattern. The result is that the fraction of the time it will come up with
k heads and N − k tails is, to a good approximation√

2

πN
e−2δ2/N , where δ = k − N

2
(1.17)

The derivation of this can wait until section 2.6, Eq. (2.26). It is an accurate result if the number of
coins that you flip in each trial is large, but try it anyway for the preceding example where N = 2. This
formula says that the fraction of times predicted for k heads is

k = 0 :
√

1/π e−1 = 0.208 k = 1 = N/2 : 0.564 k = 2 : 0.208

* now superceded by the online work dlmf.nist.gov/ at the National Institute of Standards and
Technology

http://store.doverpublications.com
http://www.math.sfu.ca/~cbm/aands/
http://dlmf.nist.gov/
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The exact answers are 1/4, 2/4, 1/4, but as two is not all that big a number, the fairly large error
shouldn’t be distressing.

If you flip three coins, the equally likely possibilities are

TTT TTH THT HTT THH HTH HHT HHH

There are 8 possibilities here, 23, so you expect (on average) one run out of 8 to give you 3 heads.
Probability 1/8.

To see how accurate this claim is for modest values, take N = 10. The possible outcomes are
anywhere from zero heads to ten. The exact fraction of the time that you get k heads as compared to
this approximation is

k = 0 1 2 3 4 5
exact: .000977 .00977 .0439 .117 .205 .246

approximate: .0017 .0103 .0417 .113 .206 .252

For the more interesting case of big N , the exponent, e−2δ2/N , varies slowly and smoothly as
δ changes in integer steps away from zero. This is a key point; it allows you to approximate a sum
by an integral. If N = 1000 and δ = 10, the exponent is 0.819. It has dropped only gradually from
one. For the same N = 1000, the fraction of the time to get exactly 500 heads is 0.025225, and this
approximation is

√
2/1000π =0.025231.

Flip N coins, then do it again and again. In what fraction of the trials will the result be between
N/2−∆ and N/2 + ∆ heads? This is the sum of the fractions corresponding to δ = 0, δ = ±1, . . . ,
δ = ±∆. Because the approximate function is smooth, I can replace this sum with an integral. This
substitution becomes more accurate the larger N is.∫ ∆

−∆
dδ

√
2

πN
e−2δ2/N

Make the substitution 2δ2/N = x2 and you have√
2

πN

∫ ∆
√

2/N

−∆
√

2/N

√
N
2
dx e−x

2
=

1√
π

∫ ∆
√

2/N

−∆
√

2/N
dx e−x

2
= erf

(
∆
√

2/N
)

(1.18)

The error function of one is 0.84, so if ∆ =
√
N/2 then in 84% of the trials heads will come up between

N/2−
√
N/2 and N/2 +

√
N/2 times. For N = 1000, this is between 478 and 522 heads.

1.5 Differentiating
When you differentiate a function in which the independent variable shows up in several places, how do
you carry out the derivative? For example, what is the derivative with respect to x of xx? The answer
is that you treat each instance of x one at a time, ignoring the others; differentiate with respect to
that x and add the results. For a proof, use the definition of a derivative and differentiate the function
f(x, x). Start with the finite difference quotient:

f(x+ ∆x, x+ ∆x)− f(x, x)

∆x

=
f(x+ ∆x, x+ ∆x)− f(x, x+ ∆x) + f(x, x+ ∆x)− f(x, x)

∆x

=
f(x+ ∆x, x+ ∆x)− f(x, x+ ∆x)

∆x
+
f(x, x+ ∆x)− f(x, x)

∆x
(1.19)

The first quotient in the last equation is, in the limit that ∆x→ 0, the derivative of f with respect to
its first argument. The second quotient becomes the derivative with respect to the second argument.
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The prescription is clear, but to remember it you may prefer a mathematical formula. A notation more
common in mathematics than in physics is just what’s needed:

d
dt
f(t, t) = D1f(t, t) +D2f(t, t) (1.20)

where D1 means “differentiate with respect to the first argument.” The standard “product rule” for
differentiation is a special case of this.

For example,
d
dx

∫ x

0
dt e−xt

2
= e−x

3 −
∫ x

0
dt t2e−xt

2
(1.21)

The resulting integral in this example is related to an error function, see problem 1.13, so it’s not as
bad as it looks.

Another example,

d
dx
xx = xxx−1 +

d
dx
kx at k = x

= xxx−1 +
d
dx
ex lnk = xxx−1 + ln k ex lnk

= xx + xx lnx

1.6 Integrals
What is an integral? You’ve been using them for some time. I’ve been using the concept in this
introductory chapter as if it’s something that everyone knows. But what is it?

If your answer is something like “the function whose derivative is the given function” or “the
area under a curve” then No. Both of these answers express an aspect of the subject but neither is
a complete answer. The first actually refers to the fundamental theorem of calculus, and I’ll describe
that shortly. The second is a good picture that applies to some special cases, but it won’t tell you how
to compute it and it won’t allow you to generalize the idea to the many other subjects in which it is
needed. There are several different definitions of the integral, and every one of them requires more than
a few lines to explain. I’ll use the most common definition, the Riemann Integral.

An integral is a sum, obeying all the usual rules of addition and multiplication, such as 1 + 2 +
3 + 4 = (1 + 2) + (3 + 4) or 5 .(6 + 7) = (5 . 6) + (5 . 7). When you’ve read this section, come back and
translate these bits of arithmetic into statements about integrals.

A standard way to picture the definition is to try to find the area under a curve. You can get
successively better and better approximations to the answer by dividing the area into smaller and smaller
rectangles — ideally, taking the limit as the number of rectangles goes to infinity.

To codify this idea takes a sequence of steps:

1. Pick an integer N > 0. This is the number of subintervals into which the whole interval between
a and b is to be divided.

x1 x2

ξ1 ξ2 ξN

a b

2. Pick N − 1 points between a and b. Call them x1, x2, etc.

a = x0 < x1 < x2 < · · · < xN−1 < xN = b
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and for convenience label the endpoints as x0 and xN . For the sketch , N = 8.

3. Let ∆xk = xk − xk−1. That is,

∆x1 = x1 − x0, ∆x2 = x2 − x1, · · ·

4. In each of the N subintervals, pick one point at which the function will be evaluated. I’ll label
these points by the Greek letter ξ. (That’s the Greek version of “x.”)

xk−1 ≤ ξk ≤ xk
x0 ≤ ξ1 ≤ x1, x1 ≤ ξ2 ≤ x2, · · ·

5. Form the sum that is an approximation to the final answer.

f(ξ1)∆x1 + f(ξ2)∆x2 + f(ξ3)∆x3 + · · ·

6. Finally, take the limit as all the ∆xk → 0 and necessarily then, as N →∞. These six steps form
the definition

lim
∆xk→0

N∑
k=1

f(ξk)∆xk =

∫ b

a
f(x) dx (1.22)

1 2

x

1/x

To demonstrate this numerically, pick a function and do the first five steps explicitly. Pick
f(x) = 1/x and integrate it from 1 to 2. The exact answer is the natural log of 2: ln 2 = 0.69315 . . .
(1) Take N = 4 for the number of intervals
(2) Choose to divide the distance from 1 to 2 evenly, at x1 = 1.25, x2 = 1.5, x3 = 1.75

a = x0 = 1. < 1.25 < 1.5 < 1.75 < 2. = x4 = b

(3) All the ∆x’s are equal to 0.25.
(4) Choose the midpoint of each subinterval. This is the best choice when you use a finite number of
divisions without taking the limit.

ξ1 = 1.125 ξ2 = 1.375 ξ3 = 1.625 ξ4 = 1.875

(5) The sum approximating the integral is then

f(ξ1)∆x1 + f(ξ2)∆x2 + f(ξ3)∆x3 + f(ξ4)∆x4 =

1

1.125
× .25 +

1

1.375
× .25 +

1

1.625
× .25 +

1

1.875
× .25 = .69122

For such a small number of divisions, this is a very good approximation — about 0.3% error.
(What do you get if you take N = 1 or N = 2 or N = 10 divisions?)



1—Basic Stuff 11

Fundamental Thm. of Calculus
If the function that you’re integrating is complicated or if the function is itself not known to perfect
accuracy then a numerical approximation just like this one for

∫ 2
1 dx/x is often the best way to go.

How can a function not be known completely? If it is experimental data. When you have to resort to
this arithmetic way to do integrals, are there more efficient ways to do it than simply using the definition
of the integral? Yes. That’s part of the subject of numerical analysis, and there’s a short introduction
to the subject in chapter 11, section 11.4.

The fundamental theorem of calculus unites the subjects of differentiation and integration. The
integral is defined as the limit of a sum, and the derivative is defined as the limit of a quotient of two
differences. The relation between them is

IF f has an integral from a to b, that is, if
∫ b
a f(x) dx exists,

AND IF f has an anti-derivative, that is, there is a function F such that dF/dx = f ,
THEN ∫ b

a
f(x) dx = F (b)− F (a) (1.23)

Are there cases where one of these exists without the other? Yes, though I’ll admit that you are
not likely to come across such functions without hunting through some advanced math books. Check
out www.wikipedia.org for Volterra’s function to see what it involves.

Notice an important result that follows from Eq. (1.23). Differentiate both sides with respect
to b

d
db

∫ b

a
f(x) dx =

d
db
F (b) = f(b) (1.24)

and with respect to a
d
da

∫ b

a
f(x) dx = − d

da
F (a) = −f(a) (1.25)

Differentiating an integral with respect to one or the other of its limits results in plus or minus the
integrand. Combine this with the chain rule and you can do such calculations as

d
dx

∫ sinx

x2
ext

2
dt = ex sin2 x cosx− ex52x+

∫ sinx

x2
t2ext

2
dt (1.26)

All this requires is that you differentiate every x that is present and add the results, just as

d
dx
x2 =

d
dx
x .x =

dx
dx
x+ x

dx
dx

= 1 .x+ x . 1 = 2x

You may well ask why anyone would want to do such a thing as Eq. (1.26), but there are more reasonable
examples that show up in real situations. I’ve already used this result in Eq. (1.21).

Riemann-Stieltjes Integrals
Are there other useful definitions of the word integral? Yes, there are many, named after various people
who developed them, with Lebesgue being the most famous. His definition* is most useful in much
more advanced mathematical contexts, and I won’t go into it here, except to say that very roughly
where Riemann divided the x-axis into intervals ∆xi, Lebesgue divided the y-axis into intervals ∆yi.
Doesn’t sound like much of a change does it? It is. There is another definition that is worth knowing
about, not because it helps you to do integrals, but because it unites a couple of different types of
computation into one. This is the Riemann-Stieltjes integral. You won’t need it for any of the later

* One of the more notable PhD theses in history

http://www.wikipedia.org
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work in this book, but it is a fairly simple extension of the Riemann integral and I’m introducing it
mostly for its cultural value — to show you that there are other ways to define an integral. If you take
the time to understand it, you will be able to look back at some subjects that you already know and to
realize that they can be manipulated in a more compact form (e.g. center of mass).

When you try to evaluate the moment of inertia you are doing the integral∫
r2 dm

When you evaluate the position of the center of mass even in one dimension the integral is

1

M

∫
xdm

and even though you may not yet have encountered this, the electric dipole moment is∫
~r dq

How do you integrate x with respect to m? What exactly are you doing? A possible answer is that
you can express this integral in terms of the linear density function and then dm = λ(x)dx. But if the
masses are a mixture of continuous densities and point masses, this starts to become awkward. Is there
a better way?

Yes
On the interval a ≤ x ≤ b assume there are two functions, f and α. Don’t assume that either of them
must be continuous, though they can’t be too badly behaved or nothing will converge. This starts the
same way the Riemann integral does: partition the interval into a finite number (N) of sub-intervals
at the points

a = x0 < x1 < x2 < . . . < xN = b (1.27)

Form the sum

N∑
k=1

f(x′k)∆αk, where xk−1 ≤ x′k ≤ xk and ∆αk = α(xk)− α(xk−1) (1.28)

To improve the sum, keep adding more and more points to the partition so that in the limit all the
intervals xk − xk−1 → 0. This limit is called the Riemann-Stieltjes integral,∫

f dα (1.29)

What’s the big deal? Doesn’t dα = α′dx? Use that and you have just the ordinary integral∫
f(x)α′(x) dx?

Sometimes you can, but what if α isn’t differentiable? Suppose that it has a step or several steps? The
derivative isn’t defined, but this Riemann-Stieltjes integral still makes perfectly good sense.
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An example. A very thin rod of length L is placed on the x-axis with one end at the origin. It
has a uniform linear mass density λ and an added point mass m0 at x = 3L/4. (a piece of chewing
gum?) Let m(x) be the function defined as

m(x) =
(
the amount of mass at coordinates ≤ x

)
=

{
λx (0 ≤ x < 3L/4)
λx+m0 (3L/4 ≤ x ≤ L)

This is of course discontinuous.
m(x)

x

The coordinate of the center of mass is
∫
xdm

/ ∫
dm. The total mass in the denominator is

m0 + λL, and I’ll go through the details to evaluate the numerator, attempting to solidify the ideas
that form this integral. Suppose you divide the length L into 10 equal pieces, then

xk = kL/10, (k = 0, 1, . . . , 10) and ∆mk =

{
λL/10 (k 6= 8)
λL/10 +m0 (k = 8)

∆m8 = m(x8)−m(x7) = (λx8 +m0)− λx7 = λL/10 +m0.
Choose the positions x′k anywhere in the interval; for no particular reason I’ll take the right-hand

endpoint, x′k = kL/10. The approximation to the integral is now

10∑
k=1

x′k∆mk =

7∑
k=1

x′kλL/10 + x′8(λL/10 +m0) +

10∑
k=9

x′kλL/10

=

10∑
k=1

x′kλL/10 + x′8m0

As you add division points (more intervals) to the whole length this sum obviously separates into two
parts. One is the ordinary integral and the other is the discrete term from the point mass.

∫ L

0
xλdx+m03L/4 = λL2/2 +m03L/4

The center of mass is then at

xcm =
λL2/2 +m03L/4

m0 + λL

If m0 � λL, this is approximately L/2. In the reverse case is is approximately 3L/4. Both are just
what you should expect.

The discontinuity in m(x) simply gives you a discrete added term in the overall result.
Did you need the Stieltjes integral to do this? Probably not. You would likely have simply added

the two terms from the two parts of the mass and gotten the same result as with this more complicated
method. The point of this is not that it provides an easier way to do computations. It doesn’t. It is
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however a unifying notation and language that lets you avoid writing down a lot of special cases. (Is it
discrete? Is it continuous?) You can even write sums as integrals: Let α be a set of steps:

α(x) =


0 x < 1
1 1 ≤ x < 2
2 2 ≤ x < 3
etc.

= [x] for x ≥ 0

Where that last bracketed symbol means “greatest integer less than or equal to x.” It’s a notation more
common in mathematics than in physics. Now in this notation the sum can be written as a Stieltjes
integral. ∫

f dα =

∫ ∞
x=0

f d[x] =
∞∑
k=1

f(k) (1.30)

At every integer, where [x] makes a jump by one, there is a contribution to the Riemann-Stieltjes sum,
Eq. (1.28). That makes this integral just another way to write the sum over integers. This won’t help
you to sum the series, but it is another way to look at the subject.

The method of integration by parts works perfectly well here, though as with all the rest of this
material I’ll leave the proof to advanced calculus texts. If

∫
f dα exists then so does

∫
αdf and∫

f dα = fα−
∫
αdf (1.31)

This relates one Stieltjes integral to another one, and because you can express summation as an integral
now, you can even do summation by parts on the equation (1.30). That’s something that you are not
likely to think of if you restrict yourself to the more elementary notation, and it’s even occasionally
useful.

1.7 Polar Coordinates
When you compute an integral in the plane, you need the element of area appropriate to the coordinate
system that you’re using. In the most common case, that of rectangular coordinates, you find the
element of area by drawing the two lines at constant coordinates x and x + dx. Then you draw the
two lines at constant coordinates y and y+ dy. The little rectangle that they circumscribe has an area
dA = dxdy.

x x+ dx

y
y + dy

r r + dr

φ
φ+ dφ

In polar coordinates you do exactly the same thing! The coordinates are r and φ, and the line at
constant radius r and at constant r+ dr define two neighboring circles. The lines at constant angle φ
and at constant angle φ+dφ form two closely spaced rays from the origin. These four lines circumscribe
a tiny area that is, for small enough dr and dφ, a rectangle. You then know its area is the product of
its two sides*: dA = (dr)(r dφ). This is the basic element of area for polar coordinates.

* If you’re tempted to say that the area is dA = dr dφ, look at the dimensions. This expression is
a length, not an area.
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The area of a circle is the sum of all the pieces of area within it

∫
dA =

∫ R

0
r dr

∫ 2π

0
dφ

I find it more useful to write double integrals in this way, so that the limits of integration are next to
the differential. The other notation can put the differential a long distance from where you show the
limits of integration. I get less confused my way. In either case, and to no one’s surprise, you get

∫ R

0
r dr

∫ 2π

0
dφ =

∫ R

0
r dr 2π = 2πR2/2 = πR2

For the preceding example you can do the double integral in either order with no special care. If
the area over which you’re integrating is more complicated you will have to look more closely at the
limits of integration. I’ll illustrate with an example of this in rectangular coordinates: the area of a
triangle. Take the triangle to have vertices (0, 0), (a, 0), and (0, b). The area is

a

b
∫
dA =

∫ a

0
dx
∫ b(a−x)/a

0
dy or

∫ b

0
dy
∫ a(b−y)/b

0
dx (1.32)

They should both yield ab/2. See problem 1.25.

1.8 Sketching Graphs

How do you sketch the graph of a function? This is one of the most important tools you can use
to understand the behavior of functions, and unless you practice it you will find yourself at a loss in
anticipating the outcome of many calculations. There are a handful of rules that you can follow to do
this and you will find that it’s not as painful as you may think.

You are confronted with a function and have to sketch its graph.

1. What is the domain? That is, what is the set of values of the independent variable that you
need to be concerned with? Is it −∞ to +∞ or is it 0 < x < L or is it −π < φ < π or what?

2. Plot any obvious points. If you can immediately see the value of the function at one or more
points, do them right away.

3. Is the function even or odd? If the behavior of the function is the same on the left as it is on
the right (or perhaps inverted on the left) then you have half as much work to do. Concentrate on one
side and you can then make a mirror image on the left if it is even or an upside-down mirror image if
it’s odd.

4. Is the function singular anywhere? Does it go to infinity at some point where the denominator
vanishes? Note these points on the axis for future examination.

5. What is the behavior of the function near any of the obvious points that you plotted? Does
it behave like x? Like x2? If you concluded that it is even, then the slope is either zero or there’s a
kink in the curve, such as with the absolute value function, |x|.

6. At one of the singular points that you found, how does it behave as you approach the point
from the right? From the left? Does the function go toward +∞ or toward −∞ in each case?

7. How does the function behave as you approach the ends of the domain? If the domain extends
from −∞ to +∞, how does the function behave as you approach these regions?
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8. Is the function the sum or difference of two other much simpler functions? If so, you may
find it easier to sketch the two functions and then graphically add or subtract them. Similarly if it is a
product.

9. Is the function related to another by translation? The function f(x) = (x− 2)2 is related to
x2 by translation of 2 units. Note that it is translated to the right from x2. You can see why because
(x− 2)2 vanishes at x = +2.

10. After all this, you will have a good idea of the shape of the function, so you can interpolate
the behavior between the points that you’ve found.

Example: sketch f(x) = x/(a2 − x2).

−a a

1. The domain for independent variable wasn’t given, so take it to be −∞ < x <∞
2. The point x = 0 obviously gives the value f(0) = 0.
4. The denominator becomes zero at the two points x = ±a.
3. If you replace x by −x, the denominator is unchanged, and the numerator changes sign. The

function is odd about zero.

−a a

7. When x becomes very large (|x| � a), the denominator is mostly −x2, so f(x) behaves
like x/(−x2) = −1/x for large x. It approaches zero for large x. Moreover, when x is positive, it
approaches zero through negative values and when x is negative, it goes to zero through positive values.

−a a

5. Near the point x = 0, the x2 in the denominator is much smaller than the constant a2

(x2 � a2). That means that near this point, the function f behaves like x/a2

−a a
−a a

6. Go back to the places that it blows up, and ask what happens near there. If x is a little
greater than a, the x2 in the denominator is a little larger than the a2 in the denominator. This means
that the denominator is negative. When x is a little less than a, the reverse is true. Near x = a, The
numerator is close to a. Combine these, and you see that the function approaches −∞ as x→ a from
the right. It approaches +∞ on the left side of a. I’ve already noted that the function is odd, so don’t
repeat the analysis near x = −a, just turn this behavior upside down.

With all of these pieces of the graph, you can now interpolate to see the whole picture.



1—Basic Stuff 17

OR, if you’re clever with partial fractions, you might realize that you can rearrange f as

x
a2 − x2

=
−1/2

x− a
+
−1/2

x+ a
,

and then follow the ideas of techniques 8 and 9 to sketch the graph. It’s not obvious that this is any
easier; it’s just different.

Exercises

1 Express ex in terms of hyperbolic functions.

2 If sinhx = 4/3, what is coshx? What is tanhx?

3 If tanhx = 5/13, what is sinhx? What is coshx?

4 Let n and m be positive integers. Let a = n2 −m2, b = 2nm, c = n2 + m2. Show that a-b-c
form the integer sides of a right triangle. What are the first three independent “Pythagorean triples?”
By that I mean ones that aren’t just a multiple of one of the others.

5 Evaluate the integral
∫ a

0 dxx
2 cosx. Use parametric differentiation starting with cosαx.

6 Evaluate
∫ a

0 dxx sinhx by parametric differentiation.

7 Differentiate xex sinx coshx with respect to x.

8 Differentiate
∫ x2

0 dt sin(xt) with respect to x.

9 Differentiate
∫ +x
−x dt e

−xt4 with respect to x.

10 Differentiate
∫ +x
−x dt sin(xt3) with respect to x.

11 Differentiate
∫ 3
√

sin(kx)
0 dt e−αt

3
J0(βt) with respect to x. J0 is a Bessel function.

12 Sketch the function y = v0t−gt2/2. (First step: set all constants to one. v0 = g = 2 = 1. Except
exponents)

13 Sketch the function U = −mgy + ky2/2. (Again: set the constant factors to one.)

14 Sketch U = mg`(1− cos θ).

15 Sketch V = −V0e−x
2/a2 .

16 Sketch x = x0e−αt sinωt.

17 Is it all right in Eq. (1.22) to replace “∆xk → 0” with “N →∞?” [No.]

18 Draw a graph of the curve parametrized as x = cos θ, y = sin θ.
Draw a graph of the curve parametrized as x = cosh θ, y = sinh θ.

19 What is the integral
∫ b
a dx e

−x2?
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20 Given that
∫∞
−∞ dx/(1+x2) = π, i.e. you don’t have to derive this, what then is

∫∞
−∞ dx/(α+x2)?

Now differentiate the result and find the two integrals
∫∞
−∞ dx/(1 + x2)2 and

∫∞
−∞ dx/(1 + x2)3.

21 Derive the product rule as a special case of Eq. (1.20).

22 The third paragraph of section 1.6 has two simple equations in arithmetic. What common identities
about the integral do these correspond to?

23 Plot a graph of y = ex with y and x in meters (x horizontal and y vertical). Start at the origin
and walk along the x-axis at one meter per second. When you are at the 20-meter point, where is the
y coordinate and how fast is it rising? Not just numbers: compare both to real things.
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Problems

1.1 What is the tangent of an angle in terms of its sine? Draw a triangle and do this in one line.

1.2 Derive the identities for cosh2 θ − sinh2 θ and for 1− tanh2 θ, Equation (1.3).

1.3 Derive the expressions in Eq. (1.4) for cosh−1 y, tanh−1 y, and coth−1 y. Pay particular attention
to the domains and explain why these are valid for the set of y that you claim. What is sinh−1(y) +
sinh−1(−y)?

1.4 The inverse function has a graph that is the mirror image of the original function in the 45◦ line
y = x. Draw the graphs of all six of the hyperbolic functions and all six of the inverse hyperbolic
functions, comparing the graphs you should get to the functions derived in the preceding problem.

1.5 Evaluate the derivatives of coshx, tanhx, and cothx.

1.6 What are the derivatives, d sinh−1 y
/
dy and d cosh−1 y

/
dy?

1.7 Find formulas for sinh 2y and cosh 2y in terms of hyperbolic functions of y. The first one of these
should take just a couple of lines. Maybe the second one too, so if you find yourself filling a page, start
over.

1.8 Do a substitution to evaluate the integral (a) simply. Now do the same for (b)

(a)

∫
dt√
a2 − t2

(b)

∫
dt√
a2 + t2

1.9 Sketch the two integrands in the preceding problem. For the second integral, if the limits are 0
and z with z � a, then before having done the integral, estimate approximately what the value of this
integral should be. (Say z = 106a or z = 1060a.) Compare your estimate to the exact answer that you
just found to see if they match in any way.

1.10 Fill in the steps in the derivation of the Gaussian integrals, Eqs. (1.7), (1.8), and (1.10). In
particular, draw graphs of the integrands to show why Eq. (1.7) is so.

1.11 What is the integral
∫∞
−∞ dt t

ne−t
2

if n = −1 or n = −2? [Careful!, no conclusion-jumping
allowed.] Did you draw a graph? No? Then that’s why you’re having trouble with this.

1.12 Sketch a graph of the error function. In particular, what is its behavior for small x and for large
x, both positive and negative? Note: “small” doesn’t mean zero. First draw a sketch of the integrand
e−t

2
and from that you can (graphically) estimate erf(x) for small x. Compare this to the short table

in Eq. (1.11).

1.13 Put a parameter α into the defining integral for the error function, Eq. (1.11), so it has
∫ x

0 dt e
−αt2 .

Differentiate this integral with respect to α. Next, change variables in this same integral from t to u:
u2 = αt2, and differentiate that integral (which of course has the same value as before) with respect
to alpha to show ∫ x

0
dt t2e−t

2
=

√
π

4
erf(x)− 1

2
xe−x

2
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As a check, does this agree with the previous result for x =∞, Eq. (1.10)?

1.14 Use parametric differentiation to derive the recursion relation xΓ(x) = Γ(x+ 1). Do it once by
inserting a parameter in the integral for Γ, e−t → e−αt, and differentiating. Then change variables
before differentiating and equate the results.

1.15 What is the Gamma function of x = −1/2, −3/2, −5/2? Explain why the original definition of
Γ in terms of the integral won’t work here. Demonstrate why Eq. (1.12) converges for all x > 0 but
does not converge for x ≤ 0. Ans: Γ(−5/2) = −8

√
π/15

1.16 What is the Gamma function for x near 1? near 0? near −1? −2? −3? Now sketch a graph of
the Gamma function from −3 through positive values. Try using the recursion relation of problem 1.14.
Ans: Near −3, Γ(x) ≈ −1/

(
6(x+ 3)

)
1.17 Show how to express the integral for arbitrary positive x∫ ∞

0
dt txe−t

2

in terms of the Gamma function. Is positive x the best constraint here or can you do a touch better?
Ans: 1

2Γ
(
(x+ 1)/2

)
1.18 The derivative of the Gamma function at x = 1 is Γ′(1) ≈ −0.5772 = −γ. The number γ is
called Euler’s constant, and like π or e it’s another number that simply shows up regularly. What is
Γ′(2)? What is Γ′(3)? Ans: Γ′(3) = 3− 2γ

1.19 Show that

Γ(n+ 1/2) =

√
π

2n
(2n− 1)!!

The “double factorial” symbol mean the product of every other integer up to the given one. E.g. 5!! =
15. The double factorial of an even integer can be expressed in terms of the single factorial. Do so.
What about odd integers?

1.20 Evaluate this integral. Just find the right substitution.

∫ ∞
0

dt e−t
a

(a > 0)

1.21 A triangle has sides a, b, c, and the angle opposite c is γ. Express the area of the triangle in
terms of a, b, and γ. Write the law of cosines for this triangle and then use sin2 γ + cos2 γ = 1 to
express the area of a triangle solely in terms of the lengths of its three sides. The resulting formula is
not especially pretty or even clearly symmetrical in the sides, but if you introduce the semiperimeter,
s = (a+ b+ c)/2, you can rearrange the answer into a neat, symmetrical form. Check its validity in a

couple of special cases. Ans:
√
s(s− a)(s− b)(s− c) (Hero’s formula)

1.22 An arbitrary linear combination of the sine and cosine, A sin θ+B cos θ, is a phase-shifted cosine:
C cos(θ + δ). Solve for C and δ in terms of A and B, deriving an identity in θ.

1.23 Solve the two simultaneous linear equations

ax+ by = e, cx+ dy = f

and do it solely by elementary manipulation (+, −, ×, ÷), not by any special formulas. Analyze all the
qualitatively different cases and draw graphs to describe each. In every case, how many if any solutions
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are there? Because of its special importance later, look at the case e = f = 0 and analyze it as if
it’s a separate problem. You should be able to discern and to classify the circumstances under which
there is one solution, no solution, or many solutions. Ans: Sometimes a unique solution. Sometimes
no solution. Sometimes many solutions. Draw two lines in the plane; how many qualitatively different
pictures are there?

1.24 Use parametric differentiation to evaluate the integral
∫
x2 sinxdx. Find a table of integrals if

you want to verify your work.

1.25 Derive all the limits on the integrals in Eq. (1.32) and then do the integrals.

1.26 Compute the area of a circle using rectangular coordinates,

1.27 (a) Compute the area of a triangle using rectangular coordinates, so dA = dxdy. Make it a right
triangle with vertices at (0, 0), (a, 0), and (a, b). (b) Do it again, but reversing the order of integration.
(c) Now compute the area of this triangle using polar coordinates. Examine this carefully to see which
order of integration makes the problem easier.

1.28 Start from the definition of a derivative, lim
(
f(x+ ∆x)− f(x)

)
/∆x, and derive the chain rule.

f(x) = g
(
h(x)

)
=⇒ df

dx
=
dg
dh
dh
dx

Now pick special, fairly simple cases for g and h to test whether your result really works. That is,
choose functions so that you can do the differentiation explicitly and compare the results, but also
functions with enough structure that they aren’t trivial.

1.29 Starting from the definitions, derive how to do the derivative,

d
dx

∫ f(x)

0
g(t) dt

Now pick special, fairly simple cases for f and g to test whether your result really works. That is,
choose functions so that you can do the integration and differentiation explicitly, but ones such the
result isn’t trivial.

1.30 Sketch these graphs, working by hand only, no computers:

x
a2 + x2

,
x2

a2 − x2
,

x
a3 + x3

,
x− a

a2 − (x− a)2
,

x
L2 − x2

+
x
L

1.31 Sketch by hand only, graphs of

sinx (−3π < x < +4π),
1

sinx
(−3π < x < +4π), sin(x− π/2) (−3π < x < +4π)

1.32 Sketch by hand only, graphs of

f(φ) = 1 +
1

2
sin2 φ (0 ≤ φ ≤ 2π), f(φ) =

{
φ (0 < φ < π)
φ− 2π (π < φ < 2π)

f(x) =

{
x2 (0 ≤ x < a)
(x− 2a)2 (a ≤ x ≤ 2a)

, f(r) =

{
Kr/R3 (0 ≤ r ≤ R)
K/r2 (R < r <∞)
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1.33 From the definition of the Riemann integral make a numerical calculation of the integral∫ 1

0
dx

4

1 + x2

Use 1 interval, then 2 intervals, then 4 intervals. If you choose to write your own computer program
for an arbitrary number of intervals, by all means do so. As with the example in the text, choose the
midpoints of the intervals to evaluate the function. To check your answer, do a trig substitution and
evaluate the integral exactly. What is the % error from the exact answer in each case? [100×(wrong
− right)/right] Ans: π

1.34 Evaluate erf(1) numerically. Use 4 intervals. Ans: 0.842700792949715 (more or less)

1.35 Evaluate
∫ π

0 dx sinx/x numerically. Ans: 1.85193705198247 or so.

1.36 x and y are related by the equation x3−4xy+3y3 = 0. You can easily check that (x, y) = (1, 1)
satisfies it, now what is dy/dx at that point? Unless you choose to look up and plug in to the cubic
formula, I suggest that you differentiate the whole equation with respect to x and solve for dy/dx.
Generalize this to finding dy/dx if f(x, y) = 0. Ans: 1/5

1.37 When flipping a coin N times, what fraction of the time will the number of heads in the run lie
between

(
N/2−2

√
N/2

)
and

(
N/2+2

√
N/2

)
? What are these numbers for N = 1000? Ans: 99.5%

1.38 For N = 4 flips of a coin, count the number of times you get 0, 1, 2, etc. heads out of 24 = 16
cases. Compare these results to the exponential approximation of Eq. (1.17).
Ans: 2→ 0.375 and 0.399

1.39 Is the integral of Eq. (1.17) over all δ equal to one?

1.40 If there are 100 molecules of a gas bouncing around in a room, about how long will you have to
wait to find that all of them are in the left half of the room? Assume that you make a new observation
every microsecond and that the observations are independent of each other. Ans: A million times the
age of the universe. [Care to try 1023 molecules?]

1.41 If you flip 1000 coins 1000 times, about how many times will you get exactly 500 heads and 500
tails? What if it’s 100 coins and 100 trials, getting 50 heads? Ans: 25, 8

1.42 (a) Use parametric differentiation to evaluate
∫
xdx. Start with

∫
eαxdx. Differentiate and then

let α→ 0.
(b) Now that the problem has blown up in your face, change the integral from an indefinite to a definite

integral such as
∫ b
a and do it again. There are easier ways to do this integral, but the point is that this

method is really designed for definite integrals. It may not work on indefinite ones.

1.43 The Gamma function satisfies the identity

Γ(x)Γ(1− x) = π/ sinπx

What does this tell you about the Gamma function of 1/2? What does it tell you about its behavior
near the negative integers? Compare this result to that of problem 1.16.
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1.44 Start from the definition of a derivative, manipulate some terms: (a) derive the rule for differen-
tiating the function h, where h(x) = f(x)g(x) is the product of two other functions.
(b) Integrate the resulting equation with respect to x and derive the formula for integration by parts.

1.45 Show that in polar coordinates the equation r = 2a cosφ is a circle. Now compute its area in
this coordinate system.

1.46 The cycloid* has the parametric equations x = aθ − a sin θ, and y = a− a cos θ. Compute the
area,

∫
y dx between one arc of this curve and the x-axis. Ans: 3πa2

1.47 An alternate approach to the problem 1.13: Change variables in the integral definition of erf to
t = αu. Now differentiate with respect to α and of course the derivative must be zero and there’s your
answer. Do the same thing for problem 1.14 and the Gamma function.

1.48 Recall section 1.5 and compute this second derivative to show

d2

dt2

∫ t

0
dt′ (t− t′)F (t′) = F (t)

1.49 From the definition of a derivative show that

If x = f(θ) and t = g(θ) then
dx
dt

=
df/dθ

dg/dθ

Make up a couple of functions that let you test this explicitly.

1.50 Redo problem 1.6 another way: x = sinh−1 y ↔ y = sinhx. Differentiate the second of these
with respect to y and solve for dx/dy. Ans: d sinh−1 y/dy = 1/

√
1 + y2.

* www-groups.dcs.st-and.ac.uk/˜history/Curves/Cycloid.html

http://www-groups.dcs.st-and.ac.uk/~history/Curves/Cycloid.html


Infinite Series
.

Infinite series are among the most powerful and useful tools that you’ve encountered in your introductory
calculus course. It’s easy to get the impression that they are simply a clever exercise in manipulating
limits and in studying convergence, but they are among the majors tools used in analyzing differential
equations, in developing methods of numerical analysis, in defining new functions, in estimating the
behavior of functions, and more.

2.1 The Basics
There are a handful of infinite series that you should memorize and should know just as well as you do
the multiplication table. The first of these is the geometric series,

1 + x+ x2 + x3 + x4 + · · · =
∞∑
0

xn =
1

1− x
for |x| < 1. (2.1)

It’s very easy derive because in this case you can sum the finite form of the series and then take a limit.
Write the series out to the term xN and multiply it by (1− x).

(1 + x+ x2 + x3 + · · ·+ xN )(1− x) =

(1 + x+ x2 + x3 + · · ·+ xN )−(x+ x2 + x3 + x4 + · · ·+ xN+1) = 1− xN+1 (2.2)

If |x| < 1 then as N →∞ this last term, xN+1, goes to zero and you have the answer. If x is outside
this domain the terms of the infinite series don’t even go to zero, so there’s no chance for the series to
converge to anything.

The finite sum up to xN is useful on its own. For example it’s what you use to compute the
payments on a loan that’s been made at some specified interest rate. You use it to find the pattern of
light from a diffraction grating.

N∑
0

xn =
1− xN+1

1− x
(2.3)

Some other common series that you need to know are power series for elementary functions:

ex = 1 + x+
x2

2!
+ · · · =

∞∑
0

xk

k!

sinx = x− x
3

3!
+ · · · =

∞∑
0

(−1)k
x2k+1

(2k + 1)!

cosx = 1− x
2

2!
+ · · · =

∞∑
0

(−1)k
x2k

(2k)!

ln(1 + x) = x− x
2

2
+
x3

3
− · · · =

∞∑
1

(−1)k+1x
k

k
(|x| < 1) (2.4)

(1 + x)α = 1 + αx+
α(α− 1)x2

2!
+ · · · =

∞∑
k=0

α(α− 1) · · · (α− k + 1)

k!
xk (|x| < 1)

24
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Of course, even better than memorizing them is to understand their derivations so well that you
can derive them as fast as you can write them down. For example, the cosine is the derivative of the
sine, so if you know the latter series all you have to do is to differentiate it term by term to get the
cosine series. The logarithm of (1 + x) is an integral of 1/(1 + x) so you can get its series from that
of the geometric series. The geometric series is a special case of the binomial series for α = −1, but
it’s easier to remember the simple case separately. You can express all of them as special cases of the
general Taylor series.

What is the sine of 0.1 radians? Just use the series for the sine and you have the answer, 0.1, or
to more accuracy, 0.1− 0.001/6 = 0.099833

What is the square root of 1.1?
√

1.1 = (1 + .1)1/2 = 1 + 1
2

. 0.1 = 1.05

What is 1/1.9? 1/(2 − .1) = 1/[2(1 − .05)] = 1
2(1 + .05) = .5 + .025 = .525 from the first

terms of the geometric series.
What is 3

√
1024? 3

√
1024 = 3

√
1000 + 24 = 3

√
1000(1 + 24/1000) =

10(1 + 24/1000)1/3 = 10(1 + 8/1000) = 10.08
As you see from the last two examples you have to cast the problem into a form fitting the

expansion that you know. When you want to use the binomial series, rearrange and factor your expression
so that you have (

1 + something small
)α

2.2 Deriving Taylor Series
How do you derive these series? The simplest way to get any of them is to assume that such a series
exists and then to deduce its coefficients in sequence. Take the sine for example, assume that you can
write

sinx = A+Bx+Cx2 +Dx3 +Ex4 + · · ·

Evaluate this at x = 0 to get

sin 0 = 0 = A+B0 +C02 +D03 +E04 + · · · = A

so the first term, A = 0. Now differentiate the series, getting

cosx = B + 2Cx+ 3Dx2 + 4Ex3 + · · ·

Again set x = 0 and all the terms on the right except the first one vanish.

cos 0 = 1 = B + 2C0 + 3D02 + 4E03 + · · · = B

Keep repeating this process, evaluating in turn all the coefficients of the assumed series.

sinx = A+Bx+Cx2 +Dx3 +Ex4 + · · ·
cosx = B + 2Cx+ 3Dx2 + 4Ex3 + · · ·
− sinx = 2C + 6Dx+ 12Ex2 + · · ·
− cosx = 6D + 24Ex+ 60Fx2 + · · ·

sinx = 24E + 120Fx+ · · ·
cosx = 120F + · · ·

sin 0 = 0 = A

cos 0 = 1 = B

− sin 0 = 0 = 2C

− cos 0 = −1 = 6D

sin 0 = 0 = 24E

cos 0 = 1 = 120F

This shows the terms of the series for the sine as in Eq. (2.4).
Does this show that the series converges? If it converges does it show that it converges to the

sine? No to both. Each statement requires more work, and I’ll leave the second one to advanced
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calculus books. Even better, when you understand the subject of complex variables, these questions
about series become much easier to understand.

The generalization to any function is obvious. You match the coefficients in the assumed expan-
sion, and get

f(x) = f(0) + xf ′(0) +
x2

2!
f ′′(0) +

x3

3!
f ′′′(0) +

x4

4!
f ′′′′(0) + · · ·

You don’t have to do the expansion about the point zero. Do it about another point instead.

f(t) = f(t0) + (t− t0)f ′(t0) +
(t− t0)2

2!
f ′′(t0) + · · · (2.5)

What good are infinite series?
This is sometimes the way that a new function is introduced and developed, typically by determining a
series solution to a new differential equation. (Chapter 4)
This is a tool for the numerical evaluation of functions.
This is an essential tool to understand and invent numerical algorithms for integration, differentiation,
interpolation, and many other common numerical methods. (Chapter 11)
To understand the behavior of complex-valued functions of a complex variable you will need to under-
stand these series for the case that the variable is a complex number. (Chapter 14)

All the series that I’ve written above are power series (Taylor series), but there are many other
possibilities.

ζ(z) =

∞∑
1

1

nz
(2.6)

x2 =
L2

3
+

4L2

π2

∞∑
1

(−1)n
1

n2
cos
(nπx
L

)
(−L ≤ x ≤ L) (2.7)

The first is a Dirichlet series defining the Riemann zeta function, a function that appears in statistical
mechanics among other places.
The second is an example of a Fourier series. See chapter five for more of these.
Still another type of series is the Frobenius series, useful in solving differential equations: its form is∑
k akx

k+s. The number s need not be either positive or an integer. Chapter four has many examples
of this form.

There are a few technical details about infinite series that you have to go through. In introductory
calculus courses there can be a tendency to let these few details overwhelm the subject so that you are
left with the impression that that’s all there is, not realizing that this stuff is useful. Still, you do need
to understand it.*

2.3 Convergence

Does an infinite series converge? Does the limit as N → ∞ of the sum,
∑N

1 uk, exist? There are a
few common and useful ways to answer this. The first and really the foundation for the others is the
comparison test.

Let uk and vk be sequences of real numbers, positive at least after some value of k. Also assume
that for all k greater than some finite value, uk ≤ vk. Also assume that the sum,

∑
k vk does converge.

The other sum,
∑
k uk then converges too. This is almost obvious, but it’s worth the little effort that

a proof takes.

* For animations showing how fast some of these power series converge, check out
www.physics.miami.edu/nearing/mathmethods/power-animations.html

http://www.physics.miami.edu/nearing/mathmethods/power-animations.html
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The required observation is that an increasing sequence of real numbers, bounded above, has a
limit.

After some point, k = M , all the uk and vk are positive and uk ≤ vk. The sum an =
∑n
M vk

then forms an increasing sequence of real numbers, so by assumption this has a limit (the series
converges). The sum bn =

∑n
M uk is an increasing sequence of real numbers also. Because uk ≤ vk

you immediately have bn ≤ an for all n.

bn ≤ an ≤ lim
n→∞

an

this simply says that the increasing sequence bn has an upper bound, so it has a limit and the theorem
is proved.

Ratio Test
To apply this comparison test you need a stable of known convergent series. One that you do have is
the geometric series,

∑
k x

k for |x| < 1. Let this xk be the vk of the comparison test. Assume at least
after some point k = K that all the uk > 0.
Also that uk+1 ≤ xuk.

Then uK+2 ≤ xuK+1 and uK+1 ≤ xuK gives uK+2 ≤ x2uK

You see the immediate extension is
uK+n ≤ xnuK

As long as x < 1 this is precisely set up for the comparison test using
∑
n uKx

n as the series that
dominates the

∑
n un. This test, the ratio test is more commonly stated for positive uk as

If for large k,
uk+1

uk
≤ x < 1 then the series

∑
uk converges (2.8)

This is one of the more commonly used convergence tests, not because it’s the best, but because it’s
simple and it works a lot of the time.

Integral Test
The integral test is another way to check for convergence or divergence. If f is a decreasing posi-
tive function and you want to determine the convergence of

∑
n f(n), you can look at the integral∫∞ dx f(x) and check it for convergence. The series and the integral converge or diverge together.

1 2 3 4 5

f(1)

f(2)
f(3)
f(4) f(x)

From the graph you see that the function f lies between the tops of the upper and the lower
rectangles. The area under the curve of f between n and n + 1 lies between the areas of the two
rectangles. That’s the reason for the assumption that f is decreasing and positive.

f(n) . 1 >
∫ n+1

n
dx f(x) > f(n+ 1) . 1
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Add these inequalities from n = k to n =∞ and you get

f(k) + f(k + 1) + · · · >
∫ k+1

k
+

∫ k+2

k+1
+ · · · =

∫ ∞
k

dx f(x)

> f(k + 1) + f(k + 2) + · · · >
∫ ∞
k+1

dx f(x) > f · · · (2.9)

The only difference between the infinite series on the left and on the right is one term, so either
everything converges or everything diverges.

You can do better than this and use these inequalities to get a quick estimate of the sum of a
series that would be too tedious to sum by itself. For example

∞∑
1

1

n2
= 1 +

1

22
+

1

32
+

∞∑
4

1

n2

This last sum lies between two integrals.∫ ∞
3

dx
1

x2
>
∞∑
4

1

n2
>
∫ ∞

4
dx

1

x2
(2.10)

that is, between 1/3 and 1/4. Now I’ll estimate the whole sum by adding the first three terms explicitly
and taking the arithmetic average of these two bounds.

∞∑
1

1

n2
≈ 1 +

1

22
+

1

32
+

1

2

(
1

3
+

1

4

)
= 1.653 (2.11)

The exact sum is more nearly 1.644934066848226, but if you use brute-force addition of the original
series to achieve accuracy equivalent to this 1.653 estimation you will need to take about 120 terms.
This series converges, but not very fast. See also problem 2.24.

Quicker Comparison Test
There is another way to handle the comparison test that works very easily and quickly (if it’s applicable).
Look at the terms of the series for large n and see what the approximate behavior of the nth term is.
That provides a comparison series. This is better shown by an example:

∞∑
1

n3 − 2n+ 1/n
5n5 + sinn

For large n, the numerator is essentially n3 and the denominator is essentially 5n5, so for large n this
series is approximately like

∞∑ 1

5n2

More precisely, the ratio of the nth term of this approximate series to that of the first series goes to
one as n → ∞. This comparison series converges, so the first one does too. If one of the two series
diverges, then the other does too.

Apply the ratio test to the series for ex.

ex =
∞∑
0

xk/k! so
uk+1

uk
=
xk+1/(k + 1)!

xk/k!
=

x
k + 1
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As k →∞ this quotient approaches zero no matter the value of x. This means that the series converges
for all x.

Absolute Convergence
If a series has terms of varying signs, that should help the convergence. A series is absolutely convergent
if it converges when you replace each term by its absolute value. If it’s absolutely convergent then it
will certainly be convergent when you reinstate the signs. An example of a series that is convergent
but not absolutely convergent is

∞∑
k=1

(−1)k+1 1

k
= 1− 1

2
+

1

3
− . . . = ln(1 + 1) = ln 2 (2.12)

Change all the minus signs to plus and the series is divergent. (Use the integral test.)
Can you rearrange the terms of an infinite series? Sometimes yes and sometimes no. If a series

is convergent but not absolutely convergent, then each of the two series, the positive terms and the
negative terms, is separately divergent. In this case you can rearrange the terms of the series to converge
to anything you want! Take the series above that converges to ln 2. I want to rearrange the terms
so that it converges to

√
2. Easy. Just start adding the positive terms until you’ve passed

√
2. Stop

and now start adding negative ones until you’re below that point. Stop and start adding positive terms
again. Keep going and you can get to any number you want.

1 +
1

3
+

1

5
− 1

2
+

1

7
+

1

9
+

1

11
+

1

13
− 1

3
etc.

2.4 Series of Series
When you have a function whose power series you need, there are sometimes easier ways to the result
than a straight-forward attack. Not always, but you should look first. If you need the expansion of
eax

2+bx about the origin you can do a lot of derivatives, using the general form of the Taylor expansion.
Or you can say

eax
2+bx = 1 + (ax2 + bx) +

1

2
(ax2 + bx)2 +

1

6
(ax2 + bx)3 + · · · (2.13)

and if you need the individual terms, expand the powers of the binomials and collect like powers of x:

1 + bx+ (a+ b2/2)x2 + (ab+ b3/6)x3 + · · ·

If you’re willing to settle for an expansion about another point, complete the square in the exponent

eax
2+bx = ea(x2+bx/a) = ea(x2+bx/a+b2/4a2)−b2/4a = ea(x+b/2a)2−b2/4a = ea(x+b/2a)2e−b

2/4a

= e−b
2/4a[1 + a(x+ b/2a)2 + a2(x+ b/2a)4/2 + · · ·

]
and this is a power series expansion about the point x0 = −b/2a.

What is the power series expansion of the secant? You can go back to the general formulation
and differentiate a lot or you can use a combination of two known series, the cosine and the geometric
series.

secx =
1

cosx
=

1

1− 1
2!x

2 + 1
4!x

4 + · · ·
=

1

1−
[

1
2!x

2 − 1
4!x

4 + · · ·
]

= 1 +
[ ]

+
[ ]2

+
[ ]3

+ · · ·

= 1 +
[

1
2!x

2 − 1
4!x

4 + · · ·
]

+
[

1
2!x

2 − 1
4!x

4 + . . .
]2

+ · · ·
= 1 + 1

2!x
2 +

(
− 1

4! + ( 1
2!)

2
)
x4 + · · ·

= 1 + 1
2!x

2 + 5
24x

4 + · · ·

(2.14)
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This is a geometric series, each of whose terms is itself an infinite series. It still beats plugging into the
general formula for the Taylor series Eq. (2.5).

What is 1/ sin3 x?

1

sin3 x
=

1(
x− x3/3! + x5/5!− · · ·

)3 =
1

x3
(
1− x2/3! + x4/5!− · · ·

)3
=

1

x3
(
1 + z

)3 =
1

x3
(1− 3z + 6z2 − · · ·)

=
1

x3

(
1− 3(−x2/3! + x4/5!− . . .) + 6(−x2/3! + x4/5!− . . .)2

=
1

x3
+

1

2x
+

51x
360

+ · · ·

which is a Frobenius series.

2.5 Power series, two variables
The idea of a power series can be extended to more than one variable. One way to develop it is to use
exactly the same sort of brute-force approach that I used for the one-variable case. Assume that there
is some sort of infinite series and successively evaluate its terms.

f(x, y) = A+Bx+Cy +Dx2 +Exy + Fy2 +Gx3 +Hx2y + Ixy2 + Jy3 · · ·

Include all the possible linear, quadratic, cubic, and higher order combinations. Just as with the single
variable, evaluate it at the origin, the point (0, 0).

f(0, 0) = A+ 0 + 0 + · · ·

Now differentiate, but this time you have to do it twice, once with respect to x while y is held constant
and once with respect to y while x is held constant.

∂f
∂x

(x, y) = B + 2Dx+Ey + · · · then
∂f
∂x

(0, 0) = B

∂f
∂y

(x, y) = C +Ex+ 2Fy + · · · then
∂f
∂y

(0, 0) = C

Three more partial derivatives of these two equations gives the next terms.

∂2f
∂x2

(x, y) = 2D + 6Gx+ 2Hy · · ·

∂2f
∂x∂y

(x, y) = E + 2Hx+ 2Iy · · ·

∂2f
∂y2

(x, y) = 2F + 2Ix+ 6Jy · · ·

Evaluate these at the origin and you have the values of D, E, and F . Keep going and you have all the
coefficients.

This is awfully cumbersome, but mostly because the crude notation that I’ve used. You can
make it look less messy simply by choosing a more compact notation. If you do it neatly it’s no harder
to write the series as an expansion about any point, not just the origin.

f(x, y) =
∞∑

m,n=0

Amn(x− a)m(y − b)n (2.15)
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Differentiate this m times with respect to x and n times with respect to y, then set x = a and y = b.
Only one term survives and that is

∂m+nf
∂xm∂yn

(a, b) = m!n!Amn

I can use subscripts to denote differentiation so that ∂f
∂x is fx and ∂3f

∂x2∂y is fxxy. Then the

two-variable Taylor expansion is

f(x, y) = f(0)+fx(0)x+ fy(0)y+

1

2

[
fxx(0)x2 + 2fxy(0)xy + fyy(0)y2

]
+

1

3!

[
fxxx(0)x3 + 3fxxy(0)x2y + 3fxyy(0)xy2 + fyyy(0)y3

]
+ · · · (2.16)

Again put more order into the notation and rewrite the general form using Amn as

Amn =
1

(m+ n)!

(
(m+ n)!

m!n!

)
∂m+nf
∂xm∂yn

(a, b) (2.17)

That factor in parentheses is variously called the binomial coefficient or a combinatorial factor. Standard
notations for it are

m!

n!(m− n)!
= mCn =

(
m
n

)
(2.18)

The binomial series, Eq. (2.4), for the case of a positive integer exponent is

(1 + x)m =

m∑
n=0

(
m
n

)
xn, or more symmetrically

(a+ b)m =
m∑
n=0

(
m
n

)
anbm−n (2.19)

(a+ b)2 = a2 + 2ab+ b2, (a+ b)3 = a3 + 3a2b+ 3ab2 + b3,

(a+ b)4 = a4 + 4a3b+ 6a2b2 + 4ab3 + b4, etc.

Its relation to combinatorial analysis is that if you ask how many different ways can you choose n
objects from a collection of m of them, mCn is the answer.

2.6 Stirling’s Approximation
The Gamma function for positive integers is a factorial. A clever use of infinite series and Gaussian
integrals provides a useful approximate value for the factorial of large n.

n! ∼
√

2πnnne−n for large n (2.20)

Start from the Gamma function of n+ 1.

n! = Γ(n+ 1) =

∫ ∞
0

dt tne−t =

∫ ∞
0

dt e−t+n ln t

The integrand starts at zero, increases, and drops back down to zero as t → ∞. The graph roughly
resembles a Gaussian, and I can make this more precise by expanding the exponent around the point
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where it is a maximum. The largest contribution to the whole integral comes from the region near this
point. Differentiate the exponent to find the maximum:

t = n = 5

t5e−t

21.06

t

d
dt

(
− t+ n ln t

)
= −1 +

n
t

= 0 gives t = n

Expand about this point

f(t) = −t+ n ln t = f(n) + (t−n)f ′(n) + (t− n)2f ′′(n)/2 + · · ·
= −n+n lnn + 0 + (t−n)2(−n/n2)/2 + · · ·

Keep terms to the second order and the integral is approximately

n! ∼
∫ ∞

0
dt e−n+n lnn−(t−n)2/2n = nne−n

∫ ∞
0

dt e−(t−n)2/2n (2.21)

At the lower limit of the integral, at t = 0, this integrand is e−n/2, so if n is even moderately large
then extending the range of the integral to the whole line −∞ to +∞ won’t change the final answer
much.

nne−n
∫ ∞
−∞

dt e−(t−n)2/2n = nne−n
√

2πn

where the final integral is just the simplest of the Gaussian integrals in Eq. (1.10).
To see how good this is, try a few numbers

n n! Stirling ratio difference
1 1 0.922 0.922 0.078
2 2 1.919 0.960 0.081
5 120 118.019 0.983 1.981

10 3628800 3598695.619 0.992 30104.381

You can see that the ratio of the exact to the approximate result is approaching one even though the
difference is getting very large. This is not a handicap, as there are many circumstances for which this
is all you need. This derivation assumed that n is large, but notice that the result is not too bad even
for modest values. The error is less than 2% for n = 5. There are even some applications, especially in
statistical mechanics, in which you can make a still cruder approximation and drop the factor

√
2πn.

That is because in that context it is the logarithm of n! that appears, and the ratio of the logarithms
of the exact and even this cruder approximate number goes to one for large n. Try it.

Although I’ve talked about Stirling’s approximation in terms of factorials, it started with the
Gamma function, so Eq. (2.20) works just as well for Γ(n+ 1) for any real n:
Γ(11.34 = 10.34 + 1) = 8 116 833.918 and Stirling gives 8 051 701.
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Asymptotic
You may have noticed the symbol that I used in Eqs. (2.20) and (2.21). “∼” doesn’t mean “ap-
proximately equal to” or “about,” because as you see here the difference between n! and the Stirling
approximation grows with n. That the ratio goes to one is the important point here and it gets this
special symbol, “asymptotic to.”

Probability Distribution
In section 1.4 the equation (1.17) describes the distribution of the results when you toss a coin. It’s
straight-forward to derive this from Stirling’s formula. In fact it is just as easy to do a version of it for
which the coin is biased, or more generally, for any case that one of the choices is more likely than the
other.

Suppose that the two choices will come up at random with fractions a and b, where a+ b = 1.
You can still picture it as a coin toss, but using a very unfair coin. Perhaps a = 1/3 of the time it
comes up tails and b = 2/3 of the time it comes up heads. If you toss two coins, the possibilities are

TT HT TH HH

and the fractions of the time that you get each pair are respectively

a2 ba ab b2

This says that the fraction of the time that you get no heads, one head, or two heads are

a2 = 1/9, 2ab = 4/9, b2 = 4/9 with total (a+ b)2 = a2 + 2ab+ b2 = 1 (2.22)

Generalize this to the case where you throw N coins at a time and determine how often you
expect to see 0, 1, . . . , N heads. Equation (2.19) says

(a+ b)N =

N∑
k=0

(
N
k

)
akbN−k where

(
N
k

)
=

N !

k!(N − k)!

When you make a trial in which you toss N coins, you expect that the “a” choice will come up N
times only the fraction aN of the trials. All tails and no heads. Compare problem 2.27.

The problem is now to use Stirling’s formula to find an approximate result for the terms of this
series. This is the fraction of the trials in which you turn up k tails and N − k heads.

akbN−k
N !

k!(N − k)!
∼ akbN−k

√
2πN NNe−N√

2πk kke−k
√

2π(N − k) (N − k)N−ke−(N−k)

= akbN−k
1√
2π

√
N

k(N − k)

NN

kk(N − k)N−k
(2.23)

The complicated parts to manipulate are the factors with all the exponentials of k in them. Pull them
out from the denominator for separate handling, leaving the square roots behind.

kk(N − k)N−ka−kb−(N−k)

The next trick is to take a logarithm and to do all the manipulations on it.

ln→ k lnk + (N − k) ln(N − k)− k lna− (N − k) ln b = f(k) (2.24)
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The original function is a maximum when this denominator is a minimum. When the numbers N and
k are big, you can treat k as a continuous variable and differentiate with respect to it. Then set this
derivative to zero and finally, expand in a power series about that point.

d
dk
f(k) = lnk + 1− ln(N − k)− 1− lna+ ln b = 0

ln
k

N − k
= ln

a
b
,

k
N − k

=
a
b
, k = aN

This should be no surprise; a is the fraction of the time the first choice occurs, and it says that the
most likely number of times that it occurs is that fraction times the number of trials. At this point,
what is the second derivative?

d2

dk2
f(k) =

1

k
+

1

N − k

when k = aN, f ′′(k) =
1

k
+

1

N − k
=

1

aN
+

1

N − aN
=

1

aN
+

1

bN
=

1

abN

About this point the power series for f(k) is

f(k) = f(aN) + (k − aN)f ′(aN) +
1

2
(k − aN)2f ′′(aN) + · · ·

= N lnN +
1

2abN
(k − aN)2 + · · · (2.25)

To substitute this back into Eq. (2.23), take its exponential. Then because this will be a fairly sharp
maximum, only the values of k near to aN will be significant. That allows me to use this central value
of k in the slowly varying square root coefficient of that equation, and I can also neglect higher order
terms in the power series expansion there. Let δ = k − aN . The result is the Gaussian distribution.

1√
2π

√
N

aN(N − aN)
. NN

NNeδ2/2abN
=

1√
2abNπ

e−δ
2/2abN (2.26)

When a = b = 1/2, this reduces to Eq. (1.17).

When you accumulate N trials at a time (large N) and then look for the distribution in these
cumulative results, you will commonly get a Gaussian. This is the central limit theorem, which says
that whatever set of probabilities that you start with, not just a coin toss, you will get a Gaussian by
averaging the data. (Not really true. There are some requirements* on the probabilities that aren’t
always met, but if as here the variable has a bounded domain then it’s o.k. See problems 17.24 and
17.25 for a hint of where a näıve assumption that all distributions behave the same way that Gaussians
do can be misleading.) If you listen to the clicks of a counter that records radioactive decays, they sound
(and are) random, and the time interval between the clicks varies greatly. If you set the electronics to
click at every tenth count, the result will sound regular, and the time interval between clicks will vary
only slightly.

* finite mean and variance
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2.7 Useful Tricks
There are a variety of ways to manipulate series, and while some of them are simple they are probably
not the sort of thing you’d think of until you’ve seen them once. Example: what is the sum of

1− 1

3
+

1

5
− 1

7
+

1

9
− · · ·?

Introduce a parameter that you can manipulate, like the parameter you sometimes introduce to do
integrals as in Eq. (1.5). Consider the series with the parameter x in it.

f(x) = x− x
3

3
+
x5

5
− x

7

7
+
x9

9
− · · · (2.27)

Differentiate this with respect to x to get

f ′(x) = 1− x2 + x4 − x6 + x8 − · · ·

That looks a bit like the geometric series except that it has only even powers and the signs alternate.
Is that too great an obstacle? As 1/(1− x) has only plus signs, then change x to −x, and 1/(1 + x)
alternates in sign. Instead of x as a variable, use x2, then you get exactly what you’re looking for.

f ′(x) = 1− x2 + x4 − x6 + x8 − · · · = 1

1 + x2

Now to get back to the original series, which is f(1) recall, all that I need to do is integrate this
expression for f ′(x). The lower limit is zero, because f(0) = 0.

f(1) =

∫ 1

0
dx

1

1 + x2
= tan−1 x

∣∣∣∣1
0

=
π
4

This series converges so slowly however that you would never dream of computing π this way. If you
take 100 terms, the next term is 1/201 and you can get a better approximation to π by using 22/7.

The geometric series is 1 +x+x2 +x3 + · · ·, but what if there’s an extra factor in front of each
term?

f(x) = 2 + 3x+ 4x2 + 5x3 + · · ·

Multiply this by x and it is 2x+ 3x2 + 4x3 + 5x4 + · · ·, starting to look like a derivative.

xf(x) = 2x+ 3x2 + 4x3 + 5x4 + · · · = d
dx

(
x2 + x3 + x4 + · · ·

)
Again, the geometric series pops up, though missing a couple of terms.

xf(x) =
d
dx

(
1 + x+ x2 + x3 + · · · − 1− x

)
=

d
dx

[
1

1− x
− 1− x

]
=

1

(1− x)2
− 1

The final result is then

f(x) =
1

x

[
1− (1− x)2

(1− x)2

]
=

2− x
(1− x)2
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2.8 Diffraction
When light passes through a very small opening it will be diffracted so that it will spread out in a
characteristic pattern of higher and lower intensity. The analysis of the result uses many of the tools
that you’ve looked at in the first two chapters, so it’s worth showing the derivation first.

The light that is coming from the left side of the figure has a wavelength λ and wave number
k = 2π/λ. The light passes through a narrow slit of width = a. The Huygens construction for the
light that comes through the slit says that you can effectively treat each little part of the slit as if it is
a source of part of the wave that comes through to the right. (As a historical note, the mathematical
justification for this procedure didn’t come until about 150 years after Huygens proposed it, so if you
think it isn’t obvious why it works, you’re right.)

y

dy

y sin θ

θ

r

r0

Call the coordinate along the width of the slit y, where 0 < y < a. I want to find the total light
wave that passes through the slit and that heads at the angle θ away from straight ahead. The light
that passes through between coordinates y and y + dy is a wave

Ady cos(kr − ωt)

Its amplitude is proportional to the amplitude of the incoming wave, A, and to the width dy that I am
considering. The coordinate along the direction of the wave is r. The total wave that will head in this
direction is the sum (integral) over all these little pieces of the slit.

Let r0 be the distance measured from the bottom of the slit to where the light is received far
away. Find the value of r by doing a little trigonometry, getting

r = r0 − y sin θ

The total wave to be received is now the integral

∫ a

0
Ady cos

(
k(r0 − y sin θ)− ωt

)
= A

sin
(
k(r0 − y sin θ)− ωt

)
−k sin θ

∣∣∣∣∣
a

0

Put in the limits to get

A
−k sin θ

[
sin
(
k(r0 − a sin θ)− ωt

)
− sin

(
kr0 − ωt

)]
I need a trigonometric identity here, one that you can easily derive with the techniques of complex
algebra in chapter 3.

sinx− sin y = 2 sin

(
x− y

2

)
cos

(
x+ y

2

)
(2.28)
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Use this and the light amplitude is

2A
−k sin θ

sin

(
−ka

2
sin θ

)
cos
(
k(r0 −

a
2

sin θ)− ωt
)

(2.29)

The wave is the cosine factor. It is a cosine of (k . distance− ωt), and the distance in question
is the distance to the center of the slit. This is then a wave that appears to be coming from the middle
of the slit, but with an amplitude that varies strongly with angle. That variation comes from the other
factors in Eq. (2.29).

It’s the variation with angle that’s important. The intensity of the wave, the power per area,
is proportional to the square of the wave’s amplitude. I’m going to ignore all the constant factors, so
there’s no need to worry about the constant of proportionality. The intensity is then (up to a factor)

I =
sin2

(
(ka/2) sin θ

)
sin2 θ

(2.30)

For light, the wavelength is about 400 to 700 nm, and the slit may be a millimeter or a tenth of a
millimeter. The size of ka/2 is then about

ka/2 = πa/λ ≈ 3 . 0.1 mm/500 nm ≈ 1000

When you plot this intensity versus angle, the numerator vanishes when the argument of sin2() is nπ,
with n an integer, +, −, or 0. This says that the intensity vanishes in these directions except for θ = 0.
In that case the denominator vanishes too, so you have to look closer. For the simpler case that θ 6= 0,
these angles are

nπ =
ka
2

sin θ ≈ ka
2
θ n = ±1, ±2, . . .

Because ka is big, you have many values of n before the approximation that sin θ = θ becomes invalid.
You can rewrite this in terms of the wavelength because k = 2π/λ.

nπ =
2πa
2λ

θ, or θ = nλ/a

What happens at zero? Use power series expansions to evaluate this indeterminate form. The
first term in the series expansion of the sine is θ itself, so

I =
sin2

(
(ka/2) sin θ

)
sin2 θ

−→
(
(ka/2)θ

)2
θ2

=

(
ka
2

)2

(2.31)

What is the behavior of the intensity near θ = 0? Again, use power series expansions, but keep
another term

sin θ = θ − 1

6
θ3 + · · · , and (1 + x)α = 1 + αx+ · · ·

Remember, ka/2 is big! This means that it makes sense to keep just one term of the sine expansion
for sin θ itself, but you’d better keep an extra term in the expansion of the sin2(ka . . .).

I ≈
sin2

(
(ka/2)θ

)
θ2

=
1

θ2

[(
ka
2
θ

)
− 1

6

(
ka
2
θ

)3

+ · · ·

]2

=
1

θ2

(
ka
2
θ

)2
[

1− 1

6

(
ka
2
θ

)2

+ · · ·

]2

=

(
ka
2

)2
[

1− 1

3

(
ka
2
θ

)2

+ · · ·

]
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When you use the binomial expansion, put the binomial in the standard form, (1 + x) as in the second
line of these equations. What is the shape of this function? Forget all the constants, and it looks like
1− θ2. That’s a parabola.

The dots are the points where the intensity goes to zero, nλ/a. Between these directions it
reaches a maximum. How big is it there ? These maxima are about halfway between the points where
(ka sin θ)/2 = nπ. This is

ka
2

sin θ = (n+ 1/2)π, n = ±1, ±2, . . .

At these angles the value of I is, from Eq. (2.30),

I =

(
ka
2

)2( 1

(2n+ 1)π/2

)2

The intensity at θ = 0 is by Eq. (2.31), (ka/2)2, so the maxima off to the side have intensities that
are smaller than this by factors of

1

9π2/4
= 0.045,

1

25π2/4
= 0.016, . . .

2.9 Checking Results
When you solve any problem, or at least think that you’ve solved it, you’re not done. You still have to
check to see whether your result makes any sense. If you are dealing with a problem whose solution is
in the back of the book then do you think that the author is infallible? If there is no back of the book
and you’re working on something that you would like to publish, do you think that you’re infallible?
Either way you can’t simply assume that you’ve made no mistakes; you have to look at your answer
skeptically.

There’s a second reason, at least as important, to examine your results: that’s where you can
learn some physics and gain some intuition. Solving a complex problem and getting a complicated
answer may involve a lot of mathematics but you don’t usually gain any physical insight from doing it.
When you analyze your results you can gain an understanding of how the mathematical symbols are
related to physical reality. Often an approximate answer to a complicated problem can give you more
insight than an exact one, especially if the approximate answer is easier to analyze.

The first tool that you have to use at every opportunity is dimensional analysis. If you are
computing a length and your result is a velocity then you are wrong. If you have something in your
result that involves adding a time to an acceleration or an angle to a distance, then you’ve made a
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mistake; go back and find it. You can do this sort of analysis everywhere, and it is one technique that
provides an automatic error finding mechanism. If an equation is dimensionally inconsistent, backtrack
a few lines and see whether the units are wrong there too. If they are correct then you know that your
error occurred between those two lines; then further narrow the region where the mistake happened by
looking for the place at which the dimensions changed from consistent to inconsistent and that’s where
the mistake happened.

The second tool in your analysis is to examine all the parameters that occur in the result and
to see what happens when you vary them. Especially see what happens when you push them to an
extreme value. This is best explained by some examples. Start with some simple mechanics to see the
procedure.

m1 ax
M

m2

Two masses are attached by a string of negligible mass and that is wrapped around a pulley
of mass M so that it can’t slip on the pulley. Analyze them to determine what is wrong with each.
Assume that there is no friction between m1 and the table and that the string does not slip on the
pulley.

(a) ax =
m2 −m1

m2 +m1
g (b) ax =

m2

m2 +m1 −M/2
g (c) ax =

m2 −M/2

m2 +m1 +M/2
g

(a) If m1 � m2, this is negative, meaning that the motion of m1 is being slowed down. But
there’s no friction or other such force to do this.
OR If m1 = m2, this is zero, but there are still unbalanced forces causing these masses to accelerate.

(b) If the combination of masses is just right, for example m1 = 1 kg, m2 = 1 kg, and M = 2 kg,
the denominator is zero. The expression for ax blows up — a very serious problem.
OR If M is very large compared to the other masses, the denominator is negative, meaning that ax is
negative and the acceleration is a braking. Without friction, this is impossible.

(c) If M �m1 and m2, the numerator is mostly −M/2 and the denominator is mostly +M/2.
This makes the whole expression negative, meaning that m1 and m2 are slowing down. There is no
friction to do this, and all the forces are the direction to cause acceleration toward positive x.
OR If m2 = M/2, this equals zero, saying that there is no acceleration, but in this system, ax will
always be positive.

The same picture, but with friction µk between m1 and the table.

(a) ax =
m2

m2 + µkm1 +M/2
g (b) ax =

m2 − µkm1

m2 −M/2
g (c) ax =

m2

m2 + µkm1 −M/2
g

(a) If µk is very large, this approaches zero. Large friction should cause m1 to brake to a halt
quickly with very large negative ax.
OR If there is no friction, µk = 0, then m1 plays no role in this result but if it is big then you know
that it will decrease the downward acceleration of m2.

(b) The denominator can vanish. If m2 = M/2 this is nonsense.
(c) This suffers from both of the difficulties of (a) and (b).

Trajectory Example
When you toss an object straight up with an initial speed v0, you may expect an answer for the motion
as a function of time to be something like
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vy(t) = v0 − gt, y(t) = v0t−
1

2
gt2 (2.32)

Should you expect this? Not if you remember that there’s air resistance. If I claim that the answers are

vy(t) = −vt +
(
v0 + vt

)
e−gt/vt , y(t) = −vtt+ (v0 + vt)

vt
g

[
1− e−gt/vt

]
(2.33)

then this claim has to be inspected to see if it makes sense. And I never bothered to tell you what
the expression “vt” means anyway. You have to figure that out. Fortunately that’s not difficult in this
case. What happens to these equations for very large time? The exponentials go to zero, so

vy −→ −vt +
(
v0 + vt

)
. 0 = −vt, and y −→ −vtt+ (v0 + vt)

vt
g

vt is the terminal speed. After a long enough time a falling object will reach a speed for which the force
by gravity and the force by the air will balance each other and the velocity then remains constant.

Do they satisfy the initial conditions? Yes:

vy(0) = −vt +
(
v0 + vt

)
e0 = v0, y(0) = 0 + (v0 + vt)

vt
g

.(1− 1) = 0

What do these behave like for small time? They ought to reduce to something like the expressions
in Eq. (2.32), but just as important is to determine what the deviation from that simple form is. Keep
some extra terms in the series expansion. How many extra terms? If you’re not certain, then keep one
more than you think you will need. After some experience you will usually be able to anticipate what
to do. Expand the exponential:

vy(t) = −vt +
(
v0 + vt

) [
1 +
−gt
vt

+
1

2

(
−gt
vt

)2

+ · · ·

]

= v0 −
(

1 +
v0

vt

)
gt+

1

2

(
1 +

v0

vt

)
g2t2

vt
+ · · ·

The coefficient of t says that the object is slowing down more rapidly than it would have without air
resistance. So far, so good. Is the factor right? Not yet clear, so keep going. Did I need to keep terms
to order t2? Probably not, but there wasn’t much algebra involved in doing it, so it was harmless.

Look at the other equation, for y.

y(t) = −vtt+ (v0 + vt)
vt
g

[
1−

[
1− gt

vt
+

1

2

(
gt
vt

)2

− 1

6

(
gt
vt

)3

+ · · ·

]]

= v0t−
1

2

(
1 +

v0

vt

)
gt2 − 1

6

(
1 +

v0

vt

)
g2t3

vt
+ · · ·

Now differentiate this approximate expression for y with respect to time and you get the approximate
expression for vy. That means that everything appears internally consistent, and I haven’t introduced
any obvious error in the process of approximation.

What if the terminal speed is infinite, so there’s no air resistance. The work to answer this is
already done. Expanding e−gt/vt for small time is the same as for large vt, so you need only look back
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at the preceding two sets of equations and let vt −→ ∞. The result is precisely the equations (2.32),
just as you should expect.

You can even determine something about the force that I assumed for the air resistance: Fy =
may = mdvy/dt. Differentiate the approximate expression that you already have for vy, then at least
for small t

Fy = m
d
dt

[
v0 −

(
1 +

v0

vt

)
gt+

1

2

(
1 +

v0

vt

)
g2t2

vt
+ · · ·

]
= −m

(
1 +

v0

vt

)
g + · · · = −mg −mgv0/vt + · · · (2.34)

This says that the force appears to be (1) gravity plus (2) a force proportional to the initial velocity.
The last fact comes from the factor v0 in the second term of the force equation, and at time zero, that
is the velocity. Does this imply that I assumed a force acting as Fy = −mg − (a constant times)vy?
To this approximation that’s the best guess. (It happens to be correct.) To verify it though, you would
have to go back to the original un-approximated equations (2.33) and compute the force from them.

a
b

c

Electrostatics Example
Still another example, but from electrostatics this time: Two thin circular rings have radii a and b and
carry charges Q1 and Q2 distributed uniformly around them. The rings are positioned in two parallel
planes a distance c apart and with axes coinciding. The problem is to compute the force of one ring
on the other, and for the single non-zero component the answer is (perhaps)

Fz =
Q1Q2c
2π2ε0

∫ π/2

0

dθ[
c2 + (b− a)2 + 4ab sin2 θ

]3/2
. (2.35)

Is this plausible? First check the dimensions! The integrand is (dimensionally) 1/(c2)3/2 = 1/c3, where
c is one of the lengths. Combine this with the factors in front of the integral and one of the lengths (c’s)
cancels, leaving Q1Q2/ε0c2. This is (again dimensionally) the same as Coulomb’s law, q1q2/4πε0r2,
so it passes this test.

When you’ve done the dimensional check, start to consider the parameters that control the result.
The numbers a, b, and c can be anything: small, large, or equal in any combination. For some cases
you should be able to say what the answer will be, either approximately or exactly, and then check
whether this complicated expression agrees with your expectation.

If the rings shrink to zero radius this has a = b = 0, so Fz reduces to

Fz →
Q1Q2c
2π2ε0

∫ π/2

0
dθ

1

c3
=
Q1Q2c
2π2ε0

π
2c3

=
Q1Q2

4πε0c2

and this is the correct expression for two point charges a distance c apart.
If c � a and b then this is really not very different from the preceding case, where a and b are

zero.
If a = 0 this is

Fz →
Q1Q2c
2π2ε0

∫ π/2

0

dθ[
c2 + b2

]3/2
=
Q1Q2c
2π2ε0

π/2[
c2 + b2

]3/2
=

Q1Q2c

4πε0
[
c2 + b2

]3/2
(2.36)
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The electric field on the axis of a ring is something that you can compute easily. The only component of
the electric field at a point on the axis is itself along the axis. You can prove this by assuming that it’s

false. Suppose that there’s a lateral component of ~E and say that it’s to the right. Rotate everything

by 180◦ about the axis and this component of ~E will now be pointing in the opposite direction. The

ring of charge has not changed however, so ~E must be pointing in the original direction. This supposed
sideways component is equal to minus itself, and something that’s equal to minus itself is zero.

All the contributions to ~E except those parallel the axis add to zero. Along the axis each piece
of charge dq contributes the component

b

c dq
4πε0[c2 + b2]

. c√
c2 + b2

The first factor is the magnitude of the field of the point charge at a distance r =
√
c2 + b2 and the

last factor is the cosine of the angle between the axis and r. Add all the dq together and you get Q1.
Multiply that by Q2 and you have the force on Q2 and it agrees with the expressions Eq. (2.36)

If c → 0 then Fz → 0 in Eq. (2.35). The rings are concentric and the outer ring doesn’t push
the inner ring either up or down.

But wait. In this case, where c → 0, what if a = b? Then the force should approach infinity
instead of zero because the two rings are being pushed into each other. If a = b then

Fz =
Q1Q2c
2π2ε0

∫ π/2

0

dθ[
c2 + 4a2 sin2 θ

]3/2
(2.37)

If you simply set c = 0 in this equation you get

Fz =
Q1Q20

2π2ε0

∫ π/2

0

dθ[
4a2 sin2 θ

]3/2

The numerator is zero, but look at the integral. The variable θ goes from 0 to π/2, and at the end
near zero the integrand looks like

1[
4a2 sin2 θ

]3/2
≈ 1[

4a2θ2
]3/2

=
1

8a3θ3

Here I used the first term in the power series expansion of the sine. The integral near the zero end is
then approximately ∫ ...

0

dθ
θ3

=
−1

2θ2

∣∣∣∣...
0

and that’s infinite. This way to evaluate Fz is indeterminate: 0 .∞ can be anything. It doesn’t show
that this Fz gives the right answer, but it doesn’t show that it’s wrong either.

Estimating a tough integral
Although this is more difficult, even tricky, I’m going to show you how to examine this case for small
values of c and not for c = 0. The problem is in figuring out how to estimate the integral (2.37) for
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small c, and the key is to realize that the only place the integrand gets big is in the neighborhood of
θ = 0. The trick then is to divide the range of integration into two pieces∫ π/2

0

dθ[
c2 + 4a2 sin2 θ

]3/2
=

∫ Λ

0
+

∫ π/2

Λ

For any positive value of Λ the second piece of the integral will remain finite even as c→ 0. This means
that in trying to estimate the way that the whole integral approaches infinity I can ignore the second
part of the integral. Now choose Λ small enough that for 0 < θ < Λ I can use the approximation
sin θ = θ, the first term in the series for sine. (Perhaps Λ = 0.1 or so.)

for small c,
∫ π/2

0

dθ[
c2 + 4a2 sin2 θ

]3/2
≈
∫ Λ

0

dθ[
c2 + 4a2θ2

]3/2
+ lower order terms

This is an elementary integral. Let θ = (c/2a) tanφ.∫ Λ

0

dθ[
c2 + 4a2θ2

]3/2
=

∫ Λ′

0

(c/2a) sec2 φdφ

[c2 + c2 tan2 φ]3/2
=

1

2ac2

∫ Λ′

0
cosφ =

1

2ac2
sin Λ′

The limit Λ′ comes from Λ = (c/2a) tan Λ′, so this implies tan Λ′ = 2aΛ/c. Now given the tangent
of an angle, I want the sine — that’s the first page of chapter one.

sin Λ′ =
2aΛ/c√

1 + (2aΛ/c)2
=

2aΛ√
c2 + 4a2Λ2

As c → 0, this approaches one. Put all of this together and you have the behavior of the integral in
Eq. (2.37) for small c. ∫ π/2

0

dθ[
c2 + 4a2 sin2 θ

]3/2
∼ 1

2ac2
+ lower order terms

Insert this into Eq. (2.37) to get

Fz ∼
Q1Q2c
2π2ε0

. 1

2ac2
=

Q1Q2

4π2ε0ac

Now why should I believe this any more than I believed the original integral? When you are very
close to one of the rings, it will look like a long, straight line charge and the linear charge density on it is
then λ = Q1/2πa. What is the electric field of an infinitely long uniform line charge? Er = λ/2πε0r.
So now at the distance c from this line charge you know the E-field and to get the force on Q2 you
simply multiply this field by Q2.

Fz should be
λ

2πε0c
Q2 =

Q1/2πa
2πε0c

Q2 (2.38)

and that’s exactly what I found in the preceding equation. After all these checks I think that I may
believe the result, and more than that you begin to get an intuitive idea of what the result ought to
look like. That’s at least as valuable. It’s what makes the difference between understanding the physics
underlying a subject and simply learning how to manipulate the mathematics.
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Exercises

1 Evaluate by hand cos 0.1 to four places.

2 In the same way, evaluate tan 0.1 to four places.

3 Use the first two terms of the binomial expansion to estimate
√

2 =
√

1 + 1. What is the relative
error? [(wrong−right)/right]

4 Same as the preceding exercise, but for
√

1.2.

5 What is the domain of convergence for x− x4 + x9 − x42 + x52 − · · ·

6 Does
∞∑
n=0

cos(n)− cos(n+ 1) converge?

7 Does
∞∑
n=1

1√
n

converge?

8 Does
∞∑
n=1

n!

n2
converge?

9 What is the domain of convergence for
x

1 . 2
− x2

2 . 22
+

x3

3 . 33
− x4

4 . 44
+ · · ·?

10 From Eq. (2.1), find a series for
1

(1− x)2
.

11 If x is positive, sum the series 1 + e−x + e−2x + e−3x + · · ·

12 What is the ratio of the exact value of 20! to Stirling’s approximation for it?

13 For the example in Eq. (2.22), what are the approximate values that would be predicted from
Eq. (2.26)?

14 Do the algebra to evaluate Eq. (2.25).

15 Translate this into a question about infinite series and evaluate the two repeating decimal numbers:
0.444444 . . ., 0.987987987 . . .

16 What does the integral test tell you about the convergence of the infinite series
∑∞

1 n−p?

17 What would the power series expansion for the sine look like if you require it to be valid in arbitrary
units, not just radians? This requires using the constant “C” as in section 1.1.
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Problems

2.1 (a) If you borrow $200,000 to buy a house and will pay it back in monthly installments over 30 years
at an annual interest rate of 6%, what is your monthly payment and what is the total money that you
have paid (neglecting inflation)? To start, you have N payments p with monthly interest i and after
all N payments your unpaid balance must reach zero. The initial loan is L and you pay at the end of
each month.

((L(1 + i)− p)(1 + i)− p)(1 + i)− p · · · N times = 0

Now carry on and find the general expression for the monthly payment. Also find the total paid.
(b) Does your general result for arbitrary N reduce to the correct value if you pay everything back at
the end of one month? [L(1 + i) = p]
(c) For general N , what does your result become if the interest rate is zero? Ans: $1199.10, $431676

2.2 In the preceding problem, suppose that there is an annual inflation of 2%. Now what is the total
amount of money that you’ve paid in constant dollars? That is, one hundred dollars in the year 2010 is
worth just $100/1.0210 = $82.03 as expressed in year-2000 dollars. Each payment is paid with dollars
of gradually decreasing value. Ans: $324211

2.3 Derive all the power series that you’re supposed to memorize, Eq. (2.4).

2.4 Sketch graphs of the functions

e−x
2

xe−x
2

x2e−x
2

e−|x| xe−|x| x2e−|x| e−1/x e−1/x2

2.5 The sample series in Eq. (2.7) has a simple graph (x2 between −L and +L) Sketch graphs of one,
two, three terms of this series to see if the graph is headed toward the supposed answer.

2.6 Evaluate this same Fourier series for x2 at x = L; the answer is supposed to be L2. Rearrange
the result from the series and show that you can use it to evaluate ζ(2), Eq. (2.6). Ans: π2/6

2.7 Determine the domain of convergence for all the series in Eq. (2.4).

2.8 Determine the Taylor series for coshx and sinhx.

2.9 Working strictly by hand, evaluate 7
√

0.999. Also
√

50. Ans: Here’s where a calculator can tell you
better than I can.

2.10 Determine the next, x6, term in the series expansion of the secant. Ans: 61x6/720

2.11 The power series for the tangent is not as neat and simple as for the sine and cosine. You can
derive it by taking successive derivatives as done in the text or you can use your knowledge of the series
for the sine and cosine, and the geometric series.

tanx =
sinx
cosx

=
x− x3/3! + · · ·
1− x2/2! + · · ·

=
[
x− x3/3! + · · ·

][
1 + (−x2/2! + · · ·)

]−1

Use the expansion for the geometric series to place all the x2, x4, etc. terms into the numerator,
treating every term after the “1” as a single small thing. Then collect the like powers to obtain the
series at least through x5.
Ans: x+ x3/3 + 2x5/15 + 17x7/315 + · · ·
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2.12 What is the series expansion for cscx = 1/ sinx? As in the previous problem, use your knowledge
of the sine series and the geometric series to get this result at least through x5. Note: the first term
in this series is 1/x. Ans: 1/x+ x/6 + 7x3/360 + 31x5/15120 + · · ·

2.13 The exact relativistic expression for the kinetic energy of an object with non-zero mass is

K = mc2
(
γ − 1

)
where γ =

(
1− v2/c2

)−1/2

and c is the speed of light in vacuum. If the speed v is small compared to the speed of light, find
an approximate expression for K to show that it reduces to the Newtonian expression for the kinetic
energy, but include the next term in the expansion to determine how large the speed v must be in order
that this correction term is 10% of the Newtonian expression for the kinetic energy? Ans: v ≈ 0.36 c

2.14 Use series expansions to evaluate

lim
x→0

1− cosx
1− coshx

and lim
x→0

sinkx
x

2.15 Evaluate using series; you will need both the sine series and the binomial series.

lim
x→0

(
1

sin2 x
− 1

x2

)
Now do it again, setting up the algebra differently and finding an easier (or harder) way. Ans: 1/3

2.16 For some more practice with series, evaluate

lim
x→0

(
2

x
+

1

1−
√

1 + x

)
Ans: Check experimentally with a few values of x on a pocket calculator.

2.17 Expand the integrand to find the power series expansion for

ln(1 + x) =

∫ x

0
dt (1 + t)−1

Ans: Eq. (2.4)

2.18 (a) The error function erf(x) is defined by an integral. Expand the integrand, integrate term
by term, and develop a power series representation for erf. For what values of x does it converge?
Evaluate erf(1) from this series and compare it to the result of problem 1.34. (b) Also, as further
validation of the integral in problem 1.13, do the power series expansion of both sides of the equation
and verify the expansions of the two sides of the equation agree .

2.19 Verify that the combinatorial factor mCn is really what results for the coefficients when you
specialize the binomial series Eq. (2.4) to the case that the exponent is an integer.

2.20 Determine the double power series representation about (0, 0) of 1
/[

(1− x/a)(1− y/b)
]

2.21 Determine the double power series representation about (0, 0) of 1
/

(1− x/a− y/b)
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2.22 Use a pocket calculator that can handle 100! and find the ratio of Stirling’s approximation to the
exact value. You may not be able to find the difference of two such large numbers. An improvement
on the basic Stirling’s formula is

√
2πnnne−n

(
1 +

1

12n

)
What is the ratio of approximate to exact for n = 1, 2, 10?
Ans: 0.99898, 0.99948, . . .

2.23 Evaluate the sum
∑∞

1 1/n(n+1). To do this, write the single term 1/n(n+1) as a combination
of two fractions with denominator n and (n+ 1) respectively, then start to write out the stated infinite
series to a few terms to see the pattern. When you do this you may be tempted to separate it into two
series, of positive and of negative terms. Examine the problem of convergence and explain why this is
wrong. Ans: 1

2.24 (a) You can sometimes use the result of the previous problem to improve the convergence of a
slow-converging series. The sum

∑∞
1 1/n2 converges, but not very fast. If you add zero to it you don’t

change the answer, but if you’re clever about how you add it you can change this into a much faster
converging series. Add 1−

∑∞
1 1/n(n+1) to this series and combine the sums. (b) After Eq. (2.11) it

says that it takes 120 terms to get the stated accuracy. Verify this. For the same accuracy, how many
terms does this improved sum take? Ans: about 8 terms

2.25 The electric potential from one point charge is kq/r. For two point charges, you add the
potentials of each: kq1/r1 + kq2/r2. Place a charge −q at the origin; place a charge +q at position
(x, y, z) = (0, 0, a). Write the total potential from these at an arbitrary position P with coordinates

(x, y, z). Now suppose that a is small compared to the distance of P to the origin
(
r =

√
x2 + y2 + z2

)
and expand your result to the first non-vanishing power of a, or really of a/r. This is the potential
of an electric dipole. Also express your answer in spherical coordinates. See section 8.8 if you need.
Ans: kqa cos θ/r2

2.26 Do the previous problem, but with charge −2q at the origin and charges +q at each of the two
points (0, 0, a) and (0, 0,−a). Again, you are looking for the potential at a point far away from the
charges, and up to the lowest non-vanishing power of a. In effect you’re doing a series expansion in
a/r and keeping the first surviving term. Also express the result in spherical coordinates. The angular
dependence should be proportional to P2(cos θ) = 3

2 cos2 θ − 1
2 , a “Legendre polynomial.” The r

dependence will have a 1/r3 in it. This potential is that of a linear quadrupole.

2.27 The combinatorial factor Eq. (2.18) is supposed to be the number of different ways of choosing
n objects out of a set of m objects. Explicitly verify that this gives the correct number of ways for
m = 1, 2, 3, 4. and all n from zero to m.

2.28 Pascal’s triangle is a visual way to compute the values of mCn. Start with the single digit 1 on
the top line. Every new line is computed by adding the two neighboring digits on the line above. (At
the end of the line, treat the empty space as a zero.)

1

1 1

1 2 1

1 3 3 1
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Write the next couple of lines of the triangle and then prove that this algorithm works, that is that the
mth row is the mCn, where the top row has m = 0. Mathematical induction is the technique that I
recommend.

2.29 Sum the series and show
1

2!
+

2

3!
+

3

4!
+ · · · = 1

2.30 You know the power series representation for the exponential function, but now apply it in a
slightly different context. Write out the power series for the exponential, but with an argument that
is a differential operator. The letter h represents some fixed number; interpret the square of d/dx as
d2/dx2 and find

eh
d
dxf(x)

Interpret the terms of the series and show that the value of this is f(x+ h).

2.31 The Doppler effect for sound with a moving source and for a moving observer have different
formulas. The Doppler effect for light, including relativistic effects is different still. Show that for low
speeds they are all about the same.

f ′ = f
v − vo
v

f ′ = f
v

v + vs
f ′ = f

√
1− v/c
1 + v/c

The symbols have various meanings: v is the speed of sound in the first two, with the other terms
being the velocity of the observer and the velocity of the source. In the third equation c is the speed
of light and v is the velocity of the observer. And no, 1 = 1 isn’t good enough; you should get these
at least to first order in the speed.

2.32 In the equation (2.30) for the light diffracted through a narrow slit, the width of the central
maximum is dictated by the angle at the first dark region. How does this angle vary as you vary the
width of the slit, a? What is this angle if a = 0.1 mm and λ = 700 nm? And how wide will the central
peak be on a wall 5 meters from the slit? Take this width to be the distance between the first dark
regions on either side of the center.

2.33 An object is a distance d below the surface of a medium with index of refraction n. (For example,
water.) When viewed from directly above the object in air (i.e. use small angle approximation), the
object appears to be a distance below the surface given by (maybe) one of the following expressions.
Show why most of these expressions are implausible; that is, give reasons for eliminating the wrong
ones without solving the problem explicitly.

(1) d
√

1 + n2
/
n (2) dn

/√
1 + n2 (3) nd (4) d/n (5) dn2

/√
1 + n2

d
ay

2.34 A mass m1 hangs from a string that is wrapped around a pulley of mass M . As the mass m1

falls with acceleration ay, the pulley rotates. An anonymous source claims that the acceleration of m1
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is one of the following answers. Examine them to determine if any is plausible. That is, examine each
and show why it could not be correct. NOTE: solving the problem and then seeing if any of these agree
is not what this is about.

(1) ay = Mg/(m1 −M) (2) ay = Mg/(m1 +M) (3) ay = m1g/M

p q

R θ

2.35 Light travels from a point on the left (p) to a point on the
right (q), and on the left it is in vacuum while on the right of
the spherical surface it is in glass with an index of refraction n.
The radius of the spherical surface is R and you can parametrize
the point on the surface by the angle θ from the center of the
sphere. Compute the time it takes light to travel on the indicated
path (two straight line segments) as a function of the angle θ.
Expand the time through second order in a power series in θ and
show that the function T (θ) has a minimum if the distance q is
small enough, but that it switches to a maximum when q exceeds a particular value. This position is
the focus.

2.36 Combine two other series to get the power series in θ for ln(cos θ).
Ans: −1

2θ
2 − 1

12θ
4 − 1

45θ
6 + · · ·

2.37 Subtract the series for ln(1 − x) and ln(1 + x). For what range of x does this series converge?
For what range of arguments of the logarithm does it converge?
Ans: −1 < x < 1, 0 < arg <∞

2.38 A function is defined by the integral

f(x) =

∫ x

0

dt
1− t2

Expand the integrand with the binomial expansion and derive the power (Taylor) series representation
for f about x = 0. Also make a hyperbolic substitution to evaluate it in closed form.

p

q

Rθ

2.39 Light travels from a point on the right (p), hits a spherically
shaped mirror and goes to a point (q). The radius of the spherical
surface is R and you can parametrize the point on the surface by
the angle θ from the center of the sphere. Compute the time
it takes light to travel on the indicated path (two straight line
segments) as a function of the angle θ.
Expand the time through second order in a power series in θ and
show that the function T (θ) has a minimum if the distance q is
small enough, but that it switches to a maximum when q exceeds
a particular value. This is the focus.

2.40 (a) The quadratic equation ax2 + bx + c = 0 is almost a linear equation if a is small enough:
bx+ c = 0⇒ x = −c/b. You can get a more accurate solution iteratively by rewriting the equation as

x = −c
b
− a
b
x2

Solve this by neglecting the second term, then with this approximate x1 get an improved value of the
root by

x2 = −c
b
− a
b
x2

1
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and you can repeat the process. For comparison take the exact solution and do a power series expansion
on it for small a. See if the results agree.
(b) Where does the other root come from? That value of x is very large, so the first two terms in
the quadratic are the big ones and must nearly cancel. ax2 + bx = 0 so x = −b/a. Rearrange the
equation so that you can iterate it, and compare the iterated solution to the series expansion of the
exact solution.

x = − b
a
− c
ax

Solve 0.001x2 + x+ 1 = 0. Ans: Solve it exactly and compare.

2.41 Evaluate the limits

(a) lim
x→0

sinx− tanx
x

, (b) lim
x→0

sinx− tanx
x2

, (c) lim
x→0

sinx− tanx
x3

Ans: Check with a pocket calculator for x = 1.0, 0.1, 0.01

2.42 Fill in the missing steps in the derivation of Eq. (2.26).

2.43 Is the result in Eq. (2.26) normalized properly? What is its integral dδ over all δ? Ans: 1

2.44 A political survey asks 1500 people randomly selected from the entire country whom they will
vote for as dog-catcher-in-chief. The results are 49.0% for T.I. Hulk and 51.0% for T.A. Spiderman.
Assume that these numbers are representative, an unbiased sample of the electorate. The number
0.49 × 1500 = aN is now your best estimate for the number of votes Mr. Hulk will get in a sample
of 1500. Given this estimate, what is the probability that Mr. Hulk will win the final vote anyway?
(a) Use Eq. (2.26) to represent this estimate of the probability of his getting various possible outcomes,
where the center of the distribution is at k = aN . Using δ = k − aN , this probability function is
proportional to exp

(
− δ2/2abN

)
, and the probability of winning is the sum of all the probabilities of

having k > N/2, that is,
∫∞
N/2 dk. (b) What would the answer be if the survey had asked 150 or 15000

people with the same 49-51 results? Ans: (a) 1
2

[
1− erf

(√
N/2ab (1

2 − a)
)]

. 22%, (b) 40%, 0.7%

2.45 For the function defined in problem 2.38, what is its behavior near x = 1? Compare this result

to equation (1.4). Note: the integral is
∫ Λ

0 +
∫ x

Λ . Also, 1 − t2 = (1 + t)(1 − t), and this ≈ 2(1 − t)
near 1.

2.46 (a) What is the expansion of 1/(1 + t2) in powers of t for small t. (b) That was easy, now what
is it for large t? In each case, what is the domain of convergence?

2.47 The “average” of two numbers a and b commonly means (a+ b)/2, the arithmetic mean. There
are many other averages however. (a, b > 0)

Mn(a, b) =
[
(an + bn)/2

]1/n
is the nth mean, also called the power mean, and it includes many others as special cases. n = 2:
root-mean-square, n = −1: harmonic mean. Show that this includes the geometric mean too:

√
ab =

limn→0Mn(a, b). It can be shown that dMn/dn > 0; what inequalities does this imply for various
means? Ans: harmonic ≤ geometric ≤ arithmetic ≤ rms

2.48 Using the definition in the preceding problem, show that dMn/dn > 0. [Tough!]
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2.49 In problem 2.18 you found the power series expansion for the error function — good for small
arguments. Now what about large arguments?

erf(x) =
2√
π

∫ x

0
dt e−t

2
= 1− 2√

π

∫ ∞
x

dt e−t
2

= 1− 2√
π

∫ ∞
x

dt
1

t
. te−t

2

Notice that you can integrate the te−t
2

factor explicitly, so integrate by parts. Then do it again and
again. This provides a series in inverse powers that allows you evaluate the error function for large
arguments. What is erf(3)? Ans: 0.9999779095 See Abramowitz and Stegun: 7.1.23.

2.50 A friend of mine got a different result for Eq. (2.35). Instead of sin2 θ in the denominator, he
got a sin θ. Analyze his answer for plausibility.

2.51 Find the minimum of the function f(r) = ar+b/r for a, b, r > 0. Then find the series expansion
of f about that point, at least as far as the first non-constant term.

2.52 In problem 2.15 you found the limit of a function as x→ 0. Now find the behavior of the same
function as a series expansion for small x, through terms in x2. Ans: 1

3 + 1
15x

2. To test whether this
answer or yours or neither is likely to be correct, evaluate the exact and approximate values of this for
moderately small x on a pocket calculator.

2.53 Following Eq. (2.34) the tentative conclusion was that the force assumed for the air resistance was
a constant times the velocity. Go back to the exact equations (2.33) and compute this force without
approximation, showing that it is in fact a constant times the velocity. And of course find the constant.

2.54 An object is thrown straight up with speed v0. There is air resistance and the resulting equation
for the velocity is claimed to be (only while it’s going up)

vy(t) = vt
v0 − vt tan(gt/vt)

vt + v0 tan(gt/vt)

where vt is the terminal speed of the object after it turns around and has then been falling long enough.
(a) Check whether this equation is plausible by determining if it reduces to the correct result if there
is no air resistance and the terminal speed goes to infinity. (b) Now, what is the velocity for small
time and then use Fy = may to infer the probable speed dependence of what I assumed for the air
resistance in deriving this expression. See problem 2.11 for the tangent series. (c) Use the exact vy(t)
to show that no matter how large the initial speed is, it will stop in no more than some maximum time.
For a bullet that has a terminal speed of 100 m/s, this is about 16 s.

2.55 Under the same circumstances as problem 2.54, the equation for position versus time is

y(t) =
v2
t

g
ln

(
vt cos(gt/vt) + v0 sin(gt/vt)

vt

)
(a) What is the behavior of this for small time? Analyze and interpret what it says and whether it
behaves as it should. (b) At the time that it reaches its maximum height (vy = 0), what is its position?
Note that you don’t need to have an explicit value of t for which this happens; you use the equation
that t satisfies.

2.56 You can get the individual terms in the series Eq. (2.13) another way: multiply the two series:

eax
2+bx = eax

2
ebx

Do so and compare it to the few terms found after (2.13).



Complex Algebra
.

When the idea of negative numbers was broached a couple of thousand years ago, they were considered
suspect, in some sense not “real.” Later, when probably one of the students of Pythagoras discovered
that numbers such as

√
2 are irrational and cannot be written as a quotient of integers, legends have

it that the discoverer suffered dire consequences. Now both negatives and irrationals are taken for
granted as ordinary numbers of no special consequence. Why should

√
−1 be any different? Yet it was

not until the middle 1800’s that complex numbers were accepted as fully legitimate. Even then, it took
the prestige of Gauss to persuade some. How can this be, because the general solution of a quadratic
equation had been known for a long time? When it gave complex roots, the response was that those
are meaningless and you can discard them.

3.1 Complex Numbers
As soon as you learn to solve a quadratic equation, you are confronted with complex numbers, but
what is a complex number? If the answer involves

√
−1 then an appropriate response might be “What

is that?” Yes, we can manipulate objects such as −1 + 2i and get consistent results with them. We
just have to follow certain rules, such as i2 = −1. But is that an answer to the question? You can
go through the entire subject of complex algebra and even complex calculus without learning a better
answer, but it’s nice to have a more complete answer once, if then only to relax* and forget it.

An answer to this question is to define complex numbers as pairs of real numbers, (a, b). These
pairs are made subject to rules of addition and multiplication:

(a, b) + (c, d) = (a+ c, b+ d) and (a, b)(c, d) = (ac− bd, ad+ bc)

An algebraic system has to have something called zero, so that it plus any number leaves that number
alone. Here that role is taken by (0, 0)

(0, 0) + (a, b) = (a+ 0, b+ 0) = (a, b) for all values of (a, b)

What is the identity, the number such that it times any number leaves that number alone?

(1, 0)(c, d) = (1 . c− 0 . d, 1 . d+ 0 . c) = (c, d)

so (1, 0) has this role. Finally, where does
√
−1 fit in?

(0, 1)(0, 1) = (0 . 0− 1 . 1, 0 . 1 + 1 . 0) = (−1, 0)

and the sum (−1, 0) + (1, 0) = (0, 0) so (0, 1) is the representation of i =
√
−1, that is i2 + 1 = 0.[

(0, 1)2 + (1, 0) = (0, 0)
]
.

This set of pairs of real numbers satisfies all the desired properties that you want for complex
numbers, so having shown that it is possible to express complex numbers in a precise way, I’ll feel free
to ignore this more cumbersome notation and to use the more conventional representation with the
symbol i:

(a, b) ←→ a+ ib

That complex number will in turn usually be represented by a single letter, such as z = x+ iy.

* If you think that this question is an easy one, you can read about some of the difficulties that
the greatest mathematicians in history had with it: “An Imaginary Tale: The Story of

√
−1 ” by Paul

J. Nahin. I recommend it.

52
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z1 = x1 + iy1

z2 = x2 + iy2

z1 + z2y1 + y2

x1 + x2

The graphical interpretation of complex numbers is the Car-
tesian geometry of the plane. The x and y in z = x+ iy indicate a
point in the plane, and the operations of addition and multiplication
can be interpreted as operations in the plane. Addition of complex
numbers is simple to interpret; it’s nothing more than common vec-
tor addition where you think of the point as being a vector from the
origin. It reproduces the parallelogram law of vector addition.

The magnitude of a complex number is defined in the same
way that you define the magnitude of a vector in the plane. It is
the distance to the origin using the Euclidean idea of distance.

|z| = |x+ iy| =
√
x2 + y2 (3.1)

The multiplication of complex numbers doesn’t have such a familiar interpretation in the language
of vectors. (And why should it?)

3.2 Some Functions
For the algebra of complex numbers I’ll start with some simple looking questions of the sort that you
know how to handle with real numbers. If z is a complex number, what are z2 and

√
z? Use x and y

for real numbers here.

z = x+ iy, so z2 = (x+ iy)2 = x2 − y2 + 2ixy

That was easy, what about the square root? A little more work:

√
z = w =⇒ z = w2

If z = x+ iy and the unknown is w = u+ iv (u and v real) then

x+ iy = u2 − v2 + 2iuv, so x = u2 − v2 and y = 2uv

These are two equations for the two unknowns u and v, and the problem is now to solve them.

v =
y
2u
, so x = u2 − y2

4u2
, or u4 − xu2 − y

2

4
= 0

This is a quadratic equation for u2.

u2 =
x±

√
x2 + y2

2
, then u = ±

√
x±

√
x2 + y2

2
(3.2)

Use v = y/2u and you have four roots with the four possible combinations of plus and minus signs.
You’re supposed to get only two square roots, so something isn’t right yet; which of these four have to
be thrown out? See problem 3.2.

What is the reciprocal of a complex number? You can treat it the same way as you did the
square root: solve for it.

(x+ iy)(u+ iv) = 1, so xu− yv = 1, xv + yu = 0
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Solve the two equations for u and v. The result is

1

z
=

x− iy
x2 + y2

(3.3)

See problem 3.3. At least it’s obvious that the dimensions are correct even before you verify the algebra.
In both of these cases, the square root and the reciprocal, there is another way to do it, a much simpler
way. That’s the subject of the next section.

Complex Exponentials
A function that is central to the analysis of differential equations and to untold other mathematical
ideas: the exponential, the familiar ex. What is this function for complex values of the exponent?

ez = ex+iy = exeiy (3.4)

This means that all that’s necessary is to work out the value for the purely imaginary exponent, and
the general case is then just a product. There are several ways to work this out, and I’ll pick what is
probably the simplest. Use the series expansions Eq. (2.4) for the exponential, the sine, and the cosine
and apply it to this function.

eiy = 1 + iy +
(iy)2

2!
+

(iy)3

3!
+

(iy)4

4!
+ · · ·

= 1− y
2

2!
+
y4

4!
− · · ·+ i

[
y − y

3

3!
+
y5

5!
− · · ·

]
= cos y + i sin y (3.5)

A few special cases of this are worth noting: eiπ/2 = i, also eiπ = −1 and e2iπ = 1. In fact,
e2nπi = 1 so the exponential is a periodic function in the imaginary direction.

The magnitude or absolute value of a complex number z = x+ iy is r =
√
x2 + y2. Combine

this with the complex exponential and you have another way to represent complex numbers.

r sin θ

r cos θ

x

r
θ

reiθ

y

z = x+ iy = r cos θ + ir sin θ = r(cos θ + i sin θ) = reiθ (3.6)

This is the polar form of a complex number and x + iy is the rectangular form of the same number.

The magnitude is |z| = r =
√
x2 + y2. What is

√
i? Express it in polar form:

(
eiπ/2

)1/2
, or better,(

ei(2nπ+π/2)
)1/2

. This is

ei(nπ+π/4) =
(
eiπ
)n
eiπ/4 = ±(cosπ/4 + i sinπ/4) = ±1 + i√

2

i π/4

π/2
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3.3 Applications of Euler’s Formula
When you are adding or subtracting complex numbers, the rectangular form is more convenient, but
when you’re multiplying or taking powers the polar form has advantages.

z1z2 = r1e
iθ1r2e

iθ2 = r1r2e
i(θ1+θ2) (3.7)

Putting it into words, you multiply the magnitudes and add the angles in polar form.
From this you can immediately deduce some of the common trigonometric identities. Use Euler’s

formula in the preceding equation and write out the two sides.

r1(cos θ1 + i sin θ1)r2(cos θ2 + i sin θ2) = r1r2

[
cos(θ1 + θ2) + i sin(θ1 + θ2)

]
The factors r1 and r2 cancel. Now multiply the two binomials on the left and match the real and the
imaginary parts to the corresponding terms on the right. The result is the pair of equations

cos(θ1 + θ2) = cos θ1 cos θ2 − sin θ1 sin θ2

sin(θ1 + θ2) = cos θ1 sin θ2 + sin θ1 cos θ2

(3.8)

and you have a much simpler than usual derivation of these common identities. You can do similar
manipulations for other trigonometric identities, and in some cases you will encounter relations for which
there’s really no other way to get the result. That is why you will find that in physics applications where
you might use sines or cosines (oscillations, waves) no one uses anything but complex exponentials.
Get used to it.

The trigonometric functions of complex argument follow naturally from these.

eiθ = cos θ + i sin θ, so, for negative angle e−iθ = cos θ − i sin θ

Add these and subtract these to get

cos θ =
1

2

(
eiθ + e−iθ

)
and sin θ =

1

2i

(
eiθ − e−iθ

)
(3.9)

What is this if θ = iy?

cos iy =
1

2

(
e−y + e+y) = cosh y and sin iy =

1

2i

(
e−y − e+y) = i sinh y (3.10)

Apply Eq. (3.8) for the addition of angles to the case that θ = x+ iy.

cos(x+ iy) = cosx cos iy − sinx sin iy = cosx cosh y − i sinx sinh y and

sin(x+ iy) = sinx cosh y + i cosx sinh y (3.11)

You can see from this that the sine and cosine of complex angles can be real and larger than one. The
hyperbolic functions and the circular trigonometric functions are now the same functions. You’re just
looking in two different directions in the complex plane. It’s as if you are changing from the equation
of a circle, x2 + y2 = R2, to that of a hyperbola, x2 − y2 = R2. Compare this to the hyperbolic
functions at the beginning of chapter one.

Equation (3.9) doesn’t require that θ itself be real; call it z. Then what is sin2 z + cos2 z?

cos z =
1

2

(
eiz + e−iz

)
and sin z =

1

2i

(
eiz − e−iz

)
cos2 z + sin2 z =

1

4

[
e2iz + e−2iz + 2− e2iz − e−2iz + 2

]
= 1
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This polar form shows a geometric interpretation for the periodicity of the exponential. ei(θ+2π) =
eiθ = ei(θ+2kπ). In the picture, you’re going around a circle and coming back to the same point. If the
angle θ is negative you’re just going around in the opposite direction. An angle of −π takes you to the
same point as an angle of +π.

Complex Conjugate
The complex conjugate of a number z = x+ iy is the number z* = x− iy. Another common notation
is z̄. The product z*z is (x− iy)(x+ iy) = x2 + y2 and that is |z|2, the square of the magnitude of
z. You can use this to rearrange complex fractions, combining the various terms with i in them and
putting them in one place. This is best shown by some examples.

3 + 5i
2 + 3i

=
(3 + 5i)(2− 3i)
(2 + 3i)(2− 3i)

=
21 + i

13

What happens when you add the complex conjugate of a number to the number, z + z*?
What happens when you subtract the complex conjugate of a number from the number?
If one number is the complex conjugate of another, how do their squares compare?
What about their cubes?
What about z + z2 and z∗ + z∗2?
What about comparing ez = ex+iy and ez*?
What is the product of a number and its complex conjugate written in polar form?
Compare cos z and cos z*.
What is the quotient of a number and its complex conjugate?
What about the magnitude of the preceding quotient?

Examples
Simplify these expressions, making sure that you can do all of these manipulations yourself.

3− 4i
2− i

=
(3− 4i)(2 + i)
(2− i)(2 + i)

=
10− 5i

5
= 2− i.

(3i+ 1)2

[
1

2− i
+

3i
2 + i

]
= (−8 + 6i)

[
(2 + i) + 3i(2− i)

(2− i)(2 + i)

]
= (−8 + 6i)

5 + 7i
5

=
2− 26i

5
.

i3 + i10 + i
i2 + i137 + 1

=
(−i) + (−1) + i
(−1) + (i) + (1)

=
−1

i
= i.

Manipulate these using the polar form of the numbers, though in some cases you can do it either way.

√
i =

(
eiπ/2

)1/2
= eiπ/4 =

1 + i√
2
.(

1− i
1 + i

)3

=

(√
2e−iπ/4

√
2eiπ/4

)3

=
(
e−iπ/2

)3
= e−3iπ/2 = i.

(
2i

1 + i
√

3

)25

=

(
2eiπ/2

2
(

1
2 + i1

2

√
3
))25

=

(
2eiπ/2

2eiπ/3

)25

=
(
eiπ/6

)25
= eiπ(4+1/6) = 1

2

(√
3 + i

)
Roots of Unity
What is the cube root of one? One of course, but not so fast; there are three cube roots, and you can
easily find all of them using complex exponentials.

1 = e2kπi, so 11/3 =
(
e2kπi

)1/3
= e2kπi/3 (3.12)
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and k is any integer. k = 0, 1, 2 give

11/3 = 1, e2πi/3 = cos(2π/3) + i sin(2π/3),

= −1

2
+ i

√
3

2

e4πi/3 = cos(4π/3) + i sin(4π/3)

= −1

2
− i
√

3

2

and other positive or negative integers k just keep repeating these three values.

e6πi/5

e4πi/5

e8πi/5

e2πi/5

1
5th roots of 1

The roots are equally spaced around the unit circle. If you want the nth root, you do the same
sort of calculation: the 1/n power and the integers k = 0, 1, 2, . . . , (n − 1). These are n points, and
the angles between adjacent ones are equal.

3.4 Geometry
Multiply a number by 2 and you change its length by that factor.
Multiply it by i and you rotate it counterclockwise by 90◦ about the origin.
Multiply is by i2 = −1 and you rotate it by 180◦ about the origin. (Either direction: i2 = (−i)2)

The Pythagorean Theorem states that if you construct three squares from the three sides of a
right triangle, the sum of the two areas on the shorter sides equals the area of the square constructed
on the hypotenuse. What happens if you construct four squares on the four sides of an arbitrary
quadrilateral?

Represent the four sides of the quadrilateral by four complex numbers that add to zero. Start
from the origin and follow the complex number a. Then follow b, then c, then d. The result brings you
back to the origin. Place four squares on the four sides and locate the centers of those squares: P1,
P2,. . . Draw lines between these points as shown.

These lines are orthogonal and have the same length. Stated in the language of complex numbers,
this is

P1 − P3 = i
(
P2 − P4

)
(3.13)

a

b
c

d

a+ b+ c+ d = 0

1
2a+ 1

2ia = P1

a+ 1
2b+ 1

2ib = P2

O

a b

cd

P1

P2

P3

P4

Pick the origin at one corner, then construct the four center points P1,2,3,4 as complex numbers,
following the pattern shown above for the first two. E.g. , you get to P1 from the origin by going
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halfway along a, turning left, then going the distance |a|/2. Now write out the two complex number
P1 −P3 and P2 −P4 and finally manipulate them by using the defining equation for the quadrilateral,
a+ b+ c+ d = 0. The result is the stated theorem. See problem 3.54.

3.5 Series of cosines
There are standard identities for the cosine and sine of the sum of angles and less familiar ones for
the sum of two cosines or sines. You can derive that latter sort of equations using Euler’s formula and
a little manipulation. The sum of two cosines is the real part of eix + eiy, and you can use simple
identities to manipulate these into a useful form.

x = 1
2(x+ y) + 1

2(x− y) and y = 1
2(x+ y)− 1

2(x− y)

See problems 3.34 and 3.35 to complete these.
What if you have a sum of many cosines or sines? Use the same basic ideas of the preceding

manipulations, and combine them with some of the techniques for manipulating series.

1 + cos θ + cos 2θ + · · ·+ cosNθ = 1 + eiθ + e2iθ + · · · eNiθ (Real part)

The last series is geometric, so it is nothing more than Eq. (2.3).

1 + eiθ +
(
eiθ
)2

+
(
eiθ
)3

+ · · ·
(
eiθ
)N

=
1− ei(N+1)θ

1− eiθ

=
ei(N+1)θ/2

(
e−i(N+1)θ/2 − ei(N+1)θ/2

)
eiθ/2

(
e−iθ/2 − eiθ/2

) = eiNθ/2 sin
[
(N + 1)θ/2

]
sin θ/2

(3.14)

From this you now extract the real part and the imaginary part, thereby obtaining the series you want
(plus another one, the series of sines). These series appear when you analyze the behavior of a diffraction
grating. Naturally you have to check the plausibility of these results; do the answers work for small θ?

3.6 Logarithms
The logarithm is the inverse function for the exponential. If ew = z then w = ln z. To determine what
this is, let

w = u+ iv and z = reiθ, then eu+iv = eueiv = reiθ

This implies that eu = r and so u = ln r, but it doesn’t imply v = θ. Remember the periodic nature
of the exponential function? eiθ = ei(θ+2nπ), so you can conclude instead that v = θ + 2nπ.

ln z = ln
(
reiθ

)
= ln r + i(θ + 2nπ) (3.15)

has an infinite number of possible values. Is this bad? You’re already familiar with the square root
function, and that has two possible values, ±. This just carries the idea farther. For example ln(−1) =
iπ or 3iπ or −7iπ etc. As with the square root, the specific problem that you’re dealing with will tell
you which choice to make.

A sample graph of the logarithm in the com-
plex plane is ln(1 + it) as t varies from −∞ to
+∞.

−iπ/2

iπ/2
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3.7 Mapping
When you apply a complex function to a region in the plane, it takes that region into another region.
When you look at this as a geometric problem you start to get some very pretty and occasionally useful
results. Start with a simple example,

w = f(z) = ez = ex+iy = exeiy (3.16)

If y = 0 and x goes from −∞ to +∞, this function goes from 0 to ∞.
If y is π/4 and x goes over this same range of values, f goes from 0 to infinity along the ray at angle
π/4 above the axis.
At any fixed y, the horizontal line parallel to the x-axis is mapped to the ray that starts at the origin
and goes out to infinity.
The strip from −∞ < x < +∞ and 0 < y < π is mapped into the upper half plane.

0

iπ

eiπ = −1 1 = ei0
A
B
C
D
E
F
G

A

B

C
D

E

F

G

The line B from −∞+ iπ/6 to +∞+ iπ/6 is mapped onto the ray B from the origin along the
angle π/6.

For comparison, what is the image of the same strip under a different function? Try

w = f(z) = z2 = x2 − y2 + 2ixy

The image of the line of fixed y is a parabola. The real part of w has an x2 in it while the imaginary
part is linear in x. That is the representation of a parabola. The image of the strip is the region among
the lines below.

B
C
D
E
F
G

−π2

Pretty yes, but useful? In certain problems in electrostatics and in fluid flow, it is possible to use
complex algebra to map one region into another, with the accompanying electric fields and potentials or
respectively fluid flows mapped from a complicated problem into a simple one. Then you can map the
simple solution back to the original problem and you have your desired solution to the original problem.
Easier said than done. It’s the sort of method that you can learn about when you find that you need it.
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Exercises

1 Express in the form a+ ib: (3− i)2, (2− 3i)(3 + 4i). Draw the geometric representation for each
calculation.

2 Express in polar form, reiθ: −2, 3i, 3 + 3i. Draw the geometric representation for each.

3 Show that (1 + 2i)(3 + 4i)(5 + 6i) satisfies the associative law of multiplication. I.e. multiply first
pair first or multiply the second pair first, no matter.

4 Solve the equation z2 − 2z + c = 0 and plot the roots as points in the complex plane. Do this as
the real number c moves from c = 0 to c = 2

5 Now show that (a+ bi)
[
(c+ di)(e+ fi)

]
=
[
(a+ bi)(c+ di)

]
(e+ fi). After all, just because real

numbers satisfy the associative law of multiplication it isn’t immediately obvious that complex numbers
do too.

6 Given z1 = 2ei60◦ and z2 = 4ei120◦ , evaluate z2
1 , z1z2, z2/z1. Draw pictures too.

7 Evaluate
√
i using the rectangular form, Eq. (3.2), and compare it to the result you get by using the

polar form.

8 Given f(z) = z2 + z + 1, evaluate f(3 + 2i), f(3− 2i).

9 For the same f as the preceding exercise, what are f ′(3 + 2i) and f ′(3− 2i)?

10 Do the arithmetic and draw the pictures of these computations:

(3 + 2i) + (−1 + i), (3 + 2i)− (−1 + i), (−4 + 3i)− (4 + i), −5 + (3− 5i)

11 Show that the real part of z is (z + z*)/2. Find a similar expression for the imaginary part of z.

12 What is in for integer n? Draw the points in the complex plane for a variety of positive and negative
n.

13 What is the magnitude of (4 + 3i)/(3− 4i)? What is its polar angle?

14 Evaluate (1 + i)19.

15 What is
√

1− i? Do this by the method of Eq. (3.2).

16 What is
√

1− i? Do this by the method of Eq. (3.6).

17 Sketch a plot of the curve z = αeiα as the real parameter α varies from zero to infinity. Does the
behavior of your sketch conform to the small α behavior of the function? (And when no one’s looking
you can plug in a few numbers for α to see what this behavior is.)

18 Verify the graph following Eq. (3.15).
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Problems

3.1 Pick a pair of complex numbers and plot them in the plane. Compute their product and plot that
point. Do this for several pairs, trying to get a feel for how complex multiplication works. When you
do this, be sure that you’re not simply repeating yourself. Place the numbers in qualitatively different
places.

3.2 In the calculation of the square root of a complex number,Eq. (3.2), I found four roots instead of
two. Which ones don’t belong? Do the other two expressions have any meaning?

3.3 Finish the algebra in computing the reciprocal of a complex number, Eq. (3.3).

3.4 Pick a complex number and plot it in the plane. Compute its reciprocal and plot it. Compute its
square and square root and plot them. Do this for several more (qualitatively different) examples.

3.5 Plot ect in the plane where c is a complex constant of your choosing and the parameter t varies
over 0 ≤ t < ∞. Pick another couple of values for c to see how the resulting curves change. Don’t
pick values that simply give results that are qualitatively the same; pick values sufficiently varied so that
you can get different behavior. If in doubt about how to plot these complex numbers as functions of t,
pick a few numerical values: e.g. t = 0.01, 0.1, 0.2, 0.3, etc. Ans: Spirals or straight lines, depending
on where you start

3.6 Plot sin ct in the plane where c is a complex constant of your choosing and the parameter t varies
over 0 ≤ t < ∞. Pick another couple of qualitatively different values for c to see how the resulting
curves change.

3.7 Solve the equation z2 + iz + 1 = 0

3.8 Just as Eq. (3.11) presents the circular functions of complex arguments, what are the hyperbolic
functions of complex arguments?

3.9 From
(
eix
)3

, deduce trigonometric identities for the cosine and sine of triple angles in terms of
single angles. Ans: cos 3x = cosx− 4 sin2 x cosx = 4 cos3 x− 3 cosx

3.10 For arbitrary integer n > 1, compute the sum of all the nth roots of one. (When in doubt, try
n = 2, 3, 4 first.)

3.11 Either solve for z in the equation ez = 0 or prove that it can’t be done.

3.12 Evaluate z/z* in polar form.

3.13 From the geometric picture of the magnitude of a complex number, the set of points z defined
by |z − z0| = R is a circle. Write it out in rectangular components to see what this is in conventional
Cartesian coordinates.

3.14 An ellipse is the set of points z such that the sum of the distances to two fixed points is a
constant: |z − z1| + |z − z2| = 2a. Pick the two points to be z1 = −f and z2 = +f on the real
axis (f < a). Write z as x + iy and manipulate this equation for the ellipse into a simple standard
form. I suggest that you leave everything in terms of complex numbers (z, z*, z1, z*

1, etc. ) until some
distance into the problem. Use x+ iy only after it becomes truly useful to do so.
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3.15 Repeat the previous problem, but for the set of points such that the difference of the distances
from two fixed points is a constant.

3.16 There is a vertical line x = −f and a point on the x-axis z0 = +f . Find the set of points z so
that the distance to z0 is the same as the perpendicular distance to the line x = −f .

3.17 Sketch the set of points |z − 1| < 1.

3.18 Simplify the numbers

1 + i
1− i

,
−1 + i

√
3

+1 + i
√

3
,

i5 + i3√
3
√
i− 7 3

√
17− 4i

,

(√
3 + i

1 + i

)2

3.19 Express in polar form; include a sketch in each case.

2− 2i,
√

3 + i, −
√

5i, −17− 23i

3.20 Take two complex numbers; express them in polar form, and subtract them.

z1 = r1e
iθ1 , z2 = r2e

iθ2 , and z3 = z2 − z1

Compute z*
3z3, the magnitude squared of z3, and so derive the law of cosines. You did draw a picture

didn’t you?

3.21 What is ii? Ans: If you’d like to check your result, type i ∧ i into Google. Or use a calculator
such as the one mentioned on page 6.

3.22 For what argument does sin θ = 2? Next: cos θ = 2?
Ans: sin−1 2 = 1.5708± i1.3170

3.23 What are the other trigonometric functions, tan(ix), sec(ix), etc. What are tan and sec for the
general argument x+ iy.
Ans: tan(x+ iy) = (tanx+ i tanh y)/(1− i tanx tanh y)

3.24 The diffraction pattern from a grating involves the sum of waves from a large number of parallel
slits. For light observed at an angle θ away from directly ahead, this sum is, for N + 1 slits,

d
d
d
d
d

d sin θ

θ

r0

r0 − d sin θ

http://www.google.com
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cos
(
kr0 − ωt

)
+ cos

(
k(r0 − d sin θ)− ωt

)
+ cos

(
k(r0 − 2d sin θ)− ωt

)
+

. . .+ cos
(
k(r0 −Nd sin θ)− ωt

)
Express this as the real part of complex exponentials and sum the finite series. Show that the resulting
wave is

sin
(

1
2(N + 1)kd sin θ

)
sin
(

1
2kd sin θ

) cos
(
k(r0 − 1

2Nd sin θ)− ωt
)

Interpret this result as a wave that appears to be coming from some particular point (where?) and with
an intensity pattern that varies strongly with θ.

3.25 (a) If the coefficients in a quadratic equation are real, show that if z is a complex root of the
equation then so is z*. If you do this by reference to the quadratic formula, you’d better find another
way too, because the second part of this problem is
(b) Generalize this to the roots of an arbitrary polynomial with real coefficients.

3.26 You can represent the motion of a particle in two dimensions by using a time-dependent complex
number with z = x+ iy = reiθ showing its rectangular or polar coordinates. Assume that r and θ are
functions of time and differentiate reiθ to get the velocity. Differentiate it again to get the acceleration.
You can interpret eiθ as the unit vector along the radius and ieiθ as the unit vector perpendicular to
the radius and pointing in the direction of increasing theta. Show that

d2z
dt2

= eiθ
[
d2r
dt2
− r

(
dθ
dt

)2
]

+ ieiθ
[
r
d2θ
dt2

+ 2
dr
dt
dθ
dt

]
(3.17)

and translate this into the usual language of components of vectors, getting the radial (r̂) component
of acceleration and the angular component of acceleration as in section 8.9.

3.27 Use the results of the preceding problem, and examine the case of a particle moving directly away
from the origin. (a) What is its acceleration? (b) If instead, it is moving at r = constant, what is its
acceleration? (c) If instead, x = x0 and y = v0t, what are r(t) and θ(t)? Now compute d2z/dt2 from
Eq. (3.17).

3.28 Was it really legitimate simply to substitute x+ iy for θ1 + θ2 in Eq. (3.11) to get cos(x+ iy)?
Verify the result by substituting the expressions for cosx and for cosh y as exponentials to see if you
can reconstruct the left-hand side.

3.29 The roots of the quadratic equation z2 + bz + c = 0 are functions of the parameters b and c.
For real b and c and for both cases c > 0 and c < 0 (say ±1 to be specific) plot the trajectories of
the roots in the complex plane as b varies from −∞ to +∞. You should find various combinations of
straight lines and arcs of circles.

3.30 In integral tables you can find the integrals for such functions as∫
dx eax cos bx, or

∫
dx eax sin bx

Show how easy it is to do these by doing both integrals at once. Do the first plus i times the second
and then separate the real and imaginary parts.
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3.31 Find the sum of the series
∞∑
1

in

n

Ans: iπ/4− 1
2 ln 2

3.32 Evaluate | cos z|2. Evaluate | sin z|2.

3.33 Evaluate
√

1 + i. Evaluate ln(1 + i). Evaluate tan(1 + i).

3.34 (a) Beats occur in sound when two sources emit two frequencies that are almost the same. The
perceived wave is the sum of the two waves, so that at your ear, the wave is a sum of two cosines of
ω1t and of ω2t. Use complex algebra to evaluate this. The sum is the real part of

eiω1t + eiω2t

Notice the two identities

ω1 =
ω1 + ω2

2
+
ω1 − ω2

2

and the difference of these for ω2. Use the complex exponentials to derive the results; don’t just look
up some trig identity. Factor the resulting expression and sketch a graph of the resulting real part,
interpreting the result in terms of beats if the two frequencies are close to each other. (b) In the
process of doing this problem using complex exponentials, what is the trigonometric identity for the
sum of two cosines? While you’re about it, what is the difference of two cosines?
Ans: cosω1t+ cosω2t = 2 cos 1

2(ω1 + ω2)t cos 1
2(ω1 − ω2)t

3.35 Derive using complex exponentials: sinx− sin y = 2 sin
(x−y

2

)
cos
(x+y

2

)
.

3.36 The equation (3.4) assumed that the usual rule for multiplying exponentials still holds when you
are using complex numbers. Does it? You can prove it by looking at the infinite series representation
for the exponential and showing that

eaeb =

[
1 + a+

a2

2!
+
a3

3!
+ · · ·

] [
1 + b+

b2

2!
+
b3

3!
+ · · ·

]
=

[
1 + (a+ b) +

(a+ b)2

2!
+ · · ·

]
You may find Eq. (2.19) useful.

3.37 Look at the vertical lines in the z-plane as mapped by Eq. (3.16). I drew the images of lines
y = constant, now you draw the images of the straight line segments x = constant from 0 < y < π.
The two sets of lines in the original plane intersect at right angles. What is the angle of intersection of
the corresponding curves in the image?

3.38 Instead of drawing the image of the lines x = constant as in the previous problem, draw the
image of the line y = x tanα, the line that makes an angle α with the horizontal lines. The image
of the horizontal lines were radial lines. At a point where this curve intersects one of the radial lines,
what angle does the curve make with the radial line? Show that the answer is α, the same angle of
intersection as in the original picture.

3.39 Write each of these functions of z as two real functions u and v such that f(z) = u(x, y) +
iv(x, y).

z3,
1 + z
1− z

,
1

z2
,

z
z*
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3.40 Evaluate zi where z is an arbitrary complex number, z = x+ iy = reiθ.

3.41 What is the image of the domain −∞ < x < +∞ and 0 < y < π under the function w =
√
z?

Ans: One boundary is a hyperbola.

3.42 What is the image of the disk |z − a| < b under the function w = cz + d? Allow c and d to be
complex. Take a real.

3.43 What is the image of the disk |z − a| < b under the function w = 1/z? Assume b < a.
Ans: Another disk, centered at a/(a2 − b2).

3.44 (a) Multiply (2 + i)(3 + i) and deduce the identity

tan−1(1/2) + tan−1(1/3) = π/4

(b) Multiply (5 + i)4(−239 + i) and deduce

4 tan−1(1/5)− tan−1(1/239) = π/4

For (b) a sketch will help sort out some signs.
(c) Using the power series representation of the tan−1, Eq. (2.27), how many terms would it take
to compute 100 digits of π as 4 tan−1 1? How many terms would it take using each of these two
representations, (a) and (b), for π? Ans: Almost a googol versus respectively about 540 and a few
more than 180 terms.

3.45 Use Eq. (3.9) and look back at the development of Eq. (1.4) to find the sin−1 and cos−1 in terms
of logarithms.

3.46 Evaluate the integral
∫∞
−∞ dx e

−αx2 cosβx for fixed real α and β. Sketch a graph of the result
versus β. Sketch a graph of the result versus α, and why does the graph behave as it does? Notice
the rate at which the result approaches zero as either α→ 0 or α→∞. The behavior is very different
in the two cases. Ans: e−β

2/4α
√
π/α

3.47 Does the equation sin z = 0 have any roots other than the real ones? How about the cosine?
The tangent?

3.48 Compute (a) sin−1 i. (b) cos−1 i. (c) tan−1 i. (d) sinh−1 i. Ans: sin−1 i = 0 + 0.881 i,
cos−1 i = π/2− 0.881 i.

3.49 By writing
1

1 + x2
=
i
2

[
1

x+ i
− 1

x− i

]
and integrating, check the equation ∫ 1

0

dx
1 + x2

=
π
4

3.50 Solve the equations (a) coshu = 0 (b) tanhu = 2 (c) sechu = 2i
Ans: sech−1 2i = 0.4812− i1.5707

3.51 Solve the equations (a) z − 2z* = 1 (b) z3 − 3z2 + 4z = 2i after verifying that 1 + i
is a root. Compare the result of problem 3.25.
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3.52 Confirm the plot of ln(1+iy) following Eq. (3.15). Also do the corresponding plots for ln(10+iy)
and ln(100 + iy). And what do these graphs look like if you take the other branches of the logarithm,
with the i(θ + 2nπ)?

3.53 Check that the results of Eq. (3.14) for cosines and for sines give the correct results for small θ?
What about θ → 2π?

3.54 Finish the calculation leading to Eq. (3.13), thereby proving that the two indicated lines have the
same length and are perpendicular.

3.55 In the same spirit as Eq. (3.13) concerning squares drawn on the sides of an
arbitrary quadrilateral, start with an arbitrary triangle and draw equilateral triangles
on each side. Find the centroids of each of the equilateral triangles and connect them.
The result is an equilateral triangle. Recall: the centroid is one third the distance from
the base to the vertex. [This one requires more algebra than the one in the text.]
(Napoleon’s Theorem)



Differential Equations
.

The subject of ordinary differential equations encompasses such a large field that you can make a
profession of it. There are however a small number of techniques in the subject that you have to know.
These are the ones that come up so often in physical systems that you need both the skills to use them
and the intuition about what they will do. That small group of methods is what I’ll concentrate on in
this chapter.

4.1 Linear Constant-Coefficient
A differential equation such as (

d2x
dt2

)3

+ t2x4 + 1 = 0

relating acceleration to position and time, is not one that I’m especially eager to solve, and one of the
things that makes it difficult is that it is non-linear. This means that starting with two solutions x1(t)
and x2(t), the sum x1 + x2 is not a solution; look at all the cross-terms you get if you try to plug the
sum into the equation and have to cube the sum of the second derivatives. Also if you multiply x1(t)
itself by 2 you no longer have a solution.

An equation such as

et
d3x
dt3

+ t2
dx
dt
− x = 0

may be a mess to solve, but if you have two solutions, x1(t) and x2(t) then the sum αx1 +βx2 is also
a solution. Proof? Plug in:

et
d3(αx1 + βx2)

dt3
+ t2

d(αx1 + βx2)

dt
− (αx1 + βx2)

= α

(
et
d3x1

dt3
+ t2

dx1

dt
− x1

)
+ β

(
et
d3x2

dt3
+ t2

dx2

dt
− x2

)
= 0

This is called a linear, homogeneous equation because of this property. A similar-looking equation,

et
d3x
dt3

+ t2
dx
dt
− x = t

does not have this property, though it’s close. It is called a linear, inhomogeneous equation. If x1(t)
and x2(t) are solutions to this, then if I try their sum as a solution I get 2t = t, and that’s no solution,
but it misses working only because of the single term on the right, and that will make it not too far
removed from the preceding case.

One of the most common sorts of differential equations that you see is an especially simple one
to solve. That’s part of the reason it’s so common. This is the linear, constant-coefficient, differential
equation. If you have a mass tied to the end of a spring and the other end of the spring is fixed, the
force applied to the mass by the spring is to a good approximation proportional to the distance that
the mass has moved from its equilibrium position.

If the coordinate x is measured from the mass’s equilibrium position, the equation ~F = m~a says

x
m
d2x
dt2

= −kx (4.1)

67
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If there’s friction (and there’s always friction), the force has another term. Now how do you describe
friction mathematically? The common model for dry friction is that the magnitude of the force is
independent of the magnitude of the mass’s velocity and opposite to the direction of the velocity. If
you try to write that down in a compact mathematical form you get something like

~Ffriction = −µkFN
~v
|~v|

(4.2)

This is hard to work with. It can be done, but I’m going to do something different. (See problem 4.31
however.) Wet friction is easier to handle mathematically because when you lubricate a surface, the
friction becomes velocity dependent in a way that is, for low speeds, proportional to the velocity.

~Ffriction = −b~v (4.3)

Neither of these two representations is a completely accurate description of the way friction works.
That’s far more complex than either of these simple models, but these approximations are good enough
for many purposes and I’ll settle for them.

Assume “wet friction” and the differential equation for the motion of m is

m
d2x
dt2

= −kx− bdx
dt

(4.4)

This is a second order, linear, homogeneous differential equation, which simply means that the highest
derivative present is the second, the sum of two solutions is a solution, and a constant multiple of a
solution is a solution. That the coefficients are constants makes this an easy equation to solve.

All you have to do is to recall that the derivative of an exponential is an exponential. det/dt = et.
Substitute this exponential for x(t), and of course it can’t work as a solution; it doesn’t even make
sense dimensionally. What is e to the power of a day? You need something in the exponent to make it
dimensionless, eαt. Also, the function x is supposed to give you a position, with dimensions of length.
Use another constant: x(t) = Aeαt. Plug this into the differential equation (4.4) to find

mAα2eαt + bAαeαt + kAeαt = Aeαt
[
mα2 + bα+ k

]
= 0

The product of factors is zero, and the only way that a product of two numbers can be zero is if one of
the numbers is zero. The exponential never vanishes, and for a non-trivial solution A 6= 0, so all that’s
left is the polynomial in α.

mα2 + bα+ k = 0, with solutions α =
−b±

√
b2 − 4km

2m
(4.5)

The position function is then
x(t) = Aeα1t +Beα2t (4.6)

where A and B are arbitrary constants and α1 and α2 are the two roots.
Isn’t this supposed to be oscillating? It is a harmonic oscillator after all, but the exponentials

don’t look very oscillatory. If you have a mass on the end of a spring and the entire system is immersed
in honey, it won’t do much oscillating! Translated into mathematics, this says that if the constant b is
too large, there is no oscillation. In the equation for α, if b is large enough the argument of the square
root is positive, and both α’s are real — no oscillation. Only if b is small enough does the argument of
the square root become negative; then you get complex values for the α’s and hence oscillations.
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Push this to the extreme case where the damping vanishes: b = 0. Then α1 = i
√
k/m and

α2 = −i
√
k/m. Denote ω0 =

√
k/m.

x(t) = Aeiω0t +Be−iω0t (4.7)

You can write this in other forms using sines and cosines, see problem 4.10. To determine the arbitrary
constant A and B you need two equations. They come from some additional information about the
problem, typically some initial conditions. Take a specific example in which you start from the origin
with a kick, x(0) = 0 and ẋ(0) = v0.

x(0) = 0 = A+B, ẋ(0) = v0 = iω0A− iω0B

Solve for A and B to get A = −B = v0/(2iω0). Then

x(t) =
v0

2iω0

[
eiω0t − e−iω0t

]
=
v0

ω0
sinω0t

As a check on the algebra, use the first term in the power series expansion of the sine function to see
how x behaves for small t. The sine factor is sinω0t ≈ ω0t, and then x(t) is approximately v0t, just as
it should be. Also notice that despite all the complex numbers, the final answer is real. This is another
check on the algebra.

Damped Oscillator
If there is damping, but not too much, then the α’s have an imaginary part and a negative real part.
(Is it important whether it’s negative or not?)

α =
−b± i

√
4km− b2

2m
= − b

2m
± iω′, where ω′ =

√
k
m
− b2

4m2
(4.8)

This represents a damped oscillation and has frequency a bit lower than the one in the undamped case.
Use the same initial conditions as above and you will get similar results (let γ = b/2m)

x(t) = Ae(−γ+iω′)t +Be(−γ−iω′)t

x(0) = A+B =0, vx(0) = (−γ + iω′)A+ (−γ − iω′)B = v0 (4.9)

The two equations for the unknowns A and B imply B = −A and

2iω′A = v0, so x(t) =
v0

2iω′
e−γt

[
eiω

′t − e−iω′t
]

=
v0

ω′
e−γt sinω′t (4.10)

For small values of t, the first terms in the power series expansion of this result are

x(t) =
v0

ω′
[1− γt+ γ2t2/2− . . .][ω′t− ω′3t3/6 + . . .] = v0t− v0γt

2 + . . .

The first term is what you should expect, as the initial velocity is vx = v0. The negative sign in the
next term says that it doesn’t move as far as it would without the damping, but analyze it further.
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Does it have the right size as well as the right sign? It is −v0γt2 = −v0(b/2m)t2. But that’s an
acceleration: axt2/2. It says that the acceleration just after the motion starts is ax = −bv0/m. Is
that what you should expect? As the motion starts, the mass hasn’t gone very far so the spring doesn’t
yet exert much force. The viscous friction is however −bvx. Set that equal to max and you see that
−v0γt2 has precisely the right value:

x(t) ≈ v0t− v0γt
2 = v0t− v0

b
2m

t2 = v0t+
1

2

−bv0

m
t2

The last term says that the acceleration starts as ax = −bv0/m, as required.
In Eq. (4.8) I assumed that the two roots of the quadratic, the two α’s, are different. What if

they aren’t? Then you have just one value of α to use in defining the solution eαt in Eq. (4.9). You
now have just one arbitrary constant with which to match two initial conditions. You’re stuck. See
problem 4.11 to understand how to handle this case (critical damping). It’s really a special case of what
I’ve already done.

What is the energy for this damped oscillator? The kinetic energy is mv2/2 and the potential
energy for the spring is kx2/2. Is the sum constant? No.

If Fx = max = −kx+ Fx,frict, then

dE
dt

=
d
dt

1

2

(
mv2 + kx2

)
= mv

dv
dt

+ kx
dx
dt

= vx
(
max + kx

)
= Fx,frictvx (4.11)

“Force times velocity” is a common expression for power, and this says that the total energy is decreasing
according to this formula. For the wet friction used here, this is dE/dt = −bv2

x, and the energy
decreases exponentially on average.

4.2 Forced Oscillations
What happens if the equation is inhomogeneous? That is, what if there is a term that doesn’t involve
x or its derivatives at all. In this harmonic oscillator example, apply an extra external force. Maybe it’s
a constant; maybe it’s an oscillating force; it can be anything you want not involving x.

m
d2x
dt2

= −kx− bdx
dt

+ Fext(t) (4.12)

The key result that you need for this class of equations is very simple to state and not too difficult to
implement. It is a procedure for attacking any linear inhomogeneous differential equation and consists
of three steps.

1. Temporarily throw out the inhomogeneous term [here Fext(t)] and completely solve the
resulting homogeneous equation. In the current case that’s what you just saw when I
worked out the solution to the differential equation md2x

/
dt2 + bdx

/
dt + kx = 0.

[xhom(t)]

2. Find any one solution to the full inhomogeneous equation. Note that for step one you
have to have all the arbitrary constants present; for step two you do not. [xinh(t)]

3. Add the results of steps one and two. [xhom(t) + xinh(t)]
I’ve already done step one. To carry out the next step I’ll start with a particular case of the

forcing function. If Fext(t) is simple enough, you should be able to guess the answer to step two. If it’s
a constant, then a constant will work for x. If it’s a sine or cosine, then you can guess that a sine or
cosine or a combination of the two should work. If it’s an exponential, then guess an exponential —
remember that the derivative of an exponential is an exponential. If it’s the sum of two terms, such
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as a constant and an exponential, it’s easy to verify that you add the results that you get for the two
cases separately. If the forcing function is too complicated for you to guess a solution then there’s a
general method using Green’s functions that I’ll get to in section 4.6.

Choose a specific example
Fext(t) = F0

[
1− e−βt

]
(4.13)

This starts at zero and builds up to a final value of F0. It does it slowly or quickly depending on β.

F0

t
Start with the first term, F0, for external force in Eq. (4.12). Try x(t) = C and plug into that

equation to find
kC = F0

This is simple and determines C.
Next, use the second term as the forcing function, −F0e−βt. Guess a solution x(t) = C ′e−βt

and plug in. The exponential cancels, leaving

mC ′β2 − bC ′β + kC ′ = −F0 or C ′ =
−F0

mβ2 − bβ + k

The total solution for the inhomogeneous part of the equation is then the sum of these two expressions.

xinh(t) = F0

(
1

k
− 1

mβ2 − bβ + k
e−βt

)
The homogeneous part of Eq. (4.12) has the solution found in Eq. (4.6) and the total is

x(t) = xhom(t) + xinh(t) = x(t) = Aeα1t +Beα2t + F0

(
1

k
− 1

mβ2 − bβ + k
e−βt

)
(4.14)

There are two arbitrary constants here, and this is what you need because you have to be able to
specify the initial position and the initial velocity independently; this is a second order differential
equation after all. Take for example the conditions that the initial position is zero and the initial
velocity is zero. Everything is at rest until you start applying the external force. This provides two
equations for the two unknowns.

x(0) = 0 = A+B + F0
mβ2 − bβ

k(mβ2 − bβ + k)

ẋ(0) = 0 = Aα1 +Bα2 + F0
β

mβ2 − bβ + k

Now all you have to do is solve the two equations in the two unknowns A and B. Take the first,
multiply it by α2 and subtract the second. This gives A. Do the same with α1 instead of α2 to get B.
The results are

A =
1

α1 − α2
F0
α2(mβ2 − bβ)− kβ
k(mβ2 − bβ + k)
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Interchange α1 and α2 to get B.
The final result is

x(t) =
F0

α1 − α2

(
α2(mβ2 − bβ)− kβ

)
eα1t −

(
α1(mβ2 − bβ)− kβ

)
eα2t

k(mβ2 − bβ + k)

+ F0

(
1

k
− 1

mβ2 − bβ + k
e−βt

)
(4.15)

If you think this is messy and complicated, you haven’t seen messy and complicated. When it takes
20 pages to write out the equation, then you’re entitled say that it is starting to become involved.

Why not start with a simpler example, one without all the terms? The reason is that a complex
expression is often easier to analyze than a simple one. There are more things that you can do to it, and
so more opportunities for it to go wrong. The problem isn’t finished until you’ve analyzed the supposed
solution. After all, I may have made some errors in algebra along the way. Also, analyzing the solution
is the way you learn how these functions work.

1. Everything in the solution is proportional to F0 and that’s not surprising.

2. I’ll leave it as an exercise to check the dimensions.

3. A key parameter to vary is β. What should happen if it is either very large or very
small? In the former case the exponential function in the force drops to zero quickly
so the force jumps from zero to F0 in a very short time — a step in the limit that
β → 0.

4. If β is very small the force turns on very gradually and gently, as though you are being
very careful not to disturb the system.

Take point 3 above: for large β the dominant terms in both numerator and denominator every-
where are the mβ2 terms. This result is then very nearly

x(t) ≈ F0

α1 − α2

(
α2(mβ2)

)
eα1t −

(
α1(mβ2)

)
eα2t

kmβ2
+ F0

(
1

k
− 1

(mβ2)
e−βt

)
≈ F0

k(α1 − α2)

[
(α2e

α1t − α1e
α2t
]

+ F0
1

k

Use the notation of Eq. (4.9) and you have

x(t) ≈ F0

k
(
− γ + iω′ − (−γ − iω′)

)[((−γ − iω′)e(−γ+iω′)t − (−γ + iω′)e(−γ−iω′)t]+ F0
1

k

=
F0e−γt

k(2iω′)

[
− 2iγ sinω′t− 2iω′ cosω′t

]
+ F0

1

k

=
F0e−γt

k

[
− γ
ω′

sinω′t− cosω′t
]

+ F0
1

k
(4.16)
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At time t = 0 this is still zero even with the approximations. That’s comforting, but if it hadn’t
happened it’s not an insurmountable disaster. This is an approximation to the exact answer after all,
so it could happen that the initial conditions are obeyed only approximately. The exponential terms
have oscillations and damping, so the mass oscillates about its eventual equilibrium position and after
a long enough time the oscillations die out and you are left with the equilibrium solution x = F0/k.

Look at point 4 above: For small β the β2 terms in Eq. (4.15) are small compared to the β terms
to which they are added or subtracted. The numerators of the terms with eαt are then proportional to
β. The denominator of the same terms has a k − bβ in it. That means that as β → 0, the numerator
of the homogeneous term approaches zero and its denominator doesn’t. The last terms, that came
from the inhomogeneous part, don’t have any β in the numerator so they don’t vanish in this limit.
The approximate final result then comes solely from the xinh(t) term.

x(t) ≈ F0
1

k

(
1− e−βt

)
It doesn’t oscillate at all and just gradually moves from equilibrium to equilibrium as time goes on. It’s
what you get if you go back to the differential equation (4.12) and say that the acceleration and the
velocity are negligible.

m
d2x
dt2

[≈ 0] = −kx− bdx
dt

[≈ 0] + Fext(t) =⇒ x ≈ 1

k
Fext(t)

The spring force nearly balances the external force at all times; this is “quasi-static,” in which the
external force is turned on so slowly that it doesn’t cause any oscillations.

4.3 Series Solutions
A linear, second order differential equation can always be rearranged into the form

y′′ + P (x)y′ +Q(x)y = R(x) (4.17)

If at some point x0 the functions P and Q are well-behaved, if they have convergent power series
expansions about x0, then this point is called a “regular point” and you can expect good behavior of
the solutions there — at least if R is also regular there.

I’ll look just at the case for which the inhomogeneous term R = 0. If P or Q has a singularity
at x0, perhaps something such as 1/(x − x0) or

√
x− x0, then x0 is called a “singular point” of the

differential equation.

Regular Singular Points
The most important special case of a singular point is the “regular singular point” for which the behaviors
of P and Q are not too bad. Specifically this requires that (x− x0)P (x) and (x− x0)2Q(x) have no
singularity at x0. For example

y′′ +
1

x
y′ +

1

x2
y = 0 and y′′ +

1

x2
y′ + xy = 0

have singular points at x = 0, but the first one is a regular singular point and the second one is not.
The importance of a regular singular point is that there is a procedure guaranteed to find a solution near
a regular singular point (Frobenius series). For the more general singular point there is no guaranteed
procedure (though there are a few tricks* that sometimes work).

* The book by Bender and Orszag: “Advanced mathematical methods for scientists and engineers”
is a very readable source for this and many other topics.
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Examples of equations that show up in physics problems are

y′′ + y = 0

(1− x2)y′′ − 2xy′ + `(`+ 1)y = 0 regular singular points at ±1

x2y′′ + xy′ + (x2 − n2)y = 0 regular singular point at zero

xy′′ + (α+ 1− x)y′ + ny = 0 regular singular point at zero

(4.18)

These are respectively the classical simple harmonic oscillator, Legendre equation, Bessel equation,
generalized Laguerre equation.

A standard procedure to solve these equations is to use series solutions, but not just the standard
power series such as those in Eq. (2.4). Essentially, you assume that there is a solution in the form of
an infinite series and you systematically compute the terms of the series. I’ll pick the Bessel equation
from the above examples, as the other three equations are done the same way. The parameter n in that
equation is often an integer, but it can be anything. It’s common for it to be 1/2 or 3/2 or sometimes
even imaginary, but there’s no need to make any assumptions about it for now.

Assume a solution in the form :

Frobenius Series: y(x) =

∞∑
0

akx
k+s (a0 6= 0) (4.19)

If s = 0 or a positive integer, this is just the standard Taylor series you saw so much of in chapter two,
but this simple-looking extension makes it much more flexible and suited for differential equations. It
often happens that s is a fraction or negative, but this case is no harder to handle than the Taylor
series. For example, what is the series expansion of (cosx)/x about the origin? This is singular at
zero, but it’s easy to write the answer anyway because you already know the series for the cosine.

cosx
x

=
1

x
− x

2
+
x3

24
− x5

720
+ · · ·

It starts with the term 1/x corresponding to s = −1 in the Frobenius series.
Always assume that a0 6= 0, because that just defines the coefficient of the most negative power,

xs. If you allow it be zero, that’s just the same as redefining s and it gains nothing except confusion.
Plug this into the Bessel differential equation.

x2y′′ + xy′ + (x2 − n2)y = 0

x2
∞∑
k=0

ak(k + s)(k + s− 1)xk+s−2 + x
∞∑
k=0

ak(k + s)xk+s−1 + (x2 − n2)
∞∑
k=0

akx
k+s = 0

∞∑
k=0

ak(k + s)(k + s− 1)xk+s +
∞∑
k=0

ak(k + s)xk+s +
∞∑
k=0

akx
k+s+2 − n2

∞∑
0

akx
k+s = 0

∞∑
k=0

ak
[
(k + s)(k + s− 1) + (k + s)− n2

]
xk+s +

∞∑
k=0

akx
k+s+2 = 0

The coefficients of all the like powers of x must match, and in order to work out the matches efficiently,
and so as not to get myself confused in a mess of indices, I’ll make an explicit change of the index in
the sums. Do this trick every time. It keeps you out of trouble.
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Let ` = k in the first sum. Let ` = k + 2 in the second. Explicitly show the limits of the index
on the sums, or you’re bound to get it wrong.

∞∑
`=0

a`
[
(`+ s)2 − n2

]
x`+s +

∞∑
`=2

a`−2x
`+s = 0

The lowest power of x in this equation comes from the ` = 0 term in the first sum. That coefficient of
xs must vanish. (a0 6= 0)

a0

[
s2 − n2

]
= 0 (4.20)

This is called the indicial equation. It determines s, or in this case, maybe two s’s. After this, set to
zero the coefficient of x`+s.

a`
[
(`+ s)2 − n2

]
+ a`−2 = 0 (4.21)

This determines a2 in terms of a0; it determines a4 in terms of a2 etc.

a` = −a`−2
1

(`+ s)2 − n2
, ` = 2, 4, . . .

For example, if n = 0, the indicial equation says s = 0.

a2 = −a0
1

22
, a4 = −a2

1

42
= +a0

1

2242
, a6 = −a4

1

62
= −a0

1

224262

a2k = (−1)ka0
1

22kk!2
then y(x) = a0

∞∑
k=0

(−1)k
(x/2)2k

(k!)2
= a0J0(x) (4.22)

and in the last equation I rearranged the factors and used the standard notation for the Bessel function,
Jn(x).

This is a second order differential equation. What about the other solution? This Frobenius
series method is guaranteed to find one solution near a regular singular point. Sometimes it gives both
but not always, and in this example it produces only one. There are procedures that will let you find
the second solution to this sort of second order differential equation. See problem 4.49 for one such
method.

For the case n = 1/2 the calculations just above will produce two solutions. The indicial equation
gives s = ±1/2. After that, the recursion relation for the coefficients give

a` = −a`−2
1

(`+ s)2 − n2
= −a`−2

1

`2 + 2`s
= −a`−2

1

`(`+ 2s)
= −a`−2

1

`(`± 1)

For the s = +1/2 result

a2 = −a0
1

2 . 3
a4 = −a2

1

4 . 5
= +a0

1

2 . 3 . 4 . 5

a2k = (−1)ka0
1

(2k + 1)!

This solution is then

y(x) = a0x
1/2

[
1− x

2

3!
+
x4

5!
− . . .

]
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This series looks suspiciously like the series for the sine function, but is has some of the x’s or some of
the factorials in the wrong place. You can fix that if you multiply the series in brackets by x. You then
have

y(x) = a0x
−1/2

[
x− x

3

3!
+
x5

5!
− . . .

]
= a0

sinx

x1/2
(4.23)

I’ll leave it to problem 4.15 for you to find the other solution.
Do you need to use a Frobenius series instead of just a power series for all differential equations?

No, but I recommend it. If you are expanding about a regular point of the equation then a power series
will work, but I find it more systematic to use the same method for all cases. It’s less prone to error.

4.4 Some General Methods
It is important to be familiar with the arsenal of special methods that work on special types of differential
equations. What if you encounter an equation that doesn’t fit these special methods? There are some
techniques that you should be familiar with, even if they are mostly not ones that you will want to
use often. Here are a couple of methods that can get you started, and there’s a much broader set of
approaches under the heading of numerical analysis; you can explore those in section 11.5.

If you have a first order differential equation, dx/dt = f(x, t), with initial condition x(t0) = x0

then you can follow the spirit of the series method, computing successive orders in the expansion.
Assume for now that the function f is smooth, with as many derivatives as you want, then use the
chain rule a lot to get the higher derivatives of x

dx
dt

= f(x, t)

d2x
dt2

=
∂f
∂t

+
∂f
∂x

dx
dt

= ẍ = ft + fxẋ

˙̈x = ftt + 2fxtẋ+ fxxẋ
2 + fxẍ = ftt + 2fxtẋ+ fxxẋ

2 + fx[ft + fxẋ]

x(t) = x0 + f(x0, t0)(t− t0) + 1
2 ẍ(t0)(t− t0)2 + 1

6
˙̈x(t0)x(t0)(t− t0)3 + · · · (4.24)

Here the dot-notation (ẋ etc.) is a standard shorthand for derivative with respect to time. This is
unlike using a prime for derivative, which is with respect to anything you want. These equations show
that once you have the initial data (t0, x0), you can compute the next derivatives from them and from
the properties of f . Of course if f is complicated this will quickly become a mess, but even then it can
be useful to compute the first few terms in the power series expansion of x.

For example, ẋ = f(x, t) = Ax2(1 + ωt) with t0 = 0 and x0 = α.

ẋ0 = Aα2, ẍ0 = Aα2ω + 2A2α3, ˙̈x0 = 4A2α3ω + 2A3α4 + 2Aα
[
Aα2ω + 2A2α3

]
(4.25)

If A = 1/m . s and ω = 1/s with α = 1 m this is

x(t) = 1 + t+ 3
2t

2 + 2t3 + · · ·

You can also solve this example exactly and compare the results to check the method.
What if you have a second order differential equation? Pretty much the same thing, though it is

sometimes convenient to make a slight change in the appearance of the equations when you do this.

ẍ = f(x, ẋ, t) can be written ẋ = v, v̇ = f(x, v, t) (4.26)

so that it looks like two simultaneous first order equations. Either form will let you compute the higher
derivatives, but the second one often makes for a less cumbersome notation. You start by knowing t0,
x0, and now v0 = ẋ0.
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Some of the numerical methods you will find in chapter 11 start from the ideas of these expansions,
but then develop them along different lines.

There is an iterative methods that of more theoretical than practical importance, but it’s easy
to understand. I’ll write it for a first order equation, but you can rewrite it for the second (or higher)
order case by doing the same thing as in Eq. (4.26).

ẋ = f(x, t) with x(t0) = x0 generates x1(t) =

∫ t

t0
dt′ f(x0, t

′)

This is not a solution of the differential equation, but it forms the starting point to find one because
you can iterate this approximate solution x1 to form an improved approximation.

xk(t) =

∫ t

t0
dt′ f

(
xk−1(t′), t′

)
, k = 2, 3, . . . (4.27)

This will form a sequence that is usually different from that of the power series approach, though the
end result better be the same. This iterative approach is used in one proof that shows under just what
circumstances this differential equation ẋ = f has a unique solution.

4.5 Trigonometry via ODE’s
The differential equation u′′ = −u has two independent solutions. The point of this exercise is to derive
all (or at least some) of the standard relationships for sines and cosines strictly from the differential
equation. The reasons for spending some time on this are twofold. First, it’s neat. Second, you have
to get used to manipulating a differential equation in order to find properties of its solutions. This is
essential in the study of Fourier series as you will see in section 5.3.

Two solutions can be defined when you specify boundary conditions. Call the functions c(x) and
s(x), and specify their respective boundary conditions to be

c(0) = 1, c′(0) = 0, and s(0) = 0, s′(0) = 1 (4.28)

What is s′(x)? First observe that s′ satisfies the same differential equation as s and c:

u′′ = −u =⇒ (u′)′′ = (u′′)′ = −u′, and that shows the desired result.

This in turn implies that s′ is a linear combination of s and c, as that is the most general solution to
the original differential equation.

s′(x) = Ac(x) +Bs(x)

Use the boundary conditions:
s′(0) = 1 = Ac(0) +Bs(0) = A

From the differential equation you also have

s′′(0) = −s(0) = 0 = Ac′(0) +Bs′(0) = B

Put these together and you have

s′(x) = c(x) And a similar calculation shows c′(x) = −s(x) (4.29)

What is c(x)2 + s(x)2? Differentiate this expression to get

d
dx

[c(x)2 + s(x)2] = 2c(x)c′(x) + 2s(x)s′(x) = −2c(x)s(x) + 2s(x)c(x) = 0

This combination is therefore a constant. What constant? Just evaluate it at x = 0 and you see that
the constant is one. There are many more such results that you can derive, but that’s left for the
exercises, problem 4.21 et seq.
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4.6 Green’s Functions
Is there a general way to find the solution to the whole harmonic oscillator inhomogeneous differential
equation? One that does not require guessing the form of the solution and applying initial conditions?
Yes there is. It’s called the method of Green’s functions. The idea behind it is that you can think of
any force as a sequence of short, small kicks. In fact, because of the atomic nature of matter, that’s
not so far from the truth. If you can figure out the result of an impact by one molecule, you can add
the results of many such kicks to get the answer for 1023 molecules.

I’ll start with the simpler case where there’s no damping, b = 0 in the harmonic oscillator
equation.

mẍ+ kx = Fext(t) (4.30)

Suppose that everything is at rest at the origin and then at time t′ the external force provides a small
impulse. The motion from that point on will be a sine function starting at t′,

A sin
(
ω0(t− t′)

)
(t > t′) (4.31)

The amplitude will depend on the strength of the kick. A constant force F applied for a very short
time, ∆t′, will change the momentum of the mass by m∆vx = F∆t′. If this time interval is short
enough the mass doesn’t have a chance to move very far before the force is turned off, then from that
time on it’s subject only to the −kx force. This kick gives m a velocity F∆t′/m, and that’s what
determines the unknown constant A.

Just after t = t′, vx = Aω0 = F∆t′/m. This determines A, so the position of m is

x(t) =

{
F∆t′
mω0

sin
(
ω0(t− t′)

)
(t > t′)

0 (t ≤ t′)
(4.32)

x

t′

impulse

t

When the external force is the sum of two terms, the total solution is the sum of the solutions
for the individual forces. If an impulse at one time gives a solution Eq. (4.32), an impulse at a later
time gives a solution that starts its motion at that later time. The key fact about the equation that
you’re trying to solve is that it is linear, so you can get the solution for two impulses simply by adding
the two simpler solutions.

m
d2x1

dt2
+ kx1 = F1(t) and m

d2x2

dt2
+ kx2 = F2(t)

then

m
d2(x1 + x2)

dt2
+ k(x1 + x2) = F1(t) + F2(t)

x1

x2

x1 + x2

+ =
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The way to make use of this picture is to take a sequence of contiguous steps. One step follows
immediately after the preceding one. If two such impulses are two steps

F0 =

{
F (t0) (t0 < t < t1)
0 (elsewhere)

and F1 =

{
F (t1) (t1 < t < t2)
0 (elsewhere)

mẍ+ kx = F0 + F1 (4.33)

then if x0 is the solution to Eq. (4.30) with only the F0 on its right, and x1 is the solution with only
F1, then the full solution to Eq. (4.33) is the sum, x0 + x1.

Think of a general forcing function Fx,ext(t) in the way that you would set up an integral.
Approximate it as a sequence of very short steps as in the picture. Between tk and tk+1 the force is
essentially F (tk). The response of m to this piece of the total force is then Eq. (4.32).

xk(t) =

{
F (tk)∆tk
mω0

sin
(
ω0(t− tk)

)
(t > tk)

0 (t ≤ tk)

where ∆tk = tk+1 − tk.

F

t1 t2
t5

+ + + +

t

To complete this idea, the external force is the sum of a lot of terms, the force between t1 and
t2, that between t2 and t3 etc. The total response is the sum of all these individual responses.

x(t) =
∑
k

{
F (tk)∆tk
mω0

sin
(
ω0(t− tk)

)
(t > tk)

0 (t ≤ tk)

For a specified time t, only the times tk before and up to t contribute to this sum. The impulses
occurring at the times after the time t can’t change the value of x(t); they haven’t happened yet. In
the limit that ∆tk → 0, this sum becomes an integral.

x(t) =

∫ t

−∞
dt′

F (t′)
mω0

sin
(
ω0(t− t′)

)
(4.34)

Apply this to an example. The simplest is to start at rest and begin applying a constant force
from time zero on.

Fext(t) =

{
F0 (t > 0)
0 (t ≤ 0)

x(t) =

∫ t

0
dt′

F0

mω0
sin
(
ω0(t− t′)

)
and the last expression applies only for t > 0. It is

x(t) =
F0

mω2
0

[
1− cos(ω0t)

]
(4.35)
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As a check for the plausibility of this result, look at the special case of small times. Use the power
series expansion of the cosine, keeping a couple of terms, to get

x(t) ≈ F0

mω2
0

[
1−

(
1− (ω0t)

2/2
)]

=
F0

mω2
0

ω2
0t

2

2
=
F0

m
t2

2

and this is just the result you’d get for constant acceleration F0/m. In this short time, the position
hasn’t changed much from zero, so the spring hasn’t had a chance to stretch very far, so it can’t apply
much force, and you have nearly constant acceleration.

This is a sufficiently important subject that it will be repeated elsewhere in this text. A completely
different approach to Green’s functions will appear is in section 15.5, and chapter 17 is largely devoted
to the subject.

4.7 Separation of Variables
If you have a first order differential equation — I’ll be more specific for an example, in terms of x and
t — and if you are able to move the variables around until everything involving x and dx is on one
side of the equation and everything involving t and dt is on the other side, then you have “separated
variables.” Now all you have to do is integrate.

For example, the total energy in the undamped harmonic oscillator is E = mv2/2 + kx2/2.
Solve for dx/dt and

dx
dt

=

√
2

m

(
E − kx2/2

)
(4.36)

To separate variables, multiply by dt and divide by the right-hand side.

dx√
2
m

(
E − kx2/2

) = dt

Now it’s just manipulation to put this into a convenient form to integrate.√
m
k

dx√
(2E/k)− x2

= dt, or

∫
dx√

(2E/k)− x2
=

∫ √
k
m
dt

Make the substitution x = a sin θ and you see that if a2 = 2E/k then the integral on the left simplifies.

∫
a cos θ dθ

a
√

1− sin2 θ
=

∫ √
k
m
dt so θ = sin−1 x

a
= ω0t+C

or x(t) = a sin(ω0t+C) where ω0 =
√
k/m

An electric circuit with an inductor, a resistor, and a battery has a differential equation for the
current flow:

L
dI
dt

+ IR = V0 (4.37)

Manipulate this into

L
dI
dt

= V0 − IR, then L
dI

V0 − IR
= dt
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Now integrate this to get

L
∫

dI
V0 − IR

= t+C, or − L
R

ln(V0 − IR) = t+C

Solve for the current I to get

RI(t) = V0 − e−(L/R)(t+C) (4.38)

Now does this make sense? Look at the dimensions and you see that it doesn’t, at least not yet. The
problem is the logarithm on the preceding line where you see that its units don’t make sense either.
How can this be? The differential equation that you started with is correct, so how did the units get
messed up? It goes back to the standard equation for integration,∫

dx/x = lnx+C

If x is a length for example, then the left side is dimensionless, but this right side is the logarithm of
a length. It’s a peculiarity of the logarithm that leads to this anomaly. You can write the constant of
integration as C = − lnC ′ where C ′ is another arbitrary constant, then∫

dx/x = lnx+C = lnx− lnC ′ = ln
x
C ′

If C ′ is a length this is perfectly sensible dimensionally. To see that the dimensions in Eq. (4.38) will
work themselves out (this time), put on some initial conditions. Set I(0) = 0 so that the circuit starts
with zero current.

R . 0 = V0 − e−(L/R)(0+C) implies e−(L/R)(C) = V0

RI(t) = V0 − V0e
−Lt/R or I(t) = (1− e−Lt/R)V0/R

and somehow the units have worked themselves out. Logarithms do this, but you still better check.
The current in the circuit starts at zero and climbs gradually to its final value I = V0/R.

4.8 Circuits
The methods of section 4.1 apply to simple linear circuits, and the use of complex algebra as in that
section leads to powerful and simple ways to manipulate such circuit equations. You probably remember
the result of putting two resistors in series or in parallel, but what about combinations of capacitors or
inductors under the same circumstances? And what if you have some of each? With the right tools,
all of these questions become the same question, so it’s not several different techniques, but one.

If you have an oscillating voltage source (a wall plug), and you apply it to a resistor or to a
capacitor or to an inductor, what happens? In the first case, V = IR of course, but what about the
others? The voltage equation for a capacitor is V = q/C and for an inductor it is V = LdI/dt. A
voltage that oscillates at frequency ω is V = V0 cosωt, but using this trigonometric function forgoes
all the advantages that complex exponentials provide. Instead, assume that your voltage source is
V = V0eiωt with the real part understood. Carry this exponential through the calculation, and take
the real part only at the end — often you won’t even need to do that.

V0eiωt
0

I V0eiωt
0

V0eiωt
0q −q

I I
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These are respectively

V0e
iωt = IR = I0e

iωtR

V0e
iωt = q/C =⇒ iωV0e

iωt = q̇/C = I/C = I0e
iωt/C

V0e
iωt = Lİ = iωLI = iωLI0e

iωt

In each case the exponential factor is in common, and you can cancel it. These equations are then

V = IR V = I/iωC V = iωL I

All three of these have the same form: V = (something times)I , and in each case the size of the
current is proportional to the applied voltage. The factors of i implies that in the second and third
cases the current is ±90◦ out of phase with the voltage cycle.

The coefficients in these equations generalize the concept of resistance, and they are called
“impedance,” respectively resistive impedance, capacitive impedance, and inductive impedance.

V = ZRI = RI V = ZCI =
1

iωC
I V = ZLI = iωLI (4.39)

Impedance appears in the same place as does resistance in the direct current situation, and this implies
that it can be manipulated in the same way. The left figure shows two impedances in series.

Z1 Z2

Z1

Z2

I I

I1

I2

The total voltage from left to right in the left picture is

V = Z1I + Z2I = (Z1 + Z2)I = ZtotalI (4.40)

It doesn’t matter if what’s inside the box is a resistor or some more complicated impedance, it matters
only that each box obeys V = ZI and that the total voltage from left to right is the sum of the two
voltages. Impedances in series add. You don’t need the common factor eiωt.

For the second picture, for which the components are in parallel, the voltage is the same on each
impedance and charge is conserved, so the current entering the circuit obeys

I = I1 + I2, then
V

Ztotal
=
V
Z1

+
V
Z2

or
1

Ztotal
=

1

Z1
+

1

Z2
(4.41)

Impedances in parallel add as reciprocals, so both of these formulas generalize the common equations
for resistors in series and parallel. They also include as a special case the formula you may have seen
before for adding capacitors in series and parallel.

In the example Eq. (4.37), if you replace the constant voltage by an oscillating voltage, you have
two impedances in series.

Ztot = ZR + ZL = R+ iωL =⇒ I = V/(R+ iωL)
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What happened to the e−Lt/R term of the previous solution? This impedance manipulation tells you
the inhomogeneous solution; you still must solve the homogeneous part of the differential equation and
add that.

L
dI
dt

+ IR = 0 =⇒ I(t) = Ae−Rt/L

The total solution is the sum

I(t) = Ae−Rt/L + V0e
iωt 1

R+ iωL

real part = Ae−Rt/L + V0
cos(ωt− φ)√
R2 + ω2L2

where φ = tan−1 ωL
R

(4.42)

How did that last manipulation come about? Change the complex number R+ iωL in the denominator
from rectangular to polar form. Then the division of the complex numbers becomes easy. The dying
exponential is called the “transient” term, and the other term is the “steady-state” term.

α

β
φ

√
α2 + β2

The denominator is

R+ iωL = α+ iβ =
√
α2 + β2

α+ iβ√
α2 + β2

(4.43)

The reason for this multiplication and division by the same factor is
that it makes the final fraction have magnitude one. That allows me
to write it as an exponential, eiφ. From the picture, the cosine and the
sine of the angle φ are the two terms in the fraction.

α+ iβ =
√
α2 + β2 (cosφ+ i sinφ) =

√
α2 + β2 eiφ and tanφ = β/α

In summary,

V = IZ −→ I =
V
Z
−→ Z = |Z|eiφ −→ I =

V√
R2 + ω2L2eiφ

To satisfy initial conditions, you need the parameter A, but you also see that it gives a dying
exponential. After some time this transient term will be negligible, and only the oscillating steady-state
term is left. That is what this impedance idea provides.

In even the simplest circuits such as these, that fact that Z is complex implies that the applied
voltage is out of phase with the current. Z = |Z|eiφ, so I = V/Z has a phase change of −φ from V .

What if you have more than one voltage source, perhaps the second having a different frequency
from the first? Remember that you’re just solving an inhomogeneous differential equation, and you are
using the methods of section 4.2. If the external force in Eq. (4.12) has two terms, you can handle
them separately then add the results.

4.9 Simultaneous Equations
What’s this doing in a chapter on differential equations? Patience. Solve two equations in two
unknowns:

(X) ax+ by = e

(Y) cx+ dy = f
d×(X) − b×(Y):

adx+ bdy − bcx− bdy = ed− fb
(ad− bc)x = ed− fb

Similarly, multiply (Y) by a and (X) by c and subtract:

acx+ ady − acx− cby = fa− ec
(ad− bc)y = fa− ec
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Divide by the factor on the left side and you have

x =
ed− fb
ad− bc

, y =
fa− ec
ad− bc

(4.44)

provided that ad − bc 6= 0. This expression appearing in both denominators is the determinant of the
equations.

Classify all the essentially different cases that can occur with this simple-looking set of equations
and draw graphs to illustrate them. If this looks like problem 1.23, it should.

y

1.

x

y

2.

x

y

3a.

x

1. The solution is just as in Eq. (4.44) above and nothing goes wrong. There is exactly one
solution. The two graphs of the two equations are two intersecting straight lines.

2. The denominator, the determinant, is zero and the numerator isn’t. This is impossible and
there are no solutions. When the determinant vanishes, the two straight lines are parallel and the fact
that the numerator isn’t zero implies that the two lines are distinct and never intersect. (This could also
happen if in one of the equations, say (X), a = b = 0 and e 6= 0. For example 0 = 1. This obviously
makes no sense.)

3a. The determinant is zero and so are both numerators. In this case the two lines are not only
parallel, they are the same line. The two equations are not really independent and you have an infinite
number of solutions.

3b. You can get zero over zero another way. Both equations (X) and (Y) are 0 = 0. This sounds
trivial, but it can really happen. Every x and y will satisfy the equation.

4. Not strictly a different case, but sufficiently important to discuss it separately: suppose that
the right-hand sides of (X) and (Y) are zero, e = f = 0. If the determinant is non-zero, there is a
unique solution and it is x = 0, y = 0.

5. With e = f = 0, if the determinant is zero, the two equations are the same equation and
there are an infinite number of non-zero solutions.

In the important case for which e = f = 0 and the determinant is zero, there are two cases:
(3b) and (5). In the latter case there is a one-parameter family of solutions and in the former case
there is a two-parameter family. Put another way, for case (5) the set of all solutions is a straight line,
a one-dimensional set. For case (3b) the set of all solutions is the whole plane, a two-dimensional set.

y

4.

x

y

5.

x

y

3b.

x

Example: consider the two equations

kx+ (k − 1)y = 0, (1− k)x+ (k − 1)2y = 0
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For whatever reason, I would like to get a non-zero solution for x and y. Can I? The condition depends
on the determinant, so take the determinant and set it equal to zero.

k(k − 1)2 − (1− k)(k − 1) = 0, or (k + 1)(k − 1)2 = 0

There are two roots, k = −1 and k = +1. In the k = −1 case the two equations become

−x− 2y = 0, and 2x+ 4y = 0

The second is just −2 times the first, so it isn’t a separate equation. The family of solutions is all those
x and y satisfying x = −2y, a straight line.

In the k = +1 case you have

x+ 0y = 0, and 0 = 0

The solution to this is x = 0 and y = anything and it is again a straight line (the y-axis).

4.10 Simultaneous ODE’s
Single point masses are an idealization that has some application to the real world, but there are many
more cases for which you need to consider the interactions among many masses. To approach this,
take the first step, from one mass to two masses.

k1 k3 k2

x1 x2

Two masses are connected to a set of springs and fastened be-
tween two rigid walls as shown. The coordinates for the two masses
(moving along a straight line) are x1 and x2, and I’ll pick the zero
point for these coordinates to be the positions at which everything is at
equilibrium — no total force on either. When a mass moves away from
its equilibrium position there is a force on it. On m1, the two forces are
proportional to the distance by which the two springs k1 and k3 are stretched. These two distances are
x1 and x1 − x2 respectively, so Fx = max applied to each mass gives the equations

m1
d2x1

dt2
= −k1x1 − k3(x1 − x2), and m2

d2x2

dt2
= −k2x2 − k3(x2 − x1) (4.45)

I’m neglecting friction simply to keep the algebra down. These are linear, constant coefficient, homo-
geneous equations, just the same sort as Eq. (4.4) except that there are two of them. What made
the solution of (4.4) easy is that the derivative of an exponential is an exponential, so that when you
substituted x(t) = Aeαt all that you were left with was an algebraic factor — a quadratic equation in
α. Exactly the same method works here.

The only way to find out if this is true is to try it. The big difference is that there are two
unknowns instead of one, and the amplitude of the two motions will probably not be the same. If one
mass is a lot bigger than the other, you expect it to move less.

Try the solution
x1(t) = Aeαt, x2(t) = Beαt (4.46)

When you plug this into the differential equations for the masses, all the factors of eαt cancel, just the
way it happens in the one variable case.

m1α
2A = −k1A− k3(A−B), and m2α

2B = −k2B − k3(B −A) (4.47)

Rearrange these to put them into a neater form.(
k1 + k3 +m1α

2
)
A+

(
− k3

)
B = 0(

− k3)A+
(
k2 +k3 +m2α2

)
B = 0 (4.48)
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The results of problem 1.23 and of section 4.9 tell you all about such equations. In particular,
for the pair of equations ax + by = 0 and cx + dy = 0, the only way to have a non-zero solution for
x and y is for the determinant of the coefficients to be zero: ad − bc = 0. Apply this result to the
problem at hand. Either A = 0 and B = 0 with a trivial solution or the determinant is zero.

(k1 + k3 +m1α
2
)(
k2 + k3 +m2α

2
)
− (k3

)2
= 0 (4.49)

This is a quadratic equation for α2, and it determines the frequencies of the oscillation. Note the plural
in the word frequencies.

Equation (4.49) is just a quadratic, but it’s still messy. For a first example, try a special,
symmetric case: m1 = m2 = m and k1 = k2. There’s a lot less algebra.

(k1 + k3 +mα2
)2 − (k3

)2
= 0 (4.50)

You could use the quadratic formula on this, but why? It’s already set up to be factored.

(k1 + k3 +mα2 − k3)(k1 + k3 +mα2 + k3) = 0

The product is zero, so one or the other factors is zero. These determine the αs.

α2
1 = −k1

m
and α2

2 = −k1 + 2k3

m
(4.51)

These are negative, and that’s what you should expect. There’s no damping and the springs provide
restoring forces that should give oscillations. That’s just what these imaginary α’s provide.

When you examine the equations ax+by = 0 and cx+dy = 0 the condition that the determinant
vanishes is the condition that the two equations are really just one equation, and that the other is not
independent of it; it is actually a multiple of the first. You must solve that equation for x and y. Here,
arbitrarily pick the first of the equations (4.48) and find the relation between A and B.

α2
1 = −k1

m
=⇒

(
k1 + k3 +m(−(k1/m))

)
A+

(
− k3

)
B = 0 =⇒ B = A

α2
2 = −k1 + 2k3

m
=⇒

(
k1 + k3 +m(−(k1 + 2k3/m))

)
A+

(
− k3

)
B = 0 =⇒ B = −A

For the first case, α1 = ±iω1 = ±i
√
k1/m, there are two solutions to the original differential equations.

These are called ”normal modes.”

x1(t) = A1e
iω1t

x2(t) = A1e
iω1t

and
x1(t) = A2e

−iω1t

x2(t) = A2e
−iω1t

The other frequency has the corresponding solutions

x1(t) = A3e
iω2t

x2(t) = −A3e
iω2t

and
x1(t) = A4e

−iω2t

x2(t) = −A4e
−iω2t

The total solution to the differential equations is the sum of all four of these.

x1(t) = A1e
iω1t +A2e

−iω1t +A3e
iω2t +A4e

−iω2t

x2(t) = A1e
iω1t +A2e

−iω1t −A3e
iω2t −A4e

−iω2t (4.52)
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The two second order differential equations have four arbitrary constants in their solution. You
can specify the initial values of two positions and of two velocities this way. As a specific example
suppose that all initial velocities are zero and that the first mass is pushed to coordinate x0 and
released.

x1(0) = x0 = A1 +A2 +A3 +A4

x2(0) = 0 = A1 +A2 −A3 −A4

vx1(0) = 0 = iω1A1 − iω1A2 + iω2A3 − iω2A4

vx2(0) = 0 = iω1A1 − iω1A2 − iω2A3 + iω2A4 (4.53)

With a little thought (i.e. don’t plunge blindly ahead) you can solve these easily.

A1 = A2 = A3 = A4 =
x0

4

x1(t) =
x0

4

[
eiω1t + e−iω1t + eiω2t + e−iω2t

]
=
x0

2

[
cosω1t+ cosω2t

]
x2(t) =

x0

4

[
eiω1t + e−iω1t − eiω2t − e−iω2t

]
=
x0

2

[
cosω1t− cosω2t

]
From the results of problem 3.34, you can rewrite these as

x1(t) = x0 cos

(
ω2 + ω1

2
t

)
cos

(
ω2 − ω1

2
t

)
x2(t) = x0 sin

(
ω2 + ω1

2
t

)
sin

(
ω2 − ω1

2
t

)
(4.54)

As usual you have to draw some graphs to understand what these imply. If the center spring k3

is a lot weaker than the outer ones, then Eq. (4.51) implies that the two frequencies are close to each
other and so |ω1 − ω2| � ω1 + ω2. Examine Eq. (4.54) and you see that one of the two oscillating
factors oscillate at a much higher frequency than the other. To sketch the graph of x2 for example you
should draw one factor

[
sin
(
(ω2 +ω1)t/2

)]
and the other factor

[
sin
(
(ω2−ω1)t/2

)]
and graphically

multiply them.

x2

The mass m2 starts without motion and its oscillations gradually build up. Later they die down
and build up again (though with reversed phase). Look at the other mass, governed by the equation
for x1(t) and you see that the low frequency oscillation from the (ω2−ω1)/2 part is big where the one
for x2 is small and vice versa. The oscillation energy moves back and forth from one mass to the other.

4.11 Legendre’s Equation
This equation and its solutions appear when you solve electric and gravitational potential problems
in spherical coordinates [problem 9.20]. They appear when you study Gauss’s method of numerical
integration [Eq. (11.27)] and they appear when you analyze orthogonal functions [problem 6.7]. Because
it shows up so often it is worth the time to go through the details in solving it.[

(1− x2)y′
]′ +Cy = 0, or (1− x2)y′′ − 2xy′ +Cy = 0 (4.55)
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Assume a Frobenius solutions about x = 0

y =
∞∑
0

akx
k+s

and substitute into (4.55). Could you use an ordinary Taylor series instead? Yes, the point x = 0 is
not a singular point at all, but it is just as easy (and more systematic and less prone to error) to use
the same method in all cases.

(1− x2)
∞∑
0

ak(k + s)(k + s− 1)xk+s−2 − 2x
∞∑
0

ak(k + s)xk+s−1 +C
∞∑
0

akx
k+s = 0

∞∑
0

ak(k + s)(k + s− 1)xk+s−2+

∞∑
0

ak
[
− 2(k + s)− (k + s)(k + s− 1)

]
xk+s +C

∞∑
0

akx
k+s = 0

∞∑
n=−2

an+2(n+ s+ 2)(n+ s+ 1)xn+s−

∞∑
n=0

an
[
(n+ s)2 + (n+ s)

]
xn+s +C

∞∑
n=0

anx
n+s = 0

In the last equation you see the usual substitution k = n+ 2 for the first sum and k = n for the rest.
That makes the exponents match across the equation. In the process, I simplified some of the algebraic
expressions.

The indicial equation comes from the n = −2 term, which appears only once.

a0s(s− 1) = 0, so s = 0, 1

Now set the coefficient of xn+s to zero, and solve for an+2 in terms of an. Also note that s is a
non-negative integer, which says that the solution is non-singular at x = 0, consistent with the fact
that zero is a regular point of the differential equation.

an+2 = an
(n+ s)(n+ s+ 1)−C
(n+ s+ 2)(n+ s+ 1)

(4.56)

a2 = a0
s(s+ 1)−C
(s+ 2)(s+ 1)

, then a4 = a2
(s+ 2)(s+ 3)−C

(s+ 4)(s+ 3)
, etc. (4.57)

This looks messier than it is. Notice that the only combination of indices that shows up is n+ s. The
index s is 0 or 1, and n is an even number, so the combination n+ s covers the non-negative integers:
0, 1, 2, . . .

The two solutions to the Legendre differential equation come from the two cases, s = 0, 1.

s = 0 : a0

[
1 +

(
−C

2

)
x2 +

(
−C

2

)(
2 . 3−C

4 . 3

)
x4+(

−C
2

)(
2 . 3−C

4 . 3

)(
4 . 5−C

6 . 5

)
x6 · · ·

]
s = 1 : a′0

[
x+

(
1 . 2−C

3 . 2

)
x3 +

(
1 . 2−C

3 . 2

)(
3 . 4−C

5 . 4

)
x5 + · · ·

] (4.58)



4—Differential Equations 89

and the general solution is a sum of these.
This procedure gives both solutions to the differential equation, one with even powers and one

with odd powers. Both are infinite series and are called Legendre Functions. An important point about
both of them is that they blow up as x → ±1. This fact shouldn’t be too surprising, because the
differential equation (4.55) has a singular point there.

y′′ − 2x
(1 + x)(1− x)

y′ +
C

(1 + x)(1− x)
y = 0 (4.59)

It’s a regular singular point, but it is still singular. A detailed calculation in the next section shows that
these solutions behave as ln(1− x) near x = 1.

There is an exception! If the constant C is for example C = 6, then with s = 0 the equations
(4.57) are

a2 = a0
−6

2
, a4 = a2

6− 6

12
= 0, a6 = a8 = . . . = 0

The infinite series terminates in a polynomial

a0 + a2x
2 = a0[1− 3x2]

This (after a conventional rearrangement) is a Legendre Polynomial,

P2(x) =
3

2
x2 − 1

2

The numerator in Eq. (4.56) for an+2 is [(n+ s)(n+ s+ 1)−C]. If this happen to equal zero
for some value of n = N , then aN+2 = 0 and so then all the rest of aN+4. . . are zero too. The series
is a polynomial. This will happen only for special values of C, such as the value C = 6 above. The
values of C that have this special property are

C = `(`+ 1), for ` = 0, 1, 2, . . . (4.60)

This may be easier to see in the explicit representation, Eq. (4.58). When a numerator equals zero,
all the rest that follow are zero too. When C = `(` + 1) for even `, the first series terminates in a
polynomial. Similarly for odd ` the second series is a polynomial. These are the Legendre polynomials,
denoted P`(x), and the conventional normalization is to require that their value at x = 1 is one.

P0(x) = 1 P1(x) = x P2(x) = 3
2 x

2 − 1
2

P3(x) = 5
2 x

3 − 3
2 x P4(x) = 35

8 x
4 − 30

8 x
2 + 3

8

(4.61)

The special case for which the series terminates in a polynomial is by far the most commonly used
solution to Legendre’s equation. You seldom encounter the general solutions as in Eq. (4.58).

A few properties of the P` are

(a)

∫ 1

−1
dxPn(x)Pm(x) =

2

2n+ 1
δnm where δnm =

{
1 if n = m
0 if n 6= m

(b) (n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x)

(c) Pn(x) =
(−1)n

2nn!

dn

dxn
(1− x2)n

(d) Pn(1) = 1 Pn(−x) = (−1)nPn(x)

(e)
(
1− 2tx+ t2

)−1/2
=

∞∑
n=0

tnPn(x)

(4.62)
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4.12 Asymptotic Behavior
This is a slightly technical subject, but it will come up occasionally in electromagnetism when you dig
into the details of boundary value problems. It will come up in quantum mechanics when you solve some
of the standard eigenvalue problems that you face near the beginning of the subject. If you haven’t
come to these yet then you can skip this part for now.

You solve a differential equation using a Frobenius series and now you need to know something
about the solution. In particular, how does the solution behave for large values of the argument? All
you have in front of you is an infinite series, and it isn’t obvious how it will behave far away from the
origin. In the line just after Eq. (4.59) it says that these Legendre functions behave as ln(1− x). How
can you tell this from the series in Eq. (4.58)?

There is a theorem that addresses this. Take two functions described by two series:

f(x) =

∞∑
akx

k and g(x) =

∞∑
bkx

k

It does not matter where the sums start because you are concerned just with the large values of k. The
lower limit could as easily be −14 or +27 with no change in the result. The ratio test, Eq. (2.8), will
determine the radius of convergence of these series, and∣∣∣∣∣ak+1x

k+1

akxk

∣∣∣∣∣ < C < 1 for large enough k

is enough to insure convergence. The largest x for which this holds defines the radius of convergence,
maybe 1, maybe ∞. . . . Call it R.

Assume that (after some value of k) all the ak and bk are positive, then look at the ratio of the
ratios,

ak+1/ak
bk+1/bk

If this approaches one, that will tell you only that the radii of convergence of the two series are the
same. If it approaches one very fast, and if either one of the functions goes to infinity as x approaches
the radius of convergence, then it says that the asymptotic behaviors of the functions defined by the
series are the same.

If
ak+1/ak
bk+1/bk

− 1 −→ 0 as fast as
1

k2
, and if either f(x) or g(x) −→ ∞ as x→ R

Then
f(x)

g(x)
−→ a constant as x→ R

There are more general ways to state this, but this handles most cases of interest.
Compare these series near x = 1.

1

1− x
=

∞∑
0

xk, or ln(1− x) =
∞∑
1

xk

k
, or

(1− x)−1/2 =
∞∑
k=0

α(α− 1) · · · (α− k + 1)

k!
(−x)k (α = −1/2)
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Even in the third case, the signs of the terms are the same after a while, so this is relevant to
the current discussion. The ratio of ratios for the first and second series is

ak+1/ak
bk+1/bk

=
1

(k + 1)/k
=

1

1 + 1/k
= 1− 1

k
+ · · ·

These series behave differently as x approaches the radius of convergence (x→ 1). But you knew that.
The point is to compare an unknown series to a known one.

Applying this theorem requires some fussy attention to detail. You must make sure that the
indices in one series correspond exactly to the indices in the other. Take the Legendre series, Eq. (4.56)
and compare it to a logarithmic series. Choose s = 0 to be specific; then only even powers of x appear.
That means that I want to compare it to a series with even powers, and with radius of convergence
= 1. First try a binomial series such as for (1 − x2)α, but that doesn’t work. See for yourself. The
logarithm ln(1− x2) turns out to be right. From Eq. (4.56) and from the logarithm series,

f(x) =
∞∑

n even

anx
n with an+2 = an

(n+ s)(n+ s+ 1)−C
(n+ s+ 2)(n+ s+ 1)

g(x) = − ln(1− x2) =

∞∑
1

x2k

k
=
∑

bkx
2k

To make the indices match, let n = 2k in the second series.

g(x) =
∑
n even

xn

n/2
=
∑

cnx
n

Now look at the ratios.

an+2

an
=
n(n+ 1)−C
(n+ 2)(n+ 1)

=
1 + 1

n −
C
n2

1 + 3
n + 2

n2

= 1− 2

n
+ · · ·

cn+2

cn
=

2/(n+ 2)

2/n
=

n
n+ 2

=
1

1 + 2
n

= 1− 2

n
+ · · ·

These agree to order 1/n, so the ratio of the ratios differs from one only in order 1/n2, satisfying the
requirements of the test. This says that the Legendre functions (the ones where the series does not
terminate in a polynomial) are logarithmically infinite near x = ±1. It’s a mild infinity, but it is still an
infinity. Is this bad? Not by itself, after all the electric potential of a line charge has a logarithm of r in
it. Singular solutions aren’t necessarily wrong, it just means that you have to look closely at how you
are using them.

Exercises

1 What algebraic equations do you have to solve to find the solutions of these differential equations?

d3x
dt3

+ a
dx
dt

+ bx = 0,
d10z
du10

− 3z = 0
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2 These equations are separable, as in section 4.7. Separate them and integrate, solving for the
dependent variable, with one arbitrary constant.

dN
dt

= −λN, dx
dt

= a2 + x2,
dvx
dt

= −a
(
1− e−βvx

)
3 From Eq. (4.40) and (4.41) what are the formulas for putting capacitors or inductors in series and
parallel?
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Problems

4.1 If the equilibrium position x = 0 for Eq. (4.4) is unstable instead of stable, this reverses the sign in
front of k. Solve the problem that led to Eq. (4.10) under these circumstances. That is, the damping
constant is b as before, and the initial conditions are x(0) = 0 and vx(0) = v0. What is the small time
and what is the large time behavior?

Ans:
(
2mv0/

√
b2 + 4km

)
e−bt/2m sinh

(√
b2/4m+ k/mt

)
4.2 In the damped harmonic oscillator problem, Eq. (4.4), suppose that the damping term is an anti-
damping term. It has the sign opposite to the one that I used (+b dx/dt). Solve the problem with the
initial condition x(0) = 0 and vx(0) = v0 and describe the resulting behavior.

Ans:
(
2mv0/

√
4km− b2

)
ebt/2m sin

(√
4km− b2 t/2m

)
4.3 A point mass m moves in one dimension under the influence of a force Fx that has a potential
energy V (x). Recall that the relation between these is

Fx = −dV
dx

Take the specific potential energy V (x) = −V0a2/(a2 + x2), where V0 is positive. Sketch V . Write
the equation Fx = max. There is an equilibrium point at x = 0, and if the motion is over only small
distances you can do a power series expansion of Fx about x = 0. What is the differential equation
now? Keep just the lowest order non-vanishing term in the expansion for the force and solve that
equation subject to the initial conditions that at time t = 0, x(0) = x0 and vx(0) = 0.
How does the graph of V change as you vary a from small to large values and how does this same
change in a affect the behavior of your solution? Ans: ω =

√
2V0/ma2

4.4 The same as the preceding problem except that the potential energy function is +V0a2/(a2 +x2).

Ans: x(t) = x0 cosh
(√

2V0/ma2 t
)

(|x| < a/4 or so, depending on the accuracy you want.)

4.5 For the case of the undamped harmonic oscillator and the force Eq. (4.13), start from the beginning
and derive the solution subject to the initial conditions that the initial position is zero and the initial
velocity is zero. At the end, compare your result to the result of Eq. (4.15) to see if they agree where
they should agree.

4.6 Check the dimensions in the result for the forced oscillator, Eq. (4.15).

4.7 Fill in the missing steps in the derivation of Eq. (4.15).

4.8 For the undamped harmonic oscillator apply an extra oscillating force so that the equation to solve
is

m
d2x
dt2

= −kx+ Fext(t)

where the external force is Fext(t) = F0 cosωt. Assume that ω 6= ω0 =
√
k/m.

Find the general solution to the homogeneous part of this problem.
Find a solution for the inhomogeneous case. You can readily guess what sort of function will give you
a cosωt from a combination of x and its second derivative.
Add these and apply the initial conditions that at time t = 0 the mass is at rest at the origin. Be sure
to check your results for plausibility: 0) dimensions; 1) ω = 0; 2) ω → ∞; 3) t small (not zero). In
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each case explain why the result is as it should be.
Ans: (F0/m)[− cosω0t+ cosωt]/(ω2

0 − ω2)

4.9 In the preceding problem I specified that ω 6= ω0 =
√
k/m. Having solved it, you know why this

condition is needed. Now take the final result of that problem, including the initial conditions, and take
the limit as ω → ω0. [What is the definition of a derivative?] You did draw a graph of your result didn’t
you? Ans:

(
F0/2mω0

)
t sinω0t

4.10 Show explicitly that you can write the solution Eq. (4.7) in any of several equivalent ways,

Aeiω0t +Be−iω0t = C cosω0t+D sinω0t = E cos(ω0t+ φ)

I.e. , given A and B, what are C and D, what are E and φ? Are there any restrictions in any of these
cases?

4.11 In the damped harmonic oscillator, you can have the special (critical damping) case for which
b2 = 4km and for which ω′ = 0. Use a series expansion to take the limit of Eq. (4.10) as ω′ → 0.
Also graph this solution. What would happen if you took the same limit in Eqs. (4.8) and (4.9), before
using the initial conditions?

4.12 (a) In the limiting solution for the forced oscillator, Eq. (4.16), what is the nature of the result
for small time? Expand the solution through order t2 and understand what you get. Be careful to be
consistent in keeping terms to the same order in t.
(b) Part (a) involved letting β be very large, then examining the behavior for small t. Now reverse the
order: What is the first non-vanishing order in t that you will get if you go back to Eq. (4.13), expand
that to first non-vanishing order in time, use that for the external force in Eq. (4.12), and find x(t) for
small t. Recall that in this example x(0) = 0 and ẋ(0) = 0, so you can solve for ẍ(0) and then for
˙̈x(0). The two behaviors are very different.

4.13 The undamped harmonic oscillator equation is d2x/dt2 +ω2x = 0. Solve this by Frobenius series
expansion about t = 0.

4.14 Check the algebra in the derivation of the n = 0 Bessel equation. Explicitly verify that the general
expression for a2k in terms of a0 is correct, Eq. (4.22).

4.15 Work out the Frobenius series solution to the Bessel equation for the n = 1/2, s = −1/2 case.
Graph both solutions, this one and Eq. (4.23).

4.16 Derive the Frobenius series solution to the Bessel equation for the value of n = 1. Show that this
method doesn’t yield a second solution for this case either.

4.17 Try using a Frobenius series method on y′′ + y/x3 = 0 around x = 0.

4.18 Solve by Frobenius series x2u′′ + 4xu′ + (x2 + 2)u = 0. You should be able to recognize the
resulting series (after a little manipulation).

4.19 The harmonic oscillator equation, d2y/dx2 + k2y = 0, is easy in terms of the variable x. What
is this equation if you change variables to z = 1/x, getting an equation in such things as d2y/dz2.
What sort of singularity does this equation have at z = 0? And of course, write down the answer for
y(z) to see what this sort of singularity can lead to. Graph it.



4—Differential Equations 95

4.20 Solve by Frobenius series solution about x = 0: y′′ + xy = 0.
Ans: 1− (x3/3!) + (1 . 4x6/6!)− (1 . 4 . 7x9/9!) + · · · is one.

4.21 From the differential equation d2u/dx2 = −u, finish the derivation for c′ as in Eq. (4.29). Derive
identities for the functions c(x+ y) and s(x+ y).

4.22 The chain rule lets you take the derivative of the composition of two functions. The function
inverse to s is the function f that satisfies f

(
s(x)

)
= x. Differentiate this equation with respect to x

and derive that f satisfies df(x)/dx = 1/
√

1− x2. What is the derivative of the function inverse to
c?

4.23 For the differential equation u′′ = +u (note the sign change) use the same boundary conditions
for two independent solutions that I used in Eq. (4.28). For this new example evaluate c′ and s′. Does
c2 + s2 have the nice property that it did in section 4.5? What about c2 − s2? What are c(x+ y) and
s(x+ y)? What is the derivative of the function inverse to s? to c?

4.24 Apply the Green’s function method for the force F0

(
1−e−βt

)
on the harmonic oscillator without

damping. Verify that it agrees with the previously derived result, Eq. (4.15). They should match in a
special case.

4.25 An undamped harmonic oscillator with natural frequency ω0 is at rest for time t < 0. Starting at
time zero there is an added force F0 sinω0t. Use Green’s functions to find the motion for time t > 0,
and analyze the solution for both small and large time, determining if your results make sense. Compare
the solution to problems 4.9 and 4.11. Ans:

(
F0/2mω2

0

)[
sin(ω0t)− ω0t cos(ω0t)

]
4.26 Derive the Green’s function analogous to Eq. (4.32) for the case that the harmonic oscillator is
damped.

4.27 Radioactive processes have the property that the rate of decay of nuclei is proportional to the
number of nuclei present. That translates into the differential equation dN/dt = −λN , where λ is a
constant depending on the nucleus. At time t = 0 there are N0 nuclei; how many are present at time
t later? The half-life is the time in which one-half of the nuclei decay; what is that in terms of λ?
Ans: ln 2/λ

4.28 (a) In the preceding problem, suppose that the result of the decay is another nucleus (the
“daughter”) that is itself radioactive with its own decay constant λ2. Call the first one above λ1. Write
the differential equation for the time-derivative of the number, N2 of this nucleus. You note that N2

will change for two reasons, so in time dt the quantity dN2 has two contributions, one is the decrease
because of the radioactivity of the daughter, the other an increase due to the decay of the parent.
Set up the differential equation for N2 and you will be able to use the result of the previous problem
as input to this; then solve the resulting differential equation for the number of daughter nuclei as a
function of time. Assume that you started with none, N2(0) = 0.
(b) Next, the “activity” is the total number of all types of decays per time. Compute the activity and
graph it. For the plot, assume that λ1 is substantially smaller than λ2 and plot the total activity as a
function of time. Then examine the reverse case, λ1 � λ2

Ans: N0λ1

[
(2λ2 − λ1)e−λ1t − λ2e−λ2t

]
/(λ2 − λ1)

4.29 The “snowplow problem” was made famous by Ralph Agnew: A snowplow starts at 12:00 Noon
in a heavy and steady snowstorm. In the first hour it goes 2 miles; in the second hour it goes 1 mile.
When did the snowstorm start? Ans: 11:23
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4.30 Verify that the equations (4.52) really do satisfy the original differential equations.

4.31 When you use the “dry friction” model Eq. (4.2) for the harmonic oscillator, you can solve the
problem by dividing it into pieces. Start at time t = 0 and position x = x0 (positive). The initial
velocity of the mass m is zero. As the mass is pulled to the left, set up the differential equation and
solve it up to the point at which it comes to a halt. Where is that? You can take that as a new initial
condition and solve the problem as the mass is pulled to the right until it stops. Where is that? Then
keep repeating the process. Instead or further repetition, examine the case for which the coefficient of
kinetic friction is small, and determine to lowest order in the coefficient of friction what is the change in
the amplitude of oscillation up to the first stop. From that, predict what the amplitude will be after the
mass has swung back to the original side and come to its second stop. In this small µk approximation,
how many oscillations will it undergo until all motion stops. Let b = µkFN Ans: Let tn = πn/ω0,
then for tn < t < tn+1, x(t) = [x0− (2n+ 1)b/k] cosω0t+ (−1)nb/k. Stops when t ≈ πkx0/2ω0b
roughly.

4.32 A mass m is in an undamped one-dimensional harmonic oscillator and is at rest. A constant
external force F0 is applied for the time interval T and is then turned off. What is the motion of the
oscillator as a function of time for all t > 0? For what value of T is the amplitude of the motion a
maximum after the force is turned off? For what values is the motion a minimum? Of course you need
an explanation of why you should have been able to anticipate these two results.

4.33 Starting from the solution Eq. (4.52) assume the initial conditions that both masses start from the
equilibrium position and that the first mass is given an initial velocity vx1 = v0. Find the subsequent
motion of the two masses and analyze it.

4.34 If there is viscous damping on the middle spring of Eqs. (4.45) so that each mass feels an extra
force depending on their relative velocity, then these equations will be

m1
d2x1

dt2
= −k1x1 − k3(x1 − x2)− b(ẋ1 − ẋ2), and

m2
d2x2

dt2
= −k2x2 − k3(x2 − x1)− b(ẋ2 − ẋ1)

Solve these subject to the conditions that all initial velocities are zero and that the first mass is pushed
to coordinate x0 and released. Use the same assumption as before that m1 = m2 = m and k1 = k2.

4.35 For the damped harmonic oscillator apply an extra oscillating force so that the equation to solve
is

m
d2x
dt2

= −bdx
dt
− kx+ Fext(t)

where the external force is Fext(t) = F0eiωt.
(a) Find the general solution to the homogeneous part of this problem.
(b) Find a solution for the inhomogeneous case. You can readily guess what sort of function will give
you an eiωt from a combination of x and its first two derivatives.
This problem is easier to solve than the one using cosωt, and at the end, to get the solution for the
cosine case, all you have to do is to take the real part of your result.

4.36 You can solve the circuit equation Eq. (4.37) more than one way. Solve it by the methods used
earlier in this chapter.
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4.37 For a second order differential equation you can pick the position and the velocity any way that
you want, and the equation then determines the acceleration. Differentiate the equation and you find
that the third derivative is determined too.

d2x
dt2

= − b
m
dx
dt
− k
m
x implies

d3x
dt3

= − b
m
d2x
dt2
− k
m
dx
dt

Assume the initial position is zero, x(0) = 0 and the initial velocity is vx(0) = v0; determine the second
derivative at time zero. Now determine the third derivative at time zero. Now differentiate the above
equation again and determine the fourth derivative at time zero.
From this, write down the first five terms of the power series expansion of x(t) about t = 0.
Compare this result to the power series expansion of Eq. (4.10) to this order.

4.38 Use the techniques of section 4.6, start from the equation md2x/dt2 = Fx(t) with no spring
force or damping. (a) Find the Green’s function for this problem, that is, what is the response of the
mass to a small kick over a small time interval (the analog of Eq. (4.32))? Develop the analog of
Eq. (4.34) for this case. Apply your result to the special case that Fx(t) = F0, a constant for time
t > 0.
(b) You know that the solution of this differential equation involves two integrals of Fx(t) with respect
to time, so how can this single integral do the same thing? Differentiate this Green’s function integral
(for arbitrary Fx) twice with respect to time to verify that it really gives what it’s supposed to. This is
a special case of some general results, problems 15.19 and 15.20.

Ans: 1
m

∫ t
−∞ dt

′ Fx(t′)(t− t′)

4.39 A point mass m moves in one dimension under the influence of a force Fx that has a potential
energy V (x). Recall that the relation between these is Fx = −dV/dx, and take the specific potential

energy V (x) = −V0e−x
2/a2 , where V0 is positive. Sketch V . Write the equation Fx = max. There

is an equilibrium point at x = 0, and if the motion is over only small distances you can do a power
series expansion of Fx about x = 0. What is the differential equation now? Keep just the lowest
order non-vanishing term in the expansion for the force and solve that equation subject to the initial
conditions that at time t = 0, x(0) = x0 and vx(0) = 0. As usual, analyze large and small a.

4.40 Solve by Frobenius series methods

d2y
dx2

+
2

x
dy
dx

+
1

x
y = 0

Ans:
∑∞
k=0(−1)k xk

n!(n+1)! is one.

4.41 Find a series solution about x = 0 for y′′ + y secx = 0, at least to a few terms.
Ans: a0

[
1− 1

2x
2 + 0x4 + 1

720x
6 + · · ·

]
+ a1

[
x− 1

6x
3 − 1

60x
5 + · · ·

]
4.42 Fill in the missing steps in the equations (4.55) to Eq. (4.58).

4.43 Verify the orthogonality relation Eq. (4.62)(a) for Legendre polynomials of order ` = 0, 1, 2, 3.

4.44 Start with the function
(
1− 2xt+ t2

)−1/2
. Use the binomial expansion and collect terms to get

a power series in t. The coefficients in this series are functions of x. Carry this out at least to the
coefficient of t3 and show that the coefficients are Legendre polynomials. This is called the generating
function for the P`’s. It is

∑∞
0 P`(x)t`
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4.45 In the equation of problem 4.17, make the change of independent variable x = 1/z. Without
actually carrying out the solution of the resulting equation, what can you say about solving it?

4.46 Show that Eq. (4.62)(c) has the correct value Pn(1) = 1 for all n. Note: (1−x2) = (1+x)(1−x)
and you are examining the point x = 1.

4.47 Solve for the complete solution of Eq. (4.55) for the case C = 0. For this, don’t use series
methods, but get the closed form solution. Ans: A tanh−1 x+B

4.48 Derive the condition in Eq. (4.60). Which values of s correspond to which values of `?

4.49 Start with the equation y′′+P (x)y′+Q(x)y = 0 and assume that you have found one solution:
y = f(x). Perhaps you used series methods to find it. (a) Make the substitution y(x) = f(x)g(x)
and deduce a differential equation for g. Let G = g′ and solve the resulting first order equation for G.
Finally write g as an integral. This is one method (not necessarily the best) to find the second solution
to a differential equation.
(b) Apply this result to the ` = 0 solution of Legendre’s equation to find another way to solve prob-
lem 4.47. Ans: y = f

∫
dx 1

f2 exp−
∫
P dx

4.50 Treat the damped harmonic oscillator as a two-point boundary value problem.

mẍ+ bẋ+ kx = 0, with x(0) = 0 and x(T ) = d

[For this problem, if you want to set b = k = T = d = 1 that’s o.k.]
(a) Assume that m is very small. To a first approximation neglect it and solve the problem.
(b) Since you failed to do part (a) — it blew up in your face — solve it exactly instead and examine the
solution for very small m. Why couldn’t you make the approximation of neglecting m? Draw graphs.
Welcome to the world of boundary layer theory and singular perturbations. Ans: x(t) ≈ e1−t− e1−t/m

4.51 Solve the differential equation ẋ = Ax2(1 +ωt) in closed form and compare the series expansion
of the result to Eq. (4.25). Ans: x = α/

[
1−Aα(t+ ωt2/2)

]
4.52 Solve the same differential equation ẋ = Ax2(1 + ωt) with x(t0) = α by doing a few iterations
of Eq. (4.27).

4.53 Analyze the steady-state part of the solution Eq. (4.42). For the input potential V0eiωt, find the
real part of the current explicitly, writing the final form as Imax cos(ωt − φ). Plot Imax and φ versus
ω. Plot V (t) and I(t) on a second graph with time as the axis. Recall these V and I are the real part
understood.

4.54 If you have a resistor, a capacitor, and an inductor in series with an oscillating voltage source,
what is the steady-state solution for the current? Write the final form as Imax cos(ωt − φ), and plot
Imax and φ versus ω. See what happens if you vary some of the parameters.
Ans: I = V0 cos(ωt− φ)/|Z| where |Z| =

√
R2 + (ωL− 1/ωC)2 and tanφ = (ωL− 1/ωC)/R

4.55 In the preceding problem, what if the voltage source is a combination of DC and AC, so it is
V (t) = V0 + V1 cosωt. Find the steady state solution now.
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4.56

What is the total impedance left to right in the circuit
R1

R2

C1

C2L1

L2

?

Ans: R1 + (1/iωC2) + 1
/[

(1/iωL1) + 1/
(
(1/iωC1) + 1/((1/R2) + (1/iωL2))

)]
4.57 Find a Frobenius series solution about x = 0 for y′′ + y cscx = 0, at least to a few terms.
Ans: x− 1

2x
2 + 1

12x
3 − 1

48x
4 + 1

192x
5 + · · ·

4.58 Find a series solution about x = 0 for x2y′′ − 2ixy′ + (x2 + i− 1)y = 0.

4.59 Just as you can derive the properties of the circular and hyperbolic trigonometric functions from
the differential equations that they satisfy, you can do the same for the exponential. Take the equation
u′ = u and consider that solution satisfying the boundary condition u(0) = 1.
(a) Prove that u satisfies the identity u(x+ y) = u(x)u(y).
(b) Prove that the function inverse to u has the derivative 1/x.

4.60 Find the asymptotic behavior of the Legendre series for the s = 1 case.

4.61 Find Frobenius series solutions for xy′′ + y = 0.



Fourier Series
.

Fourier series started life as a method to solve problems about the flow of heat through ordinary
materials. It has grown so far that if you search our library’s catalog for the keyword “Fourier” you will
find 618 entries as of this date. It is a tool in abstract analysis and electromagnetism and statistics
and radio communication and . . . . People have even tried to use it to analyze the stock market. (It
didn’t help.) The representation of musical sounds as sums of waves of various frequencies is an audible
example. It provides an indispensible tool in solving partial differential equations, and a later chapter
will show some of these tools at work.

5.1 Examples
The power series or Taylor series is based on the idea that you can write a general function as an infinite
series of powers. The idea of Fourier series is that you can write a function as an infinite series of sines
and cosines. You can also use functions other than trigonometric ones, but I’ll leave that generalization
aside for now, except to say that Legendre polynomials are an important example of functions used for
such more general expansions.

An example: On the interval 0 < x < L the function x2 varies from 0 to L2. It can be written
as the series of cosines

x2 =
L2

3
+

4L2

π2

∞∑
1

(−1)n

n2
cos

nπx
L

=
L2

3
− 4L2

π2

[
cos

πx
L
− 1

4
cos

2πx
L

+
1

9
cos

3πx
L
− · · ·

]
(5.1)

To see if this is even plausible, examine successive partial sums of the series, taking one term, then two
terms, etc. Sketch the graphs of these partial sums to see if they start to look like the function they
are supposed to represent (left graph). The graphs of the series, using terms up to n = 5 do pretty
well at representing the parabola.

0

1

3
5x2

1

3

5
x2

The same function can be written in terms of sines with another series:

x2 =
2L2

π

∞∑
1

[
(−1)n+1

n
− 2

π2n3

(
1− (−1)n)

)]
sin

nπx
L

(5.2)

and again you can see how the series behaves by taking one to several terms of the series. (right graph)
The graphs show the parabola y = x2 and partial sums of the two series with terms up to n = 1, 3, 5.

100
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The second form doesn’t work as well as the first one, and there’s a reason for that. The sine
functions all go to zero at x = L and x2 doesn’t, making it hard for the sum of sines to approximate
the desired function. They can do it, but it takes a lot more terms in the series to get a satisfactory
result. The series Eq. (5.1) has terms that go to zero as 1/n2, while the terms in the series Eq. (5.2)
go to zero only as 1/n.*

5.2 Computing Fourier Series
How do you determine the details of these series starting from the original function? For the Taylor
series, the trick was to assume a series to be an infinitely long polynomial and then to evaluate it (and
its successive derivatives) at a point. You require that all of these values match those of the desired
function at that one point. That method won’t work in this case. (Actually I’ve read that it can work
here too, but with a ridiculous amount of labor and some mathematically suspect procedures.)

The idea of Fourier’s procedure is like one that you can use to determine the components of a
vector in three dimensions. You write such a vector as

~A = Ax x̂+Ay ŷ +Az ẑ

And then use the orthonormality of the basis vectors, x̂ . ŷ = 0 etc. Take the scalar product of the
preceding equation with x̂.

x̂ . ~A = x̂ .
(
Ax x̂+Ay ŷ +Az ẑ

)
= Ax and ŷ . ~A = Ay and ẑ . ~A = Az (5.3)

This lets you get all the components of ~A. For example,

x̂

ŷ
ẑ

α

β

γ
~A

x̂ . ~A = Ax = A cosα

ŷ . ~A = Ay = A cosβ

ẑ . ~A = Az = A cos γ

(5.4)

This shows the three direction cosines for the vector ~A. You will occasionally see these numbers used
to describe vectors in three dimensions, and it’s easy to see that cos2 α+ cos2 β + cos2 γ = 1.

In order to stress the close analogy between this scalar product and what you do in Fourier series,
I will introduce another notation for the scalar product. You don’t typically see it in introductory courses
for the simple reason that it isn’t needed there. Here however it will turn out to be very useful, and in

the next chapter you will see nothing but this notation. Instead of x̂ . ~A or ~A . ~B you use
〈
x̂, ~A

〉
or〈 ~A, ~B 〉. The angle bracket notation will make it very easy to generalize the idea of a dot product to

cover other things. In this notation the above equations will appear as〈
x̂, ~A

〉
= A cosα,

〈
ŷ, ~A

〉
= A cosβ,

〈
ẑ, ~A

〉
= A cos γ

and they mean exactly the same thing as Eq. (5.4).

* For animated sequences showing the convergence of some of these series, see
www.physics.miami.edu/nearing/mathmethods/animations.html

http://www.physics.miami.edu/nearing/mathmethods/animations.html
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There are orthogonality relations similar to the ones for x̂, ŷ, and ẑ, but for sines and cosines.
Let n and m represent integers, then∫ L

0
dx sin

(nπx
L

)
sin
(mπx

L

)
=

{
0 n 6= m
L/2 n = m

(5.5)

This is sort of like x̂ . ẑ = 0 and ŷ . ŷ = 1, where the analog of x̂ is sinπx/L and the analog of ŷ is
sin 2πx/L. The biggest difference is that it doesn’t stop with three vectors in the basis; it keeps on with
an infinite number of values of n and the corresponding different sines. There are an infinite number of
very different possible functions, so you need an infinite number of basis functions in order to express
a general function as a sum of them. The integral Eq. (5.5) is a continuous analog of the coordinate
representation of the common dot product. The sum over three terms AxBx+AyBy+AzBz becomes a
sum (integral) over a continuous index, the integration variable. By using this integral as a generalization
of the ordinary scalar product, you can say that sin(πx/L) and sin(2πx/L) are orthogonal. Let i be an
index taking on the values x, y, and z, then the notation Ai is a function of the variable i. In this case
the independent variable takes on just three possible values instead of the infinite number in Eq. (5.5).

How do you derive an identity such as Eq. (5.5)? The first method is just straight integration,
using the right trigonometric identities. The easier (and more general) method can wait for a few pages.

cos(x± y) = cosx cos y ∓ sinx sin y, subtract: cos(x− y)− cos(x+ y) = 2 sinx sin y

Use this in the integral.

2

∫ L

0
dx sin

(nπx
L

)
sin
(mπx

L

)
=

∫ L

0
dx

[
cos

(
(n−m)πx

L

)
− cos

(
(n+m)πx

L

)]
Now do the integral, assuming n 6= m and that n and m are positive integers.

=
L

(n−m)π
sin

(
(n−m)πx

L

)
− L

(n+m)π
sin

(
(n+m)πx

L

) ∣∣∣∣∣
L

0

= 0 (5.6)

Why assume that the integers are positive? Aren’t the negative integers allowed too? Yes, but they
aren’t needed. Put n = −1 into sin(nπx/L) and you get the same function as for n = +1, but turned
upside down. It isn’t an independent function, just −1 times what you already have. Using it would be
sort of like using for your basis not only x̂, ŷ, and ẑ but −x̂, −ŷ, and −ẑ too. Do the n = m case of
the integral yourself.

Computing an Example
For a simple example, take the function f(x) = 1, the constant on the interval 0 < x < L, and assume
that there is a series representation for f on this interval.

1 =
∞∑
1

an sin
(nπx
L

)
(0 < x < L) (5.7)

Multiply both sides by the sine of mπx/L and integrate from 0 to L.∫ L

0
dx sin

(mπx
L

)
1 =

∫ L

0
dx sin

(mπx
L

) ∞∑
n=1

an sin
(nπx
L

)
(5.8)
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Interchange the order of the sum and the integral, and the integral that shows up is the orthogonality
integral derived just above. When you use the orthogonality of the sines, only one term in the infinite
series survives. ∫ L

0
dx sin

(mπx
L

)
1 =

∞∑
n=1

an

∫ L

0
dx sin

(mπx
L

)
sin
(nπx
L

)
=
∞∑
n=1

an .
{

0 (n 6= m)
L/2 (n = m)

(5.9)

= amL/2.

Now all you have to do is to evaluate the integral on the left.∫ L

0
dx sin

(mπx
L

)
1 =

L
mπ

[
− cos

mπx
L

]L
0

=
L
mπ

[
1− (−1)m

]
This is zero for even m, and when you equate it to (5.9) you get

am =
4

mπ
for m odd

You can relabel the indices so that the sum shows only odd integers m = 2k+ 1 and the Fourier series
is

4

π

∑
m odd>0

1

m
sin

mπx
L

=
4

π

∞∑
k=0

1

2k + 1
sin

(2k + 1)πx
L

= 1, (0 < x < L) (5.10)

highest harmonic: 5 highest harmonic: 19 highest harmonic: 99

The graphs show the sum of the series up to 2k + 1 = 5, 19, 99 respectively. It is not a
very rapidly converging series, but it’s a start. You can see from the graphs that near the end of
the interval, where the function is discontinuous, the series has a hard time handling the jump. The
resulting overshoot is called the Gibbs phenomenon, and it is analyzed in section 5.7.

Notation
The point of introducing that other notation for the scalar product comes right here. The same notation
is used for these integrals. In this context define

〈
f, g

〉
=

∫ L

0
dx f(x)*g(x) (5.11)

and it will behave just the same way that ~A . ~B does. Eq. (5.5) then becomes

〈
un, um

〉
=

{
0 n 6= m
L/2 n = m

where un(x) = sin
(nπx
L

)
(5.12)

precisely analogous to
〈
x̂, x̂

〉
= 1 and

〈
ŷ, ẑ
〉

= 0

These un are orthogonal to each other even though they aren’t normalized to one the way that x̂ and
ŷ are, but that turns out not to matter.

〈
un, un

〉
= L/2 instead of = 1, so you simply keep track of it.
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(What happens to the series Eq. (5.7) if you multiply every un by 2? Nothing, because the coefficients
an get multiplied by 1/2.)

The Fourier series manipulations, Eqs. (5.7), (5.8), (5.9), become

1 =
∞∑
1

anun then
〈
um, 1

〉
=
〈
um,

∞∑
1

anun
〉

=
∞∑
n=1

an
〈
um, un

〉
= am

〈
um, um

〉
(5.13)

This is far more compact than you see in the steps between Eq. (5.7) and Eq. (5.10). You still have
to evaluate the integrals

〈
um, 1

〉
and

〈
um, um

〉
, but when you master this notation you’ll likely make

fewer mistakes in figuring out what integral you have to do. Again, you can think of Eq. (5.11) as a

continuous analog of the discrete sum of three terms,
〈 ~A, ~B 〉 = AxBx +AyBy +AzBz.

The analogy between the vectors such as x̂ and functions such as sine is really far deeper, and it
is central to the subject of the next chapter. In order not to get confused by the notation, you have to
distinguish between a whole function f , and the value of that function at a point, f(x). The former is

the whole graph of the function, and the latter is one point of the graph, analogous to saying that ~A
is the whole vector and Ay is one of its components.

The scalar product notation defined in Eq. (5.11) is not necessarily restricted to the interval
0 < x < L. Depending on context it can be over any interval that you happen to be considering at
the time. In Eq. (5.11) there is a complex conjugation symbol. The functions here have been real,
so this made no difference, but you will often deal with complex functions and then the fact that the
notation

〈
f, g

〉
includes a conjugation is important. This notation is a special case of the general

development that will come in section 6.6. The basis vectors such as x̂ are conventionally normalized
to one, x̂ . x̂ = 1, but you don’t have to require it even there, and in the context of Fourier series it
would clutter up the notation to require

〈
un, un

〉
= 1, so I don’t bother.

Some Examples
To get used to this notation, try showing that these pairs of functions are orthogonal on the interval
0 < x < L. Sketch graphs of both functions in every case.〈

x,L− 3
2x
〉

= 0
〈

sinπx/L, cosπx/L
〉

= 0
〈

sin 3πx/L,L− 2x
〉

= 0

The notation has a complex conjugation built into it, but these examples are all real. What if they
aren’t? Show that these are orthogonal too. How do you graph these? Not easily.*

〈
e2iπx/L, e−2iπx/L〉 = 0

〈
L− 1

4(7 + i)x,L+ 3
2ix
〉

= 0

Extending the function
In Equations (5.1) and (5.2) the original function was specified on the interval 0 < x < L. The two
Fourier series that represent it can be evaluated for any x. Do they equal x2 everywhere? No. The
first series involves only cosines, so it is an even function of x, but it’s periodic: f(x + 2L) = f(x).
The second series has only sines, so it’s odd, and it too is periodic with period 2L.

* but see if you can find a copy of the book by Jahnke and Emde, published long before computers.
They show examples. Also check out
www.geom.uiuc.edu/˜banchoff/script/CFGInd.html or
www.math.ksu.edu/˜bennett/jomacg/

http://www.geom.uiuc.edu/~banchoff/script/CFGInd.html
http://www.math.ksu.edu/~bennett/jomacg/
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−L L

Here the discontinuity in the sine series is more obvious, a fact related to its slower convergence.

5.3 Choice of Basis
When you work with components of vectors in two or three dimensions, you will choose the basis that
is most convenient for the problem you’re working with. If you do a simple mechanics problem with a
mass moving on an incline, you can choose a basis x̂ and ŷ that are arranged horizontally and vertically.
OR, you can place them at an angle so that they point down the incline and perpendicular to it. The
latter is often a simpler choice in that type of problem.

The same applies to Fourier series. The interval on which you’re working is not necessarily from
zero to L, and even on the interval 0 < x < L you can choose many sets of function for a basis:

sinnπx/L (n = 1, 2, . . .) as in equations (5.10) and (5.2), or you can choose a basis

cosnπx/L (n = 0, 1, 2, . . .) as in Eq. (5.1), or you can choose a basis

sin(n+ 1/2)πx/L (n = 0, 1, 2, . . .), or you can choose a basis

e2πinx/L (n = 0,±1,±2, . . .), or an infinite number of other possibilities.

In order to use any of these you need a relation such as Eq. (5.5) for each separate case. That’s a
lot of integration. You need to do it for any interval that you may need and that’s even more integration.
Fortunately there’s a way out:

Fundamental Theorem
If you want to show that each of these respective choices provides an orthogonal set of functions you
can integrate every special case as in Eq. (5.6), or you can do all the cases at once by deriving an
important theorem. This theorem starts from the fact that all of these sines and cosines and complex
exponentials satisfy the same differential equation, u′′ = λu, where λ is some constant, different in
each case. If you studied section 4.5, you saw how to derive properties of trigonometric functions simply
by examining the differential equation that they satisfy. If you didn’t, now might be a good time to
look at it, because this is more of the same. (I’ll wait.)

You have two functions u1 and u2 that satisfy

u′′1 = λ1u1 and u′′2 = λ2u2

Make no assumption about whether the λ’s are positive or negative or even real. The u’s can also be
complex. Multiply the first equation by u*

2 and the second by u*
1, then take the complex conjugate of

the second product.

u*
2u
′′
1 = λ1u

*
2u1 and u1u

*
2
′′ = λ*

2u1u
*
2

Subtract the equations.

u*
2u
′′
1 − u1u*

2
′′ = (λ1 − λ*

2)u*
2u1

Integrate from a to b ∫ b

a
dx
(
u*

2u
′′
1 − u1u

*
2
′′) = (λ1 − λ*

2)

∫ b

a
dxu*

2u1 (5.14)
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Now do two partial integrations. Work on the second term on the left:∫ b

a
dxu1u

*
2
′′ = u1u

*
2
′
∣∣∣b
a
−
∫ b

a
dxu′1u

*
2
′ = u1u

*
2
′
∣∣∣b
a
− u′1u*

2

∣∣∣b
a

+

∫ b

a
dxu′′1u

*
2

Put this back into the Eq. (5.14) and the integral terms cancel, leaving

u′1u
*
2 − u1u

*
2
′
∣∣∣b
a

= (λ1 − λ*
2)

∫ b

a
dxu*

2u1
(5.15)

This is the central identity from which all the orthogonality relations in Fourier series derive. It’s
even more important than that because it tells you what types of boundary conditions you can use in
order to get the desired orthogonality relations. (It tells you even more than that, as it tells you how
to compute the adjoint of the second derivative operator. But not now — save that for later.) The
expression on the left side of the equation has a name: “bilinear concomitant.”

You can see how this is related to the work with the functions sin(nπx/L). They satisfy the
differential equation u′′ = λu with λ = −n2π2/L2. The interval in that case was 0 < x < L for
a < x < b.

There are generalizations of this theorem that you will see in places such as problems 6.16 and
6.17 and 10.21. In those extensions these same ideas will allow you to handle Legendre polynomials
and Bessel functions and Ultraspherical polynomials and many other functions in just the same way
that you handle sines and cosines. That development comes under the general name Sturm-Liouville
theory.

The key to using this identity will be to figure out what sort of boundary conditions will cause
the left-hand side to be zero. For example if u(a) = 0 and u(b) = 0 then the left side vanishes. These
are not the only possible boundary conditions that make this work; there are several other common
cases soon to appear.

The first consequence of Eq. (5.15) comes by taking a special case, the one in which the two
functions u1 and u2 are in fact the same function. If the boundary conditions make the left side zero
then

0 = (λ1 − λ*
1)

∫ b

a
dxu*

1(x)u1(x)

The λ’s are necessarily the same because the u’s are. The only way the product of two numbers can
be zero is if one of them is zero. The integrand, u*

1(x)u1(x) is always non-negative and is continuous,
so the integral can’t be zero unless the function u1 is identically zero. As that would be a trivial case,
assume it’s not so. This then implies that the other factor, (λ1 − λ*

1) must be zero, and this says that
the constant λ1 is real. Yes, −n2π2/L2 is real.

[To use another language that will become more familiar later, λ is an eigenvalue and d2/dx2

with these boundary conditions is an operator. This calculation guarantees that the eigenvalue is real.]
Now go back to the more general case of two different functions, and drop the complex conju-

gation on the λ’s.

0 = (λ1 − λ2)

∫ b

a
dxu*

2(x)u1(x)

This says that if the boundary conditions on u make the left side zero, then for two solutions with
different eigenvalues (λ’s) the orthogonality integral is zero. Eq. (5.5) is a special case of the following
equation.

If λ1 6= λ2, then
〈
u2, u1

〉
=

∫ b

a
dxu*

2(x)u1(x) = 0 (5.16)
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Apply the Theorem
As an example, carry out a full analysis of the case for which a = 0 and b = L, and for the boundary
conditions u(0) = 0 and u(L) = 0. The parameter λ is positive, zero, or negative. If λ > 0, then set
λ = k2 and

u(x) = A sinhkx+B cosh kx, then u(0) = B = 0

and so u(L) = A sinhkL = 0⇒ A = 0

No solutions there, so try λ = 0

u(x) = A+Bx, then u(0) = A = 0 and so u(L) = BL = 0⇒ B = 0

No solutions here either. Try λ < 0, setting λ = −k2.

u(x) = A sin kx+B cos kx, then u(0) = 0 = B, so u(L) = A sinkL = 0

Now there are many solutions because sinnπ = 0 allows k = nπ/L with n any integer. But,
sin(−x) = − sin(x) so negative integers just reproduce the same functions as do the positive integers;
they are redundant and you can eliminate them. The complete set of solutions to the equation u′′ = λu
with these boundary conditions has λn = −n2π2/L2 and reproduces the result of the explicit integration
as in Eq. (5.6).

un(x) = sin
(nπx
L

)
n = 1, 2, 3, . . . and

〈
un, um

〉
=

∫ L

0
dx sin

(nπx
L

)
sin
(mπx

L

)
= 0 if n 6= m (5.17)

There are other choices of boundary condition that will make the bilinear concomitant vanish.
(Verify these!) For example

u(0) = 0, u′(L) = 0 gives un(x) = sin
(
n+ 1/2

)
πx/L n = 0, 1, 2, 3, . . .

and without further integration you have the orthogonality integral for non-negative integers n and m

〈
un, um

〉
=

∫ L

0
dx sin

(
(n+ 1/2)πx

L

)
sin

(
(m+ 1/2)πx

L

)
= 0 if n 6= m (5.18)

A very common choice of boundary conditions is

u(a) = u(b), u′(a) = u′(b) (periodic boundary conditions) (5.19)

It is often more convenient to use complex exponentials in this case (though of course not necessary).
On 0 < x < L

u(x) = eikx, where k2 = −λ and u(0) = 1 = u(L) = eikL

The periodic behavior of the exponential implies that kL = 2nπ. The condition that the derivatives
match at the boundaries makes no further constraint, so the basis functions are

un(x) = e2πinx/L, (n = 0, ±1,±2, . . .) (5.20)
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Notice that in this case the index n runs over all positive and negative numbers and zero, not just the
positive integers. The functions e2πinx/L and e−2πinx/L are independent, unlike the case of the sines
discussed above. Without including both of them you don’t have a basis and can’t do Fourier series. If
the interval is symmetric about the origin as it often is, −L < x < +L, the conditions are

u(−L) = e−ikL = u(+L) = e+ikL, or e2ikL = 1 (5.21)

This says that 2kL = 2nπ, so

un(x) = enπix/L, (n = 0, ±1,±2, . . .) and f(x) =
∞∑
−∞

cnun(x)

The orthogonality properties determine the coefficients:〈
um, f

〉
=
〈
um,

∞∑
−∞

cnun
〉

= cm
〈
um, um

〉
∫ L

−L
dx e−mπix/Lf(x) = cm

〈
um, um

〉
= cm

∫ L

−L
dx e−mπix/Le+mπix/L = cm

∫ L

−L
dx 1 = 2Lcm

In this case, sometimes the real form of this basis is more convenient and you can use the
combination of the two sets un and vn, where

un(x) = cos(nπx/L), (n = 0, 1, 2, . . .)

vn(x) = sin(nπx/L), (n = 1, 2, . . .)〈
un, um

〉
= 0 (n 6= m),

〈
vn, vm

〉
= 0 (n 6= m),

〈
un, vm

〉
= 0 (all n, m)

(5.22)

and the Fourier series is a sum such as f(x) =
∑∞

0 anun +
∑∞

1 bnvn.
There are an infinite number of other choices, a few of which are even useful, e.g.

u′(a) = 0 = u′(b) (5.23)

Take the same function as in Eq. (5.7) and try a different basis. Choose the basis for which the
boundary conditions are u(0) = 0 and u′(L) = 0. This gives the orthogonality conditions of Eq. (5.18).
The general structure is always the same.

f(x) =
∑

an un(x), and use
〈
um, un

〉
= 0 (n 6= m)

Take the scalar product of this equation with um to get〈
um, f

〉
=
〈
um,

∑
an un

〉
= am

〈
um, um

〉
(5.24)

This is exactly as before in Eq. (5.13), but with a different basis. To evaluate it you still have to do
the integrals.〈

um, f
〉

=

∫ L

0
dx sin

(
(m+ 1/2)πx

L

)
1 = am

∫ L

0
dx sin2

(
(m+ 1/2)πx

L

)
= am

〈
um, um

〉
L

(m+ 1/2)π

[
1− cos

(
(m+ 1/2)π

)]
=
L
2
am

am =
4

(2m+ 1)π
Then the series is

4

π

[
sin

πx
2L

+
1

3
sin

3πx
2L

+
1

5
sin

5πx
2L

+ · · ·
]

(5.25)
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5.4 Musical Notes
Different musical instruments sound different even when playing the same note. You won’t confuse the
sound of a piano with the sound of a guitar, and the reason is tied to Fourier series. The note middle C
has a frequency that is 261.6 Hz on the standard equal tempered scale. The angular frequency is then
2π times this, or 1643.8 radians/sec. Call it ω0 = 1644. When you play this note on any musical
instrument, the result is always a combination of many frequencies, this one and many multiples of it.
A pure frequency has just ω0, but a real musical sound has many harmonics: ω0, 2ω0, 3ω0, etc.

Instead of eiω0t an instrument produces
?∑

n=1

an e
niω0t (5.26)

A pure frequency is the sort of sound that you hear from an electronic audio oscillator, and it’s not
very interesting. Any real musical instrument will have at least a few and usually many frequencies
combined to make what you hear.

Why write this as a complex exponential? A sound wave is a real function of position and time,
the pressure wave, but it’s easier to manipulate complex exponentials than sines and cosines, so when
I write this, I really mean to take the real part for the physical variable, the pressure variation. The
imaginary part is carried along to be discarded later. Once you’re used to this convention you don’t
bother writing the “real part understood” anywhere — it’s understood.

p(t) = <
?∑

n=1

an e
niω0t =

?∑
n=1

|an| cos
(
nω0t+ φn

)
where an = |an|eiφn (5.27)

I wrote this using the periodic boundary conditions of Eq. (5.19). The period is the period of the lowest
frequency, T = 2π/ω0.

A flute produces a combination of frequencies that is mostly concentrated in a small number of
harmonics, while a violin or reed instrument produces a far more complex combination of frequencies.
The size of the coefficients an in Eq. (5.26) determines the quality of the note that you hear, though
oddly enough its phase, φn, doesn’t have an effect on your perception of the sound.

These represent a couple of cycles of the sound of a clarinet. The left graph is about what the
wave output of the instrument looks like, and the right graph is what the graph would look like if I add
a random phase, φn, to each of the Fourier components of the sound as in Eq. (5.27). They may look
very different, but to the human ear they sound alike.

You can hear examples of the sound of Fourier series online via the web site:

courses.ee.sun.ac.za/Stelsels en Seine 315/wordpress/wp-content/uploads/jhu-signals/
and Listen to Fourier Series

You can hear the (lack of) effect of phase on sound. You can also synthesize your own series and hear
what they sound like under such links as “Fourier synthese” and “Harmonics applet” found on this
page. You can back up from this link to larger topics by using the links shown in the left column of the
web page.

http://courses.ee.sun.ac.za/Stelsels_en_Seine_315/wordpress/wp-content/uploads/jhu-signals/
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Real musical sound is of course more than just these Fourier series. At the least, the Fourier
coefficients, an, are themselves functions of time. The time scale on which they vary is however much
longer than the basic period of oscillation of the wave. That means that it makes sense to treat them
as (almost) constant when you are trying to describe the harmonic structure of the sound. Even the
lowest pitch notes you can hear are at least 20 Hz, and few home sound systems can produce frequencies
nearly that low. Musical notes change on time scales much greater than 1/20 or 1/100 of a second, and
this allows you to treat the notes by Fourier series even though the Fourier coefficients are themselves
time-dependent. The attack and the decay of the note greatly affects our perception of it, and that is
described by the time-varying nature of these coefficients.*

Parseval’s Identity
Let un be the set of orthogonal functions that follow from your choice of boundary conditions.

f(x) =
∑
n

anun(x)

Evaluate the integral of the absolute square of f over the domain.∫ b

a
dx |f(x)|2 =

∫ b

a
dx

[∑
m

amum(x)

]
*
[∑
n

anun(x)

]

=
∑
m

a*
m

∑
n

an

∫ b

a
dxum(x)*un(x) =

∑
n

|an|2
∫ b

a
dx |un(x)|2

In the more compact notation this is〈
f, f

〉
=
〈∑

m

amum,
∑
n

anun
〉

=
∑
m,n

a*
man

〈
um, un

〉
=
∑
n

|an|2
〈
un, un

〉
(5.28)

The first equation is nothing more than substituting the series for f . The second moved the integral
under the summation. The third equation uses the fact that all these integrals are zero except for the
ones with m = n. That reduces the double sum to a single sum. If you have chosen to normalize
all of the functions un so that the integrals of |un(x)|2 are one, then this relation takes on a simpler
appearance. This is sometimes convenient.

What does this say if you apply it to a series I’ve just computed? Take Eq. (5.10) and see what
it implies.

〈
f, f

〉
=

∫ L

0
dx 1 = L =

∞∑
k=0

|ak|2
〈
un, un

〉
=

∞∑
k=0

(
4

π(2k + 1)

)2 ∫ L

0
dx sin2

(
(2k + 1)πx

L

)
=
∞∑
k=0

(
4

π(2k + 1)

)2 L
2

Rearrange this to get
∞∑
k=0

1

(2k + 1)2
=
π2

8
(5.29)

* For an enlightening web page, including a complete and impressively thorough text on mathe-
matics and music, look up the book by David Benson. It is available both in print from Cambridge
Press and online. www.abdn.ac.uk/˜mth192/ (University of Aberdeen)

http://www.abdn.ac.uk/~mth192/
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A bonus. You have the sum of this infinite series, a result that would be quite perplexing if you see it
without knowing where it comes from. While you have it in front of you, what do you get if you simply
evaluate the infinite series of Eq. (5.10) at L/2. The answer is 1, but what is the other side?

1 =
4

π

∞∑
k=0

1

2k + 1
sin

(2k + 1)π(L/2)

L
=

4

π

∞∑
k=0

1

2k + 1
(−1)k

or 1− 1

3
+

1

5
−1

7
+

1

9
− · · · = π

4

But does it Work?
If you are in the properly skeptical frame of mind, you may have noticed a serious omission on my
part. I’ve done all this work showing how to get orthogonal functions and to manipulate them to derive
Fourier series for a general function, but when did I show that this actually works? Never. How do I
know that a general function, even a well-behaved general function, can be written as such a series?
I’ve proved that the set of functions sin(nπx/L) are orthogonal on 0 < x < L, but that’s not good
enough.

Maybe a clever mathematician will invent a new function that I haven’t thought of and that will
be orthogonal to all of these sines and cosines that I’m trying to use for a basis, just as k̂ is orthogonal
to ı̂ and ̂. It won’t happen. There are proper theorems that specify the conditions under which all
of this Fourier manipulation works. Dirichlet worked out the key results, which are found in many
advanced calculus texts.

For example if the function is continuous with a continuous derivative on the interval 0 ≤ x ≤ L
then the Fourier series will exist, will converge, and will converge to the specified function (except
maybe at the endpoints). If you allow it to have a finite number of finite discontinuities but with
a continuous derivative in between, then the Fourier series will converge and will (except maybe at
the discontinuities) converge to the specified function. At these discontinuities it will converge to the
average value taken from the left and from the right. There are a variety of other sufficient conditions
that you can use to insure that all of this stuff works, but I’ll leave that to the advanced calculus books.

5.5 Periodically Forced ODE’s
If you have a harmonic oscillator with an added external force, such as Eq. (4.12), there are systematic
ways to solve it, such as those found in section 4.2. One part of the problem is to find a solution to
the inhomogeneous equation, and if the external force is simple enough you can do this easily. Suppose
though that the external force is complicated but periodic, as for example when you’re pushing a child
on a swing.

m
d2x
dt2

= −kx− bdx
dt

+ Fext(t)

That the force is periodic means Fext(t) = Fext(t+ T ) for all times t. The period is T .

Pure Frequency Forcing
Before attacking the general problem, look at a simple special case. Take the external forcing function
to be F0 cosωet where this frequency is ωe = 2π/T . This equation is now

m
d2x
dt2

+ kx+ b
dx
dt

= F0 cosωet =
F0

2

[
eiωet + e−iωet

]
(5.30)

Find a solution corresponding to each term separately and add the results. To get an exponential out,
put an exponential in.

for m
d2x
dt2

+ kx+ b
dx
dt

= eiωet assume xinh(t) = Aeiωet
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Substitute the assumed form and it will determine A.[
m(−ω2

e ) + b(iωe) + k
]
Aeiωet = eiωet

This tells you the value of A is

A =
1

−mω2
e + b iωe + k

(5.31)

The other term in Eq. (5.30) simply changes the sign in front of i everywhere. The total solution for
Eq. (5.30) is then

xinh(t) =
F0

2

[
1

−mω2
e + b iωe + k

eiωet +
1

−mω2
e − b iωe + k

e−iωet
]

(5.32)

This is the sum of a number and its complex conjugate, so it’s real. You can rearrange it so that it
looks a lot simpler, but there’s no need to do that right now. Instead I’ll look at what it implies for
certain values of the parameters.

Suppose that the viscous friction is small (b is small). If the forcing
frequency, ωe is such that −mω2

e + k = 0, or is even close to zero, the de-
nominators of the two terms become very small. This in turn implies that the
response of x to the oscillating force is huge. Resonance. See problem 5.27. In
a contrasting case, look at ωe very large. Now the response of the mass is very
small; it barely moves.

General Periodic Force
Now I’ll go back to the more general case of a periodic forcing function, but not one that is simply a
cosine. If a function is periodic I can use Fourier series to represent it on the whole axis. The basis to
use will of course be the one with periodic boundary conditions (what else?). Use complex exponentials,
then

u(t) = eiωt where eiω(t+T ) = eiωt

This is just like Eq. (5.20) but with t instead of x, so

un(t) = e2πint/T , (n = 0, ±1, . . .) (5.33)

Let ωe = 2π/T , and this is

un(t) = einωet

The external force can now be represented by the Fourier series

Fext(t) =

∞∑
k=−∞

ak e
ikωet, where

〈
einωet,

∞∑
k=−∞

ak e
ikωet

〉
= an T =

〈
einωet, Fext(t)

〉
=

∫ T

0
dt e−inωet Fext(t)

(Don’t forget the implied complex conjugation in the definition of the scalar product,
〈
,
〉
, Eq. (5.11))

Because the force is periodic, any other time interval of duration T is just as good, perhaps −T/2 to
+T/2 if that’s more convenient.

How does this solve the differential equation? Plug in.

m
d2x
dt2

+ b
dx
dt

+ kx =

∞∑
n=−∞

an e
inωet (5.34)
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All there is to do now is to solve for an inhomogeneous solution one term at a time and then to add
the results. Take one term alone on the right:

m
d2x
dt2

+ b
dx
dt

+ kx = einωet

This is what I just finished solving a few lines ago, Eq. (5.31), but with nωe instead of simply ωe. The
inhomogeneous solution is the sum of the solutions from each term.

xinh(t) =
∞∑

n=−∞
an

1

−m(nωe)2 + binωe + k
eniωet (5.35)

Suppose for example that the forcing function is a simple square wave.

Fext(t) =

{
F0 (0 < t < T/2)
−F0 (T/2 < t < T )

and Fext(t+ T ) = Fext(t) (5.36)

The Fourier series for this function is one that you can do in problem 5.12. The result is

Fext(t) = F0
2

πi

∑
n odd

1

n
eniωet (5.37)

The solution corresponding to Eq. (5.35) is now

xinh(t) = F0
1

2πi

∑
n odd

1(
−m(nωe)2 + ibnωe + k

) 1

n
eniωet (5.38)

A real force ought to give a real result; does this? Yes. For every positive n in the sum, there is
a corresponding negative one and the sum of those two is real. You can see this because every n that
appears is either squared or is multiplied by an “i.” When you add the n = +5 term to the n = −5
term it’s adding a number to its own complex conjugate, and that’s real.

What peculiar features does this result imply? With the simply cosine force the phenomenon of
resonance occurred, in which the response to a small force at a frequency that matched the intrinsic
frequency

√
k/m produced a disproportionately large response. What other things happen here?

The natural frequency of the system is (for small damping) still
√
k/m. Look to see where a

denominator in Eq. (5.38) can become very small. This time it is when −m(nωe)
2 + k = 0. This is

not only when the external frequency ωe matches the natural frequency; it’s when nωe matches it. If
the natural frequency is

√
k/m = 100 radians/sec you get a big response if the forcing frequency is

100 radians/sec or 33 radians/sec or 20 radians/sec or 14 radians/sec etc. What does this mean? The
square wave in Eq. (5.36) contains many frequencies. It contains more than just the main frequency
2π/T , it contains 3 times this and 5 times it and many higher frequencies. When any one of these
harmonics matches the natural frequency you will have the large resonant response.

Not only do you get a large response, look at the way the mass oscillates. If the force has a square
wave frequency 20 radians/sec, the mass responds* with a large sinusoidal oscillation at a frequency 5
times higher — 100 radians/sec.

* The next time you have access to a piano, gently depress a key without making a sound, then
strike the key one octave lower. Release the lower key and listen to the sound of the upper note. Then
try it with an interval of an octave plus a fifth.
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5.6 Return to Parseval
When you have a periodic wave such as a musical note, you can Fourier analyze it. The boundary
conditions to use are naturally the periodic ones, Eq. (5.20) or (5.33), so that

f(t) =
∞∑
−∞

ane
inω0t

If this represents the sound of a flute, the amplitudes of the higher frequency components (the an)
drop off rapidly with n. If you are hearing an oboe or a violin the strength of the higher components
is greater.

If this function represents the sound wave as received by your ear, the power that you receive
is proportional to the square of f . If f represent specifically the pressure disturbance in the air, the
intensity (power per area) carried by the wave is f(t)2v/B where v is the speed of the wave and B
is the bulk modulus of the air. The key property of this is that it is proportional to the square of the
wave’s amplitude. That’s the same relation that occurs for light or any other wave. Up to a known
factor then, the power received by the ear is proportional to f(t)2.

This time average of the power is (up to that constant factor that I’m ignoring)

〈
f 2
〉

= lim
T→∞

1

2T

∫ +T

−T
dt f(t)2

Now put the Fourier series representation of the sound into the integral to get

lim
T→∞

1

2T

∫ +T

−T
dt

[ ∞∑
−∞

ane
inω0t

]2

The sound f(t) is real, so by problem 5.11, a−n = a*
n. Also, using the result of problem 5.18 the time

average of eiωt is zero unless ω = 0; then it’s one.

〈
f 2
〉

= lim
T→∞

1

2T

∫ +T

−T
dt

[∑
n

ane
inω0t

][∑
m

ame
imω0t

]

= lim
T→∞

1

2T

∫ +T

−T
dt
∑
n

∑
m

ane
inω0tame

imω0t

=
∑
n

∑
m

anam lim
T→∞

1

2T

∫ +T

−T
dt ei(n+m)ω0t

=
∑
n

ana−n

=
∑
n

|an|2 (5.39)

Put this into words and it says that the time-average power received is the sum of many terms, each
one of which can be interpreted as the amount of power coming in at that frequency nω0. The
Fourier coefficients squared (absolute-squared really) are then proportional to the part of the power at
a particular frequency. The “power spectrum.”

Other Applications
In section 10.2 Fourier series will be used to solve partial differential equations, leading to equations
such as Eq. (10.15).
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In quantum mechanics, Fourier series and its generalizations will manifest themselves in displaying
the discrete energy levels of bound atomic and nuclear systems.

Music synthesizers are all about Fourier series and its generalizations.

5.7 Gibbs Phenomenon
There’s a picture of the Gibbs phenomenon with Eq. (5.10). When a function has a discontinuity, its
Fourier series representation will not handle it in a uniform way, and the series overshoots its goal at the
discontinuity. The detailed calculation of this result is quite pretty, and it’s an excuse to pull together
several of the methods from the chapters on series and on complex algebra.

4

π

∞∑
k=0

1

2k + 1
sin

(2k + 1)πx
L

= 1, (0 < x < L)

highest harmonic: 5 highest harmonic: 19 highest harmonic: 99

The analysis sounds straight-forward. Find the position of the first maximum. Evaluate the series
there. It really is almost that clear. First however, you have to start with the a finite sum and find the
first maximum of that. Stop the sum at k = N .

4

π

N∑
k=0

1

2k + 1
sin

(2k + 1)πx
L

= fN (x) (5.40)

For a maximum, set the derivative to zero.

f ′N (x) =
4

L

N∑
0

cos
(2k + 1)πx

L

Write this as the real part of a complex exponential and use Eq. (2.3).

N∑
0

ei(2k+1)πx/L =

N∑
0

z2k+1 = z
N∑
0

z2k = z
1− z2N+2

1− z2

Factor these complex exponentials in order to put this into a nicer form.

= eiπx/L
e−iπx(N+1)/L − eiπx(N+1)/L

e−iπx/L − eiπx/L
eiπx(N+1)/L

eiπx/L
=

sin(N + 1)πx/L

sinπx/L
eiπx(N+1)/L

The real part of this changes the last exponential into a cosine. Now you have the product of the sine
and cosine of (N + 1)πx/L, and that lets you use the trigonometric double angle formula.

f ′N (x) =
4

L
sin 2(N + 1)πx/L

2 sinπx/L
(5.41)

This is zero at the maximum. The first maximum after x = 0 is at 2(N + 1)πx/L = π, or x =
L/2(N + 1).
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Now for the value of fN at this point,

fN
(
L/2(N + 1)

)
=

4

π

N∑
k=0

1

2k + 1
sin

(2k + 1)πL/2(N + 1)

L
=

4

π

N∑
k=0

1

2k + 1
sin

(2k + 1)π
2(N + 1)

The final step is to take the limit as N → ∞. As k varies over the set 0 to N , the argument of the
sine varies from a little more than zero to a little less than π. As N grows you have the sum over a lot
of terms, each of which is approaching zero. It’s an integral. Let tk = k/N then ∆tk = 1/N . This
sum is approximately

4

π

N∑
k=0

1

2Ntk
sin tkπ =

2

π

N∑
0

∆tk
1

tk
sin tkπ −→

2

π

∫ 1

0

dt
t

sinπt

In this limit 2k + 1 and 2k are the same, and N + 1 is the same as N .
Finally, put this into a standard form by changing variables to πt = x.

2

π

∫ π

0
dx

sinx
x

=
2

π
Si(π) = 1.17898

∫ x

0
dt

sin t
t

= Si(x) (5.42)

The function Si is called the “sine integral.” It’s just another tabulated function, along with erf, Γ, and
others. This equation says that as you take the limit of the series, the first part of the graph approaches
a vertical line starting from the origin, but it overshoots its target by 18%.

Exercises

1 A vector is given to be ~A = 5 x̂+ 3 ŷ. Let a new basis be ê1 = (x̂+ ŷ)/
√

2, and ê2 = (x̂− ŷ)/
√

2.

Use scalar products to find the components of ~A in the new basis: ~A = A1 ê1 +A2 ê2.

2 For the same vector as the preceding problem, and another basis ~f1 = 3 x̂+ 4 ŷ and ~f2 = −8 x̂+ 6 ŷ,

express ~A in the new basis. Are these basis vectors orthogonal?

3 On the interval 0 < x < L, sketch three graphs: the first term alone, then the second term alone,
then the third. Try to get the scale of the graphs reasonable accurate. Now add the first two and
graph. Then add the third also and graph. Do all this by hand, no graphing calculators, though if you
want to use a calculator to calculate a few points, that’s ok.

sin
(
πx/L

)
− 1

9 sin
(
3πx/L

)
+ 1

25 sin
(
5πx/L

)
4 For what values of α are the vectors ~A = αx̂− 2 ŷ + ẑ and ~B = 2αx̂+ αŷ − 4 ẑ orthogonal?

5 On the interval 0 < x < L with a scalar product defined as
〈
f, g

〉
=
∫ L

0 dx f(x)*g(x), show that
these are zero, making the functions orthogonal:

x and L− 3
2x, sinπx/L and cosπx/L, sin 3πx/L and L− 2x
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6 Same as the preceding, show that these functions are orthogonal:

e2iπx/L and e−2iπx/L, L− 1
4(7 + i)x and L+ 3

2ix

7 With the same scalar product the last two exercises, for what values of α are the functions f1(x) =
αx − (1 − α)(L − 3

2x) and f2(x) = 2αx + (1 + α)(L − 3
2x) orthogonal? What is the interpretation

of the two roots?

8 Repeat the preceding exercise but use the scalar product
〈
f, g

〉
=
∫ 2L
L dx f(x)*g(x).

9 Use the scalar product
〈
f, g

〉
=
∫ 1
−1 dx f(x)*g(x), and show that the Legendre polynomials P0, P1,

P2, P3 of Eq. (4.61) are mutually orthogonal.

10 Change the scalar product in the preceding exercise to
〈
f, g

〉
=
∫ 1

0 dx f(x)*g(x) and determine if
the same polynomials are still orthogonal.

11 Verify the examples stated on page 104.
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Problems

5.1 Get the results in Eq. (5.18) by explicitly calculating the integrals.

5.2 (a) The functions with periodic boundary conditions, Eq. (5.20), are supposed to be orthogonal
on 0 < x < L. That is,

〈
un, um

〉
= 0 for n 6= m. Verify this by explicit integration. What is the

result if n = m or n = −m? The notation is defined in Eq. (5.11). (b) Same calculation for the real
version,

〈
un, um

〉
,
〈
vn, vm

〉
, and

〈
un, vm

〉
, Eq. (5.22)

5.3 Find the Fourier series for the function f(x) = 1 as in Eq. (5.10), but use as a basis the set of
functions un on 0 < x < L that satisfy the differential equation u′′ = λu with boundary conditions
u′(0) = 0 and u′(L) = 0. (Eq. (5.23)) Necessarily the first step will be to examine all the solutions to
the differential equation and to find the cases for which the bilinear concomitant vanishes.
(b) Graph the resulting Fourier series on −2L < x < 2L.
(c) Graph the Fourier series Eq. (5.10) on −2L < x < 2L.

5.4 (a) Compute the Fourier series for the function x2 on the interval 0 < x < L, using as a basis the
functions with boundary conditions u′(0) = 0 and u′(L) = 0.
(b) Sketch the partial sums of the series for 1, 2, 3 terms. Also sketch this sum outside the original
domain and see what this series produces for an extension of the original function. Ans: Eq. (5.1)

5.5 (a) Compute the Fourier series for the function x on the interval 0 < x < L, using as a basis
the functions with boundary conditions u(0) = 0 = u(L). How does the coefficient of the nth term
decrease as a function of n? (b) Also sketch this sum within and outside the original domain to see
what this series produces for an extension of the original function.

Ans: 2L
π

∑∞
1

(−1)n+1

n sin(nπx/L)

5.6 (a) In the preceding problem the sine functions that you used don’t match the qualitative behavior
of the function x on this interval because the sine is zero at x = L and x isn’t. The qualitative behavior
is different from the basis you are using for the expansion. You should be able to get better convergence
for the series if you choose functions that more closely match the function that you’re expanding, so
try repeating the calculation using basis functions that satisfy u(0) = 0 and u′(L) = 0. How does the
coefficient of the nth term decrease as a function of n? (b) As in the preceding problem, sketch some

partial sums of the series and its extension outside the original domain. Ans: 8L
π2

∑∞
0

(
(−1)n/(2n +

1)2
)

sin
(
(n+ 1/2)πx/L

)
5.7 The function sin2 x is periodic with period π. What is its Fourier series representation using as a
basis functions that have this period? Eqs. (5.20) or (5.22).

5.8 In the two problems 5.5 and 5.6 you improved the convergence by choosing boundary conditions
that better matched the function that you want. Can you do better? The function x vanishes at the
origin, but its derivative isn’t zero at L, so try boundary conditions u(0) = 0 and u(L) = Lu′(L).
These conditions match those of x so this ought to give even better convergence, but first you have
to verify that these conditions guarantee the orthogonality of the basis functions. You have to verify
that the left side of Eq. (5.15) is in fact zero. When you set up the basis, you will examine functions of
the form sin kx, but you will not be able to solve explicitly for the values of k. Don’t worry about it.
When you use Eq. (5.24) to get the coefficients all that you need to do is to use the equation that k
satisfies to do the integrals. You do not need to have solved it. If you do all the algebra correctly you
will probably have a surprise.
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5.9 (a) Use the periodic boundary conditions on −L < x < +L and basis eπinx/L to write x2 as a
Fourier series. Sketch the sums up to a few terms. (b) Evaluate your result at x = L where you know
the answer to be L2 and deduce from this the value of ζ(2).

5.10 On the interval −π < x < π, the function f(x) = cosx. Expand this in a Fourier series defined
by u′′ = λu and u(−π) = 0 = u(π). If you use your result for the series outside of this interval you
define an extension of the original function. Graph this extension and compare it to what you normally
think of as the graph of cosx. As always, go back to the differential equation to get all the basis
functions.
Ans: − 4

π

∑∞
k=0

2k+1
(2k+3)(2k−1)

sin
(
(2k + 1)(x+ π)/2

)
5.11 Represent a function f on the interval −L < x < L by a Fourier series using periodic boundary
conditions

f(x) =

∞∑
−∞

an e
nπix/L

(a) If the function f is odd, prove that for all n, a−n = −an
(b) If the function f is even, prove that all a−n = an.
(c) If the function f is real, prove that all a−n = a*

n.
(d) If the function is both real and even, characterize an.
(e) If the function is imaginary and odd, characterize an.

5.12 Derive the series Eq. (5.37).

5.13 For the function e−αt on 0 < t < T , express it as a Fourier series using periodic boundary
conditions [u(0) = u(T ) and u′(0) = u′(T )]. Examine for plausibility the cases of large and small
α. The basis functions for periodic boundary conditions can be expressed either as cosines and sines
or as complex exponentials. Unless you can analyze the problem ahead of time and determine that it
has some special symmetry that matches that of the trig functions, you’re usually better off with the
exponentials. Ans:

[(
1− e−αT

)/
αT
][

1 + 2
∑∞

1 [α2 cosnωt+ αnω sinnωt]
/

[α2 + n2ω2]
]

5.14 (a) On the interval 0 < x < L, write x(L − x) as a Fourier series, using boundary conditions
that the expansion functions vanish at the endpoints. Next, evaluate the series at x = L/2 to see if it
gives an interesting result. (b) Finally, what does Parseval’s identity tell you?

Ans:
∑∞

1
4L2

n3π3

[
1− (−1)n)

]
sin(nπx/L)

5.15 A full-wave rectifier takes as an input a sine wave, sinωt and creates the output f(t) = | sinωt|.
The period of the original wave is 2π/ω, so write the Fourier series for the output in terms of functions
periodic with this period. Graph the function f first and use the graph to anticipate which terms in
the Fourier series will be present.
When you’re done, use the result to evaluate the infinite series

∑∞
1 (−1)k+1/(4k2 − 1)

Ans: π/4− 1/2

5.16 A half-wave rectifier takes as an input a sine wave, sinωt and creates the output

sinωt if sinωt > 0 and 0 if sinωt ≤ 0

The period of the original wave is 2π/ω, so write the Fourier series for the output in terms of functions
periodic with this period. Graph the function first. Check that the result gives the correct value at
t = 0, manipulating it into a telescoping series. Sketch a few terms of the whole series to see if it’s
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heading in the right direction.
Ans: 4/π + 1/2 sinωt− 8/π

∑
n even>0 cos(nωt)/(n2 − 1)

5.17 For the undamped harmonic oscillator, apply an oscillating force (cosine). This is a simpler version
of Eq. (5.30). Solve this problem and add the general solution to the homogeneous equation. Solve
this subject to the initial conditions that x(0) = 0 and vx(0) = v0.

5.18 The average (arithmetic mean) value of a function is

〈
f
〉

= lim
T→∞

1

2T

∫ +T

−T
dt f(t) or

〈
f
〉

= lim
T→∞

1

T

∫ T

0
dt f(t)

as appropriate for the problem.
What is

〈
sinωt

〉
? What is

〈
sin2 ωt

〉
? What is

〈
e−at

2〉
?

What is
〈

sinω1t sinω2t
〉
? What is

〈
eiωt

〉
?

5.19 In the calculation leading to Eq. (5.39) I assumed that f(t) is real and then used the properties
of an that followed from that fact. Instead, make no assumption about the reality of f(t) and compute〈

|f(t)|2
〉

=
〈
f(t)*f(t)

〉
Show that it leads to the same result as before,

∑
|an|2.

5.20 The series
∞∑
n=0

an cosnθ (|a| < 1)

represents a function. Sum this series and determine what the function is. While you’re about it, sum
the similar series that has a sine instead of a cosine. Don’t try to do these separately; combine them
and do them as one problem. And check some limiting cases of course. And graph the functions.
Ans: a sin θ/

(
1 + a2 − 2a cos θ

)
5.21 Apply Parseval’s theorem to the result of problem 5.9 and see what you can deduce.

5.22 If you take all the elements un of a basis and multiply each of them by 2, what happens to the
result for the Fourier series for a given function?

5.23 In the section 5.3 several bases are mentioned. Sketch a few terms of each basis.

5.24 A function is specified on the interval 0 < t < T to be

f(t) =

{
1 (0 < t < t0)
0 (t0 < t < T )

0 < t0 < T

On this interval, choose boundary conditions such that the left side of the basic identity (5.15) is zero.
Use the corresponding choice of basis functions to write f as a Fourier series on this interval.

5.25 Show that the boundary conditions u(0) = 0 and αu(L) + βu′(L) = 0 make the bilinear
concomitant in Eq. (5.15) vanish. Are there any restrictions on α and β? Do not automatically assume
that these numbers are real.
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5.26 Derive a Fourier series for the function

f(x) =

{
Ax (0 < x < L/2)
A(L− x) (L/2 < x < L)

Choose the Fourier basis that you prefer. Evaluate the resulting series at x = L/2 to check the result.
Sketch the sum of a couple of terms. Comment on the convergence properties of the result. Are they
what you expect? What does Parseval’s identity say?
Ans: (2AL/π2)

∑
k odd(−1)(k−1)/2 sin(kπx/L)

/
k2

5.27 Rearrange the solution Eq. (5.32) into a more easily understood form. (a) Write the first denom-
inator as

−mω2
e + b iωe + k = Reiφ

What are R and φ? The second term does not require you to repeat this calculation, just use its results,
now combine everything and write the answer as an amplitude times a phase-shifted cosine.
(b) Assume that b is not too big and plot both R and φ versus the forcing frequency ωe. Also, and
perhaps more illuminating, plot 1/R.

5.28 Find the form of Parseval’s identity appropriate for power series. Assume a scalar product
〈
f, g

〉
=∫ 1

−1 f(x)*g(x)dx for the series f(x) =
∑∞

0 anxn, and g(x) =
∑∞

0 bnxn, expressing the result in terms
of matrices. Next, test your result on a simple, low-order polynomial.
Ans: (a∗0 a

∗
1 . . .)M(b0 b1 . . .)̃ where M00 = 2, M02 = 2/3 M04 = 2/5, . . . and˜is transpose.

5.29 (a) In the Gibbs phenomenon, after the first maximum there is a first minimum. Where is it?
how big is the function there? What is the limit of this point? That is, repeat the analysis of section
5.7 for this minimum point.
(b) While you’re about it, what will you get for the limit of the sine integral, Si(∞)? The last result can
also be derived by complex variable techniques of chapter 14, Eq. (14.16). Ans: (2/π) Si(2π) = 0.9028

5.30 Make a blown-up copy of the graph preceding Eq. (5.40) and measure the size of the overshoot.
Compare this experimental value to the theoretical limit. Same for the first minimum.

5.31 Find the power series representation about the origin for the sine integral, Si, that appeared in
Eq. (5.42). What is its domain of convergence?
Ans: 2

π

∑∞
0 (−1)n

(
x2n+1

/
(2n+ 1)(2n+ 1)!

)

a

b5.32 An input potential in a circuit is given to be a square wave ±V0 at
frequency ω. What is the voltage between the points a and b? In particular,
assume that the resistance is small, and show that you can pick values of the
capacitance and the inductance so that the output potential is almost exactly
a sine wave at frequency 3ω. A filter circuit. Recall section 4.8.

5.33 For the function sin(πx/L) on (0 < x < 2L), expand it in a Fourier series using as a basis
the trigonometric functions with the boundary conditions u′(0) = 0 = u′(2L), the cosines. Graph the
resulting series as extended outside the original domain.

5.34 For the function cos(πx/L) on (0 < x < 2L), expand it in a Fourier series using as a basis the
trigonometric functions with the boundary conditions u(0) = 0 = u(2L), the sines. Graph the resulting
series as extended outside the original domain.
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5.35 (a) For the function f(x) = x4, evaluate the Fourier series on the interval −L < x < L using
periodic boundary conditions

(
u(−L) = u(L) and u′(−L) = u′(L)

)
. (b) Evaluate the series at the

point x = L to derive the zeta function value ζ(4) = π4/90. Evaluate it at x = 0 to get a related
series.
Ans: 1

5L
4 + L4

∑∞
1 (−1)n

[
8

n2π2 − 48
n4π4

]
cosnπx/L

5.36 Fourier series depends on the fact that the sines and cosines are orthogonal when integrated over
a suitable interval. There are other functions that allow this too, and you’ve seen one such set. The
Legendre polynomials that appeared in section 4.11 in the chapter on differential equations satisfied
the equations (4.62). One of these is∫ 1

−1
dxPn(x)Pm(x) =

2

2n+ 1
δnm

This is an orthogonality relation,
〈
Pn, Pm

〉
= 2δnm/(2n+1), much like that for trigonometric functions.

Write a function f(x) =
∑∞

0 an Pn(x) and deduce an expression for evaluating the coefficients an.
Apply this to the function f(x) = x2.

5.37 For the standard differential equation u′′ = λu, use the boundary conditions u(0) = 0 and
2u(L) = Lu′(L). This is a special case of problem 5.25, so the bilinear concomitant vanishes. If
you haven’t done that problem, at least do this special case. Find all the solutions that satisfy these
conditions and graph a few of them. You will not be able to find an explicit solution for the λs, but
you can estimate a few of them to sketch graphs. Did you get them all?

5.38 Examine the function on −L < x < L given by

f(x) =

 0 (−L < x < −L/2) and (L/2 < x < L)
1 (0 < x < L/2)
−1 (−L/2 < x < 0)

Draw it first. Now find a Fourier series representation for it. You may choose to do this by doing lots
of integrals, OR you may prefer to start with some previous results in this chapter, change periods, add
or subtract, and do no integrals at all.

5.39 In Eq. (5.30) I wrote cosωet as the sum of two exponentials, eiωet + e−iωet. Instead, write the
cosine as eiωet with the understanding that at the end you take the real part of the result, Show that
the result is the same.

5.40 From Eq. (5.41) write an approximate closed form expression for the partial sum fN (x) for the
region x� L but not necessarily x� NL, though that extra-special case is worth doing too.

5.41 Evaluate the integral
∫ L

0 dxx2 using the series Eq. (5.1) and using the series (5.2).

5.42 The Fourier series in problem 5.5 uses the same basis as the series Eq. (5.10). What is the result
of evaluating the scalar products

〈
1, 1
〉

and
〈
1, x
〉

with these series?

5.43 If you evaluated the n = m case of Eq. (5.6) by using a different trig identity, you can do it by
an alternative method: say that n and m in this equation aren’t necessarily integers. Then take the
limit as n→m.



Vector Spaces
.

The idea of vectors dates back to the middle 1800’s, but our current understanding of the concept
waited until Peano’s work in 1888. Even then it took many years to understand the importance and
generality of the ideas involved. This one underlying idea can be used to describe the forces and
accelerations in Newtonian mechanics and the potential functions of electromagnetism and the states
of systems in quantum mechanics and the least-square fitting of experimental data and much more.

6.1 The Underlying Idea
What is a vector?

If your answer is along the lines “something with magnitude and direction” then you have some-
thing to unlearn. Maybe you heard this definition in a class that I taught. If so, I lied; sorry about
that. At the very least I didn’t tell the whole truth. Does an automobile have magnitude and direction?
Does that make it a vector?

The idea of a vector is far more general than the picture of a line with an arrowhead attached to
its end. That special case is an important one, but it doesn’t tell the whole story, and the whole story
is one that unites many areas of mathematics. The short answer to the question of the first paragraph
is

A vector is an element of a vector space.

Roughly speaking, a vector space is some set of things for which the operation of addition is
defined and the operation of multiplication by a scalar is defined. You don’t necessarily have to be able
to multiply two vectors by each other or even to be able to define the length of a vector, though those
are very useful operations and will show up in most of the interesting cases. You can add two cubic
polynomials together: (

2− 3x+ 4x2 − 7x3
)

+
(
− 8− 2x+ 11x2 + 9x3

)
makes sense, resulting in a cubic polynomial. You can multiply such a polynomial by* 17 and it’s still
a cubic polynomial. The set of all cubic polynomials in x forms a vector space and the vectors are the
individual cubic polynomials.

The common example of directed line segments (arrows) in two or three dimensions fits this idea,
because you can add such arrows by the parallelogram law and you can multiply them by numbers,
changing their length (and reversing direction for negative numbers).

Another, equally important example consists of all ordinary real-valued functions of a real variable:
two such functions can be added to form a third one, and you can multiply a function by a number to
get another function. The example of cubic polynomials above is then a special case of this one.

A complete definition of a vector space requires pinning down these ideas and making them less
vague. In the end, the way to do that is to express the definition as a set of axioms. From these axioms
the general properties of vectors will follow.

A vector space is a set whose elements are called “vectors” and such that there are two operations
defined on them: you can add vectors to each other and you can multiply them by scalars (numbers).
These operations must obey certain simple rules, the axioms for a vector space.

* The physicist’s canonical random number

123



6—Vector Spaces 124

6.2 Axioms
The precise definition of a vector space is given by listing a set of axioms. For this purpose, I’ll denote
vectors by arrows over a letter, and I’ll denote scalars by Greek letters. These scalars will, for our
purpose, be either real or complex numbers — it makes no difference which for now.*

1 There is a function, addition of vectors, denoted +, so that ~v1 + ~v2 is another vector.

2 There is a function, multiplication by scalars, denoted by juxtaposition, so that α~v is a vector.

3 (~v1 + ~v2) + ~v3 = ~v1 + (~v2 + ~v3) (the associative law).

4 There is a zero vector, so that for each ~v, ~v + ~O = ~v.

5 There is an additive inverse for each vector, so that for each ~v, there is another vector ~v ′ so that
~v + ~v ′ = ~O.

6 The commutative law of addition holds: ~v1 + ~v2 = ~v2 + ~v1.

7 (α+ β)~v = α~v + β~v.

8 (αβ)~v = α(β~v).

9 α(~v1 + ~v2) = α~v1 + α~v2.

10 1~v = ~v.

In axioms 1 and 2 I called these operations “functions.” Is that the right use of the word?
Yes. Without going into the precise definition of the word (see section 12.1), you know it means that
you have one or more independent variables and you have a single output. Addition of vectors and
multiplication by scalars certainly fit that idea.

6.3 Examples of Vector Spaces
Examples of sets satisfying these axioms abound:

1 The usual picture of directed line segments in a plane, using the parallelogram law of addition.

2 The set of real-valued functions of a real variable, defined on the domain [a ≤ x ≤ b]. Addition is
defined pointwise. If f1 and f2 are functions, then the value of the function f1 + f2 at the point
x is the number f1(x) + f2(x). That is, f1 + f2 = f3 means f3(x) = f1(x) + f2(x). Similarly,
multiplication by a scalar is defined as (αf )(x) = α(f(x)). Notice a small confusion of notation in
this expression. The first multiplication, (αf ), multiplies the scalar α by the vector f ; the second
multiplies the scalar α by the number f(x).

3 Like example 2, but restricted to continuous functions. The one observation beyond the previous
example is that the sum of two continuous functions is continuous.

4 Like example 2, but restricted to bounded functions. The one observation beyond the previous
example is that the sum of two bounded functions is bounded.

5 The set of n-tuples of real numbers: (a1, a2, . . . , an) where addition and scalar multiplication are
defined by

(a1, . . . , an) + (b1, . . . , bn) = (a1 + b1, . . . , an + bn) α(a1, . . . , an) = (αa1, . . . , αan)

6 The set of square-integrable real-valued functions of a real variable on the domain [a ≤ x ≤ b].

That is, restrict example two to those functions with
∫ b
a dx |f(x)|2 <∞. Axiom 1 is the only one

requiring more than a second to check.

7 The set of solutions to the equation ∂2φ/∂x2 + ∂2φ/∂y2 = 0 in any fixed domain. (Laplace’s
equation)

* For a nice introduction online see distance-ed.math.tamu.edu/Math640, chapter three.

http://distance-ed.math.tamu.edu/Math640
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8 Like example 5, but with n =∞.

9 Like example 8, but each vector has only a finite number of non-zero entries.

10 Like example 8, but restricting the set so that
∑∞

1 |ak|2 <∞. Again, only axiom one takes work.

11 Like example 10, but the sum is
∑∞

1 |ak| <∞.

12 Like example 10, but
∑∞

1 |ak|p <∞. (p ≥ 1)

13 Like example 6, but
∫ b
a dx |f(x)|p <∞.

14 Any of examples 2–13, but make the scalars complex, and the functions complex valued.

15 The set of all n× n matrices, with addition being defined element by element.

16 The set of all polynomials with the obvious laws of addition and multiplication by scalars.

17 Complex valued functions on the domain [a ≤ x ≤ b] with
∑
x |f(x)|2 < ∞. (Whatever this

means. See problem 6.18)

18 { ~O}, the space consisting of the zero vector alone.

19 The set of all solutions to the equations describing small motions of the surface of a drumhead.

20 The set of solutions of Maxwell’s equations without charges or currents and with finite energy.
That is,

∫
[E2 +B2]d3x <∞.

21 The set of all functions of a complex variable that are differentiable everywhere and satisfy∫
dxdy e−x

2−y2 |f(z)|2 <∞,

where z = x+ iy.

To verify that any of these is a vector space you have to run through the ten axioms, checking
each one. (Actually, in a couple of pages there’s a theorem that will greatly simplify this.) To see what
is involved, take the first, most familiar example, arrows that all start at one point, the origin. I’ll go
through the details of each of the ten axioms to show that the process of checking is very simple. There
are some cases for which this checking isn’t so simple, but the difficulty is usually confined to verifying
axiom one.

The picture shows the definitions of addition of vectors and multiplication by scalars, the first two
axioms. The commutative law, axiom 6, is clear, as the diagonal of the parallelogram doesn’t depend
on which side you’re looking at.

~B

~A

~A+ ~B

~A

2 ~A

( ~A+ ~B) + ~C ~A+ ( ~B + ~C)

The associative law, axiom 3, is also illustrated in the picture. The zero vector, axiom 4, appears in
this picture as just a point, the origin.

The definition of multiplication by a scalar is that the length of the arrow is changed (or even
reversed) by the factor given by the scalar. Axioms 7 and 8 are then simply the statement that the
graphical interpretation of multiplication of numbers involves adding and multiplying their lengths.
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~A′
~A

α( ~A+ ~B )

Axioms 5 and 9 appear in this picture.
Finally, axiom 10 is true because you leave the vector alone when you multiply it by one.
This process looks almost too easy. Some of the axioms even look as though they are trivial and

unnecessary. The last one for example: why do you have to assume that multiplication by one leaves
the vector alone? For an answer, I will show an example of something that satisfies all of axioms one
through nine but not the tenth. These processes, addition of vectors and multiplication by scalars, are
functions. I could write “f(~v1,~v2)” instead of “~v1 + ~v2” and write “g(α,~v )” instead of “α~v ”. The
standard notation is just that — a common way to write a vector-valued function of two variables. I
can define any function that I want and then see if it satisfies the required properties.

On the set of arrows just above, redefine multiplication by a scalar (the function g of the

preceding paragraph) to be the zero vector for all scalars and vectors. That is, α~v = ~O for all α and ~v.
Look back and you see that this definition satisfies all the assumptions 1–9 but not 10. For example,
9: α(~v1 + ~v2) = α~v1 + α~v2 because both sides of the equation are the zero vector. This observation
proves that the tenth axiom is independent of the others. If you could derive the tenth axiom from the
first nine, then this example couldn’t exist. This construction is of course not a vector space.

Function Spaces
Is example 2 a vector space? How can a function be a vector? This comes down to your understanding
of the word “function.” Is f(x) a function or is f(x) a number? Answer: it’s a number. This is a
confusion caused by the conventional notation for functions. We routinely call f(x) a function, but
it is really the result of feeding the particular value, x, to the function f in order to get the number
f(x). This confusion in notation is so ingrained that it’s hard to change, though in more sophisticated
mathematics books it is changed.

f1 + f2 = f3

f1

f2

f3
In a better notation, the symbol f is the function, expressing the

relation between all the possible inputs and their corresponding outputs.
Then f(1), or f(π), or f(x) are the results of feeding f the particular
inputs, and the results are (at least for example 2) real numbers. Think
of the function f as the whole graph relating input to output; the pair(
x, f(x)

)
is then just one point on the graph. Adding two functions is

adding their graphs. For a precise, set theoretic definition of the word
function, see section 12.1. Reread the statement of example 2 in light of
these comments.

Special Function Space
Go through another of the examples of vector spaces written above. Number 6, the square-integrable
real-valued functions on the interval a ≤ x ≤ b. The single difficulty here is the first axiom: is the sum
of two square-integrable functions itself square-integrable? The other nine axioms are yours to check.

Suppose that ∫ b

a
f(x)2 dx <∞ and

∫ b

a
g(x)2 dx <∞.

simply note the combination(
f(x) + g(x)

)2
+
(
f(x)− g(x)

)2
= 2f(x)2 + 2g(x)2
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The integral of the right-hand side is by assumption finite, so the same must hold for the left side.
This says that the sum (and difference) of two square-integrable functions is square-integrable. For this
example then, it isn’t very difficult to show that it satisfies the axioms for a vector space, but it requires
more than just a glance.

There are a few properties of vector spaces that seem to be missing. There is the somewhat odd
notation ~v ′ for the additive inverse in axiom 5. Isn’t that just −~v ? Isn’t the zero vector simply the
number zero times a vector? Yes in both cases, but these are theorems that follow easily from the ten
axioms listed. See problem 6.20. I’ll do part (a) of that exercise as an example here:

Theorem: the vector ~O is unique.

Proof: assume it is not, then there are two such vectors, ~O1 and ~O2.

By [4], ~O1 + ~O2 = ~O1 ( ~O2 is a zero vector)

By [6], the left side is ~O2 + ~O1

By [4], this is ~O2 ( ~O1 is a zero vector)

Put these together and ~O1 = ~O2.
Theorem: If a subset of a vector space is closed under addition and multiplication by scalars,

then it is itself a vector space. This means that if you add two elements of this subset to each other
they remain in the subset and multiplying any element of the subset by a scalar leaves it in the subset.
It is a “subspace.”
Proof: the assumption of the theorem is that axioms 1 and 2 are satisfied as regards the subset. That
axioms 3 through 10 hold follows because the elements of the subset inherit their properties from the
larger vector space of which they are a part. Is this all there is to it? Not quite. Axioms 4 and 5 take
a little more thought, and need the results of the problem 6.20, parts (b) and (d).

6.4 Linear Independence
A set of non-zero vectors is linearly dependent if one element of the set can be written as a linear
combination of the others. The set is linearly independent if this cannot be done.

Bases, Dimension, Components
A basis for a vector space is a linearly independent set of vectors such that any vector in the space can
be written as a linear combination of elements of this set. The dimension of the space is the number
of elements in this basis.

If you take the usual vector space of arrows that start from the origin and lie in a plane, the
common basis is denoted ı̂, ̂. If I propose a basis consisting of

ı̂, −1
2 ı̂+

√
3

2 ̂, −1
2 ı̂−

√
3

2 ̂

these will certainly span the space. Every vector can be written as a linear combination of them. They
are however, redundant; the sum of all three is zero, so they aren’t linearly independent and aren’t a
basis. If you use them as if they are a basis, the components of a given vector won’t be unique. Maybe
that’s o.k. and you want to do it, but either be careful or look up the mathematical subject called
“frames.”

Beginning with the most elementary problems in physics and mathematics, it is clear that the
choice of an appropriate coordinate system can provide great computational advantages. In dealing
with the usual two and three dimensional vectors it is useful to express an arbitrary vector as a sum of
unit vectors. Similarly, the use of Fourier series for the analysis of functions is a very powerful tool in
analysis. These two ideas are essentially the same thing when you look at them as aspects of vector
spaces.

If the elements of the basis are denoted ~ei, and a vector ~a is

~a =
∑
i

ai~ei,
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the numbers {ai} are called the components of ~a in the specified basis. Note that you don’t have to
talk about orthogonality or unit vectors or any other properties of the basis vectors save that they span
the space and they’re independent.

Example 1 is the prototype for the subject, and the basis usually chosen is the one designated
x̂, ŷ, (and ẑ for three dimensions). Another notation for this is ı̂, ̂, k̂ — I’ll use x̂-ŷ. In any case, the
two (or three) arrows are at right angles to each other.

In example 5, the simplest choice of basis is

~e1 = ( 1 0 0 . . . 0 )

~e2 = ( 0 1 0 . . . 0 )
...

~en = ( 0 0 0 . . . 1 ) (6.1)

In example 6, if the domain of the functions is from −∞ to +∞, a possible basis is the set of
functions

ψn(x) = xne−x
2/2.

The major distinction between this and the previous cases is that the dimension here is infinite. There
is a basis vector corresponding to each non-negative integer. It’s not obvious that this is a basis, but
it’s true.

If two vectors are equal to each other and you express them in the same basis, the corresponding
components must be equal.∑

i

ai~ei =
∑
i

bi~ei =⇒ ai = bi for all i (6.2)

Suppose you have the relation between two functions of time

A−Bω + γt = βt (6.3)

that is, that the two functions are the same, think of this in terms of vectors: on the vector space of
polynomials in t a basis is

~e0 = 1, ~e1 = t, ~e2 = t2, etc.

Translate the preceding equation into this notation.

(A−Bω)~e0 + γ~e1 = β~e1 (6.4)

For this to be valid the corresponding components must match:

A−Bω = 0, and γ = β

Differential Equations
When you encounter differential equations such as

m
d2x
dt2

+ b
dx
dt

+ kx = 0, or γ
d3x
dt3

+ kt2
dx
dt

+ αe−βtx = 0, (6.5)

the sets of solutions to each of these equations form vector spaces. All you have to do is to check the
axioms, and because of the theorem in section 6.3 you don’t even have to do all of that. The solutions
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are functions, and as such they are elements of the vector space of example 2. All you need to do now
is to verify that the sum of two solutions is a solution and that a constant times a solution is a solution.
That’s what the phrase “linear, homogeneous” means.

Another common differential equation is

d2θ
dt2

+
g
`

sin θ = 0

This describes the motion of an undamped pendulum, and the set of its solutions do not form a vector
space. The sum of two solutions is not a solution.

The first of Eqs. (6.5) has two independent solutions,

x1(t) = e−γt cosω′t, and x2(t) = e−γt sinω′t (6.6)

where γ = −b/2m and ω′ =
√

k
m −

b2
4m2 . This is from Eq. (4.8). Any solution of this differential

equation is a linear combination of these functions, and I can restate that fact in the language of this
chapter by saying that x1 and x2 form a basis for the vector space of solutions of the damped oscillator
equation. It has dimension two.

The second equation of the pair (6.5) is a third order differential equation, and as such you
will need to specify three conditions to determine the solution and to determine all the three arbitrary
constants. In other words, the dimension of the solution space of this equation is three.

In chapter 4 on the subject of differential equations, one of the topics was simultaneous differential
equations, coupled oscillations. The simultaneous differential equations, Eq. (4.45), are

m1
d2x1

dt2
= −k1x1 − k3(x1 − x2), and m2

d2x2

dt2
= −k2x2 − k3(x2 − x1)

and have solutions that are pairs of functions. In the development of section 4.10 (at least for the equal
mass, symmetric case), I found four pairs of functions that satisfied the equations. Now translate that
into the language of this chapter, using the notation of column matrices for the functions. The solution
is the vector (

x1(t)
x2(t)

)
and the four basis vectors for this four-dimensional vector space are

~e1 =

(
eiω1t

eiω1t

)
, ~e2 =

(
e−iω1t

e−iω1t

)
, ~e3 =

(
eiω2t

−eiω2t

)
, ~e4 =

(
e−iω2t

−e−iω2t

)
Any solution of the differential equations is a linear combination of these. In the original notation, you
have Eq. (4.52). In the current notation you have(

x1

x2

)
= A1~e1 +A2~e2 +A3~e3 +A4~e4

6.5 Norms
The “norm” or length of a vector is a particularly important type of function that can be defined on a
vector space. It is a function, usually denoted by ‖ ‖, and that satisfies

1. ‖~v ‖ ≥ 0; ‖~v ‖ = 0 if and only if ~v = ~O

2. ‖α~v ‖ = |α| ‖~v ‖
3. ‖~v1 + ~v2‖ ≤ ‖~v1‖ + ‖~v2‖ ( the triangle inequality) The distance between two vectors ~v1 and
~v2 is taken to be ‖~v1 − ~v2‖.
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6.6 Scalar Product
The scalar product of two vectors is a scalar valued function of two vector variables. It could be denoted
as f(~u,~v ), but a standard notation for it is

〈
~u,~v

〉
. It must satisfy the requirements

1.
〈
~w, (~u+ ~v )

〉
=
〈
~w,~u

〉
+
〈
~w,~v

〉
2.
〈
~w,α~v

〉
= α

〈
~w,~v

〉
3.
〈
~u,~v

〉
* =

〈
~v, ~u

〉
4.
〈
~v,~v

〉
≥ 0; and

〈
~v,~v

〉
= 0 if and only if ~v = ~O

When a scalar product exists on a space, a norm naturally does too:

‖~v ‖ =
√〈

~v,~v
〉
. (6.7)

That this is a norm will follow from the Cauchy-Schwartz inequality. Not all norms come from scalar
products.

Examples
Use the examples of section 6.3 to see what these are. The numbers here refer to the numbers of that
section.

1 A norm is the usual picture of the length of the line segment. A scalar product is the usual product
of lengths times the cosine of the angle between the vectors.〈

~u,~v
〉

= ~u .~v = uv cosϑ. (6.8)

4 A norm can be taken as the least upper bound of the magnitude of the function. This is distinguished
from the “maximum” in that the function may not actually achieve a maximum value. Since it is
bounded however, there is an upper bound (many in fact) and we take the smallest of these as the
norm. On −∞ < x < +∞, the function | tan−1 x| has π/2 for its least upper bound, though it
never equals that number.

5 A possible scalar product is

〈
(a1, . . . , an), (b1, . . . , bn)

〉
=

n∑
k=1

a*
k bk. (6.9)

There are other scalar products for the same vector space, for example

〈
(a1, . . . , an), (b1, . . . , bn)

〉
=

n∑
k=1

k a*
k bk (6.10)

In fact any other positive function can appear as the coefficient in the sum and it still defines a
valid scalar product. It’s surprising how often something like this happens in real situations. In
studying normal modes of oscillation the masses of different particles will appear as coefficients in
a natural scalar product.

I used complex conjugation on the first factor here, but example 5 referred to real numbers only.
The reason for leaving the conjugation in place is that when you jump to example 14 you want to
allow for complex numbers, and it’s harmless to put it in for the real case because in that instance
it leaves the number alone.
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For a norm, there are many possibilities:

(1) ‖(a1, . . . , an)‖ =

√∑n

k=1
|ak|2

(2) ‖(a1, . . . , an)‖ =
∑n

k=1
|ak|

(3) ‖(a1, . . . , an)‖ = maxnk=1 |ak|
(4) ‖(a1, . . . , an)‖ = maxnk=1 k|ak|.

(6.11)

The United States Postal Service prefers a variation on the second of these norms, see problem 8.45.

6 A possible choice for a scalar product is

〈
f, g

〉
=

∫ b

a
dx f(x)* g(x). (6.12)

9 Scalar products and norms used here are just like those used for example 5. The difference is that
the sums go from 1 to infinity. The problem of convergence doesn’t occur because there are only
a finite number of non-zero terms.

10 Take the norm to be

‖(a1, a2, . . .)‖ =

√∑∞

k=1
|ak|2, (6.13)

and this by assumption will converge. The natural scalar product is like that of example 5, but with
the sum going out to infinity. It requires a small amount of proof to show that this will converge.
See problem 6.19.

11 A norm is ‖~v ‖ =
∑∞
i=1 |ai|. There is no scalar product that will produce this norm, a fact that

you can prove by using the results of problem 6.13.

13 A natural norm is

‖f‖ =

[∫ b

a
dx |f(x)|p

]1/p

. (6.14)

To demonstrate that this is a norm requires the use of some special inequalities found in advanced
calculus books.

15 If A and B are two matrices, a scalar product is
〈
A,B

〉
= Tr(A†B), where † is the transpose

complex conjugate of the matrix and Tr means the trace, the sum of the diagonal elements. Several

possible norms can occur. One is ‖A‖ =

√
Tr(A†A). Another is the maximum value of ‖A~u ‖,

where ~u is a unit vector and the norm of ~u is taken to be
[
|u1|2 + · · ·+ |un|2

]1/2
.

19 A valid definition of a norm for the motions of a drumhead is its total energy, kinetic plus potential.
How do you describe this mathematically? It’s something like∫

dxdy
1

2

[(
∂f
∂t

)2

+
(
∇f
)2]

I’ve left out all the necessary constants, such as mass density of the drumhead and tension in the
drumhead. You can perhaps use dimensional analysis to surmise where they go.

There is an example in criminal law in which the distinctions between some of these norms have
very practical consequences. If you’re caught selling drugs in New York there is a longer sentence if your
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sale is within 1000 feet of a school. If you are an attorney defending someone accused of this crime,
which of the norms in Eq. (6.11) would you argue for? The legislators who wrote this law didn’t know
linear algebra, so they didn’t specify which norm they intended. The prosecuting attorney argued for
norm #1, “as the crow flies,” but the defense argued that “crows don’t sell drugs” and humans move
along city streets, so norm #2 is more appropriate.

The New York Court of Appeals decided that the Pythagorean norm (#1) is the appropriate one
and they rejected the use of the pedestrian norm that the defendant advocated (#2).
www.courts.state.ny.us/ctapps/decisions/nov05/162opn05.pdf

6.7 Bases and Scalar Products
When there is a scalar product, a most useful type of basis is the orthonormal one, satisfying

〈
~vi,~vj

〉
= δij =

{
1 if i = j
0 if i 6= j

(6.15)

The notation δij represents the very useful Kronecker delta symbol.
In the example of Eq. (6.1) the basis vectors are orthonormal with respect to the scalar product

in Eq. (6.9). It is orthogonal with respect to the other scalar product mentioned there, but it is not in
that case normalized to magnitude one.

To see how the choice of even an orthonormal basis depends on the scalar product, try a different
scalar product on this space. Take the special case of two dimensions. The vectors are now pairs of
numbers. Think of the vectors as 2× 1 matrix column and use the 2× 2 matrix(

2 1
1 2

)
Take the scalar product of two vectors to be

〈
(a1, a2), (b1, b2)

〉
=

(a*
1 a*

2 )
(

2 1
1 2

)(
b1

b2

)
= 2a*

1b1 + a*
1b2 + a*

2b1 + 2a*
2b2 (6.16)

To show that this satisfies all the defined requirements for a scalar product takes a small amount of
labor. The vectors that you may expect to be orthogonal, (1 0) and (0 1), are not.

In example 6, if we let the domain of the functions be −L < x < +L and the scalar product is
as in Eq. (6.12), then the set of trigonometric functions can be used as a basis.

sin
nπx
L

and cos
mπx
L

n = 1, 2, 3, . . . and m = 0, 1, 2, 3, . . . .

That a function can be written as a series

f(x) =
∞∑
1

an sin
nπx
L

+
∞∑
0

bm cos
mπx
L

(6.17)

on the domain −L < x < +L is just an example of Fourier series, and the components of f in this
basis are Fourier coefficients a1, . . . , b0, . . .. An equally valid and more succinctly stated basis is

enπix/L, n = 0, ±1, ±2, . . .

Chapter 5 on Fourier series shows many other choices of bases, all orthogonal, but not necessarily
normalized.

http://www.courts.state.ny.us/ctapps/decisions/nov05/162opn05.pdf
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sin πx
L

sin 2πx
L

sin 3πx
L

f

To emphasize the relationship between Fourier series and the ideas of
vector spaces, this picture represents three out of the infinite number of basis
vectors and part of a function that uses these vectors to form a Fourier series.

f(x) =
1

2
sin

πx
L

+
2

3
sin

2πx
L

+
1

3
sin

3πx
L

+ · · ·

The orthogonality of the sines becomes the geometric term “perpendicular,” and
if you look at section 8.11, you will see that the subject of least square fitting
of data to a sum of sine functions leads you right back to Fourier series, and to
the same picture as here.

6.8 Gram-Schmidt Orthogonalization
From a basis that is not orthonormal, it is possible to construct one that is. This device is called the
Gram-Schmidt procedure. Suppose that a basis is known (finite or infinite), ~v1, ~v2, . . .

Step 1: normalize ~v1. ~e1 = ~v1

/√〈
~v1,~v1

〉
.

Step 2: construct a linear combination of ~v1 and ~v2 that is orthogonal to ~v1:
Let ~e20 = ~v2 − ~e1

〈
~e1,~v2

〉
and then normalize it.

~e2 = ~e20

/〈
~e20,~e20

〉1/2
. (6.18)

Step 3: Let ~e30 = ~v3 − ~e1

〈
~e1,~v3

〉
− ~e2

〈
~e2,~v3

〉
etc. repeating step 2.

What does this look like? See problem 6.3.

6.9 Cauchy-Schwartz inequality
For common three-dimensional vector geometry, it is obvious that for any real angle, cos2 θ ≤ 1. In

terms of a dot product, this is | ~A . ~B| ≤ AB. This can be generalized to any scalar product on any
vector space: ∣∣〈~u,~v〉∣∣ ≤ ‖~u ‖ ‖~v ‖. (6.19)

The proof starts from a simple but not-so-obvious point. The scalar product of a vector with itself is
by definition positive, so for any two vectors ~u and ~v you have the inequality〈

~u− λ~v, ~u− λ~v
〉
≥ 0. (6.20)

where λ is any complex number. This expands to〈
~u, ~u

〉
+ |λ|2

〈
~v,~v

〉
− λ

〈
~u,~v

〉
− λ*

〈
~v, ~u

〉
≥ 0. (6.21)

How much bigger than zero the left side is will depend on the parameter λ. To find the smallest value
that the left side can have you simply differentiate. Let λ = x+ iy and differentiate with respect to x
and y, setting the results to zero. This gives (see problem 6.5)

λ =
〈
~v, ~u

〉/〈
~v,~v

〉
. (6.22)

Substitute this value into the above inequality (6.21)

〈
~u, ~u

〉
+

∣∣〈~u,~v 〉∣∣2〈
~v,~v

〉 − ∣∣〈~u,~v 〉∣∣2〈
~v,~v

〉 − ∣∣〈~u,~v 〉∣∣2〈
~v,~v

〉 ≥ 0. (6.23)
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This becomes ∣∣〈~u,~v 〉∣∣2 ≤ 〈~u, ~u 〉〈~v,~v 〉 (6.24)

This isn’t quite the result needed, because Eq. (6.19) is written differently. It refers to a norm and I
haven’t established that the square root of

〈
~v,~v

〉
is a norm. When I do, then the square root of this

is the desired inequality (6.19).
For a couple of examples of this inequality, take specific scalar products. First the common

directed line segments:〈
~u,~v

〉
= ~u .~v = uv cos θ, so |uv cos θ|2 ≤ |u|2|v|2∣∣∣∣∣

∫ b

a
dx f(x)*g(x)

∣∣∣∣∣
2

≤

[∫ b

a
dx |f(x)|2

][∫ b

a
dx |g(x)|2

]
The first of these is familiar, but the second is not, though when you look at it from the general vector
space viewpoint they are essentially the same.

Norm from a Scalar Product

The equation (6.7), ‖~v ‖ =
√〈

~v,~v
〉
, defines a norm. Properties one and two for a norm are simple

to check. (Do so.) The third requirement, the triangle inequality, takes a bit of work and uses the
inequality Eq. (6.24).〈

~v1 + ~v2,~v1 + ~v2

〉
=
〈
~v1,~v1

〉
+
〈
~v2,~v2

〉
+
〈
~v1,~v2

〉
+
〈
~v2,~v1

〉
≤
〈
~v1,~v1

〉
+
〈
~v2,~v2

〉
+
∣∣〈~v1,~v2

〉∣∣+
∣∣〈~v2,~v1

〉∣∣
=
〈
~v1,~v1

〉
+
〈
~v2,~v2

〉
+ 2
∣∣〈~v1,~v2

〉∣∣
≤
〈
~v1,~v1

〉
+
〈
~v2,~v2

〉
+ 2
√〈

~v1,~v1

〉〈
~v2,~v2

〉
=

(√〈
~v1,~v1

〉
+
√〈

~v2,~v2

〉)2

The first inequality is a property of complex numbers. The second one is Eq. (6.24). The square root

of the last line is the triangle inequality, thereby justifying the use of
√〈

~v,~v
〉

as the norm of ~v and in

the process validating Eq. (6.19).

‖~v1 + ~v2‖ =
√〈

~v1 + ~v2,~v1 + ~v2

〉
≤
√〈

~v1,~v1

〉
+
√〈

~v2,~v2

〉
= ‖~v1‖+ ‖~v2‖ (6.25)

6.10 Infinite Dimensions
Is there any real difference between the cases where the dimension of the vector space is finite and the
cases where it’s infinite? Yes. Most of the concepts are the same, but you have to watch out for the
question of convergence. If the dimension is finite, then when you write a vector in terms of a basis
~v =

∑
ak~ek, the sum is finite and you don’t even have to think about whether it converges or not. In

the infinite-dimensional case you do.
It is even possible to have such a series converge, but not to converge to a vector. If that sounds

implausible, let me take an example from a slightly different context, ordinary rational numbers. These
are the number m/n where m and n are integers (n 6= 0). Consider the sequence

1, 14/10, 141/100, 1414/1000, 14142/10000, 141421/100000, . . .
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These are quotients of integers, but the limit is
√

2 and that’s not* a rational number. Within the
confines of rational numbers, this sequence doesn’t converge. You have to expand the context to get
a limit. That context is the real numbers. The same thing happens with vectors when the dimension
of the space is infinite — in order to find a limit you sometimes have to expand the context and to
expand what you’re willing to call a vector.

Look at example 9 from section 6.3. These are sets of numbers (a1, a2, . . .) with just a finite
number of non-zero entries. If you take a sequence of such vectors

(1, 0, 0, . . .), (1, 1, 0, 0, . . .), (1, 1, 1, 0, 0, . . .), . . .

Each has a finite number of non-zero elements but the limit of the sequence does not. It isn’t a vector
in the original vector space. Can I expand to a larger vector space? Yes, just use example 8, allowing
any number of non-zero elements.

For a more useful example of the same kind, start with the same space and take the sequence

(1, 0, . . .), (1, 1/2, 0, . . .), (1, 1/2, 1/3, 0, . . .), . . .

Again the limit of such a sequence doesn’t have a finite number of entries, but example 10 will hold
such a limit, because

∑∞
1 |ak|2 <∞.

How do you know when you have a vector space without holes in it? That is, one in which these
problems with limits don’t occur? The answer lies in the idea of a Cauchy sequence. I’ll start again
with the rational numbers to demonstrate the idea. The sequence of numbers that led to the square
root of two has the property that even though the elements of the sequence weren’t approaching a
rational number, the elements were getting close to each other. Let {rn}, n = 1, 2, . . . be a sequence
of rational numbers.

lim
n,m→∞

∣∣rn − rm∣∣ = 0 means

For any ε > 0 there is an N so that if both n and m are > N then
∣∣rn − rm∣∣ < ε.

(6.26)

This property defines the sequence rn as a Cauchy sequence. A sequence of rational numbers converges
to a real number if and only if it is a Cauchy sequence; this is a theorem found in many advanced
calculus texts. Still other texts will take a different approach and use the concept of a Cauchy sequence
to construct the definition of the real numbers.

The extension of this idea to infinite dimensional vector spaces requires simply that you replace
the absolute value by a norm, so that a Cauchy sequence is defined by limn,m ‖~vn − ~vm‖ = 0. A
“complete” vector space is one in which every Cauchy sequence converges. A vector space that has
a scalar product and that is also complete using the norm that this scalar product defines is called a
Hilbert Space.

I don’t want to imply that the differences between finite and infinite dimensional vector spaces is
just a technical matter of convergence. In infinite dimensions there is far more room to move around,
and the possible structures that occur are vastly more involved than in the finite dimensional case. The
subject of quantum mechanics has Hilbert Spaces at the foundation of its whole structure.

* Proof: If it is, then express it in simplest form as m/n =
√

2 ⇒ m2 = 2n2 where m and n
have no common factor. This equation implies that m must be even: m = 2m1. Substitute this value,
giving 2m2

1 = n2. That in turn implies that n is even, and this contradicts the assumption that the
original quotient was expressed without common factors.
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Exercises

1 Determine if these are vector spaces with the usual rules for addition and multiplication by scalars.
If not, which axiom(s) do they violate?
(a) Quadratic polynomials of the form ax2 + bx
(b) Quadratic polynomials of the form ax2 + bx+ 1
(c) Quadratic polynomials ax2 + bx+ c with a+ b+ c = 0
(d) Quadratic polynomials ax2 + bx+ c with a+ b+ c = 1

2 What is the dimension of the vector space of (up to) 5th degree polynomials having a double root
at x = 1?

3 Starting from three dimensional vectors (the common directed line segments) and a single fixed

vector ~B, is the set of all vectors ~v with ~v . ~B = 0 a vector space? If so, what is it’s dimension?

Is the set of all vectors ~v with ~v × ~B = 0 a vector space? If so, what is it’s dimension?

4 The set of all odd polynomials with the expected rules for addition and multiplication by scalars. Is
it a vector space?

5 The set of all polynomials where the function “addition” is defined to be f3 = f2 + f1 if the number
f3(x) = f1(−x) + f2(−x). Is it a vector space?

6 Same as the preceding, but for (a) even polynomials, (b) odd polynomials

7 The set of directed line segments in the plane with the new rule for addition: add the vectors
according to the usual rule then rotate the result by 10◦ counterclockwise. Which vector space axioms
are obeyed and which not?
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Problems

6.1 Fourier series represents a choice of basis for functions on an interval. For suitably smooth functions
on the interval 0 to L, one basis is

~en =

√
2

L
sin

nπx
L

. (6.27)

Use the scalar product
〈
f, g

〉
=
∫ L

0 f *(x)g(x) dx and show that this is an orthogonal basis normalized
to 1, i.e. it is orthonormal.

6.2 A function F (x) = x(L−x) between zero and L. Use the basis of the preceding problem to write
this vector in terms of its components:

F =

∞∑
1

αn~en. (6.28)

If you take the result of using this basis and write the resulting function outside the interval 0 < x < L,
graph the result.

6.3 For two dimensional real vectors with the usual parallelogram addition, interpret in pictures the
first two steps of the Gram-Schmidt process, section 6.8.

6.4 For two dimensional real vectors with the usual parallelogram addition, interpret the vectors ~u and
~v and the parameter λ used in the proof of the Cauchy-Schwartz inequality in section 6.9. Start by
considering the set of points in the plane formed by {~u − λ~v } as λ ranges over the set of reals. In
particular, when λ was picked to minimize the left side of the inequality (6.21), what do the vectors
look like? Go through the proof and interpret it in the context of these pictures. State the idea of the
whole proof geometrically.
Note: I don’t mean just copy the proof. Put the geometric interpretation into words.

6.5 Start from Eq. (6.21) and show that the minimum value of the function of λ = x+ iy is given by
the value stated there. Note: this derivation applies to complex vector spaces and scalar products, not
just real ones. Is this a minimum?

6.6 For the vectors in three dimensions,

~v1 = x̂+ ŷ, ~v2 = ŷ + ẑ, ~v3 = ẑ + x̂

use the Gram-Schmidt procedure to construct an orthonormal basis starting from ~v1. Ans: ~e3 =
(x̂− ŷ + ẑ)/

√
3

6.7 For the vector space of polynomials in x, use the scalar product defined as

〈
f, g

〉
=

∫ 1

−1
dx f(x)*g(x)

(Everything is real here, so the complex conjugation won’t matter.) Start from the vectors

~v0 = 1, ~v1 = x, ~v2 = x2, ~v3 = x3
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and use the Gram-Schmidt procedure to construct an orthonormal basis starting from ~v0. Compare
these results to the results of section 4.11. [These polynomials appear in the study of electric potentials
and in the study of angular momentum in quantum mechanics: Legendre polynomials.]

6.8 Repeat the previous problem, but use a different scalar product:

〈
f, g

〉
=

∫ ∞
−∞

dx e−x
2
f(x)*g(x)

[These polynomials appear in the study of the harmonic oscillator in quantum mechanics and in the
study of certain waves in the upper atmosphere. With a conventional normalization they are called
Hermite polynomials.]

6.9 Consider the set of all polynomials in x having degree ≤ N . Show that this is a vector space and
find its dimension.

6.10 Consider the set of all polynomials in x having degree ≤ N and only even powers. Show that
this is a vector space and find its dimension. What about odd powers only?

6.11 Which of these are vector spaces?
(a) all polynomials of degree 3
(b) all polynomials of degree ≤ 3 [Is there a difference between (a) and (b)?]
(c) all functions such that f(1) = 2f(2)
(d) all functions such that f(2) = f(1) + 1
(e) all functions satisfying f(x+ 2π) = f(x)
(f) all positive functions

(g) all polynomials of degree ≤ 4 satisfying
∫ 1
−1 dxxf(x) = 0.

(h) all polynomials of degree ≤ 4 where the coefficient of x is zero.
[Is there a difference between (g) and (h)?]

6.12 (a) For the common picture of arrows in three dimensions, prove that the subset of vectors ~v

that satisfy ~A .~v = 0 for fixed ~A forms a vector space. Sketch it.

(b) What if the requirement is that both ~A .~v = 0 and ~B .~v = 0 hold. Describe this and sketch it.

6.13 If a norm is defined in terms of a scalar product, ‖~v ‖ =
√〈

~v,~v
〉
, it satisfies the “parallelogram

identity” (for real scalars),

‖~u+ ~v ‖2 + ‖~u− ~v ‖2 = 2‖~u ‖2 + 2‖~v ‖2. (6.29)

6.14 If a norm satisfies the parallelogram identity, then it comes from a scalar product. Again, assume
real scalars. Consider combinations of ‖~u+~v ‖2, ‖~u−~v ‖2 and construct what ought to be the scalar
product. You then have to prove the four properties of the scalar product as stated at the start of
section 6.6. Numbers four and three are easy. Number one requires that you keep plugging away, using
the parallelogram identity (four times by my count).

Number two is downright tricky; leave it to the end. If you can prove it for integer and rational values
of the constant α, consider it a job well done. I used induction at one point in the proof. The final
step, extending α to all real values, requires some arguments about limits, and is typically the sort of
reasoning you will see in an advanced calculus or mathematical analysis course.
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6.15 Modify the example number 2 of section 6.3 so that f3 = f1 + f2 means f3(x) = f1(x − a) +
f2(x− b) for fixed a and b. Is this still a vector space?

6.16 The scalar product you use depends on the problem you’re solving. The fundamental equation
(5.15) started from the equation u′′ = λu and resulted in the scalar product

〈
u2, u1

〉
=

∫ b

a
dxu2(x)*u1(x)

Start instead from the equation u′′ = λw(x)u and see what identity like that of Eq. (5.15) you come
to. Assume w is real. What happens if it isn’t? In order to have a legitimate scalar product in the
sense of section 6.6, what other requirements must you make about w?

6.17 The equation describing the motion of a string that is oscillating with frequency ω about its
stretched equilibrium position is

d
dx

(
T (x)

dy
dx

)
= −ω2µ(x)y

Here, y(x) is the sideways displacement of the string from zero; T (x) is the tension in the string (not
necessarily a constant); µ(x) is the linear mass density of the string (again, it need not be a constant).
The time-dependent motion is really y(x) cos(ωt + φ), but the time dependence does not concern us
here. As in the preceding problem, derive the analog of Eq. (5.15) for this equation. For the analog
of Eq. (5.16) state the boundary conditions needed on y and deduce the corresponding orthogonality
equation. This scalar product has the mass density for a weight.

Ans:
[
T (x)(y′1y

*
2 − y1y*

2
′)
]b
a =

(
ω*

2
2 − ω2

1

) ∫ b
a µ(x)y*

2y1 dx

6.18 The way to define the sum in example 17 is∑
x

|f(x)|2 = lim
c→0
{the sum of |f(x)|2 for those x where |f(x)|2 > c > 0}. (6.30)

This makes sense only if for each c > 0, |f(x)|2 is greater than c for just a finite number of values of
x. Show that the function

f(x) =

{
1/n for x = 1/n
0 otherwise

is in this vector space, and that the function f(x) = x is not. What is a basis for this space? [Take
0 ≤ x ≤ 1] This is an example of a vector space with non-countable dimension.

6.19 In example 10, it is assumed that
∑∞

1 |ak|2 < ∞. Show that this implies that the sum used
for the scalar product also converges:

∑∞
1 a*

kbk. [Consider the sums
∑
|ak + ibk|2,

∑
|ak − ibk|2,∑

|ak + bk|2, and
∑
|ak − bk|2, allowing complex scalars.]

6.20 Prove strictly from the axioms for a vector space the following four theorems. Each step in your
proof must explicitly follow from one of the vector space axioms or from a property of scalars or from
a previously proved theorem.

(a) The vector ~O is unique. [Assume that there are two, ~O1 and ~O2. Show that they’re equal. First
step: use axiom 4.]
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(b) The number 0 times any vector is the zero vector: 0~v = ~O.
(c) The vector ~v ′ is unique.
(d) (−1)~v = ~v ′.

6.21 For the vector space of polynomials, are the two functions {1+x2, x+x3} linearly independent?

6.22 Find the dimension of the space of functions that are linear combinations of
{1, sinx, cosx, sin2 x, cos2 x, sin4 x, cos4 x, sin2 x cos2 x}

−1

0

2

3

4

1

2

3

−1

−2

−1

0

1

0

−2

4

1

6.23 A model vector space is formed by drawing equidistant parallel lines in a plane and labelling
adjacent lines by successive integers from ∞ to +∞. Define multiplication by a (real) scalar so that
multiplication of the vector by α means multiply the distance between the lines by 1/α. Define
addition of two vectors by finding the intersections of the lines and connecting opposite corners of the
parallelograms to form another set of parallel lines. The resulting lines are labeled as the sum of the
two integers from the intersecting lines. (There are two choices here, if one is addition, what is the
other?) Show that this construction satisfies all the requirements for a vector space. Just as a directed
line segment is a good way to picture velocity, this construction is a good way to picture the gradient
of a function. In the vector space of directed line segments, you pin the vectors down so that they all
start from a single point. Here, you pin them down so that the lines labeled “zero” all pass through a
fixed point. Did I define how to multiply by a negative scalar? If not, then you should. This picture of
vectors is developed extensively in the text “Gravitation” by Misner, Wheeler, and Thorne.

6.24 In problem 6.11 (g), find a basis for the space. Ans: 1, x, 3x− 5x3.

6.25 What is the dimension of the set of polynomials of degree less than or equal to 10 and with a
triple root at x = 1?

6.26 Verify that Eq. (6.16) does satisfy the requirements for a scalar product.

6.27 A variation on problem 6.15: f3 = f1 + f2 means
(a) f3(x) = Af1(x− a) +Bf2(x− b) for fixed a, b, A, B. For what values of these constants is this
a vector space?
(b) Now what about f3(x) = f1(x3) + f2(x3)?

6.28 Determine if these are vector spaces:
(1) Pairs of numbers with addition defined as (x1, x2)+(y1, y2) = (x1 +y2, x2 +y1) and multiplication
by scalars as c(x1, x2) = (cx1, cx2).
(2) Like example 2 of section 6.3, but restricted to those f such that f(x) ≥ 0. (real scalars)
(3) Like the preceding line, but define addition as (f + g)(x) = f(x)g(x) and (cf)(x) =

(
f(x)

)c
.
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6.29 Do the same calculation as in problem 6.7, but use the scalar product

〈
f, g

〉
=

∫ 1

0
x2 dx f *(x)g(x)

6.30 Show that the following is a scalar product.

〈
f, g

〉
=

∫ b

a
dx
[
f *(x)g(x) + λf *′(x)g′(x)

]
where λ is a constant. What restrictions if any must you place on λ? The name Sobolev is associated
with this scalar product.

6.31 (a) With the scalar product of problem 6.29, find the angle between the vectors 1 and x. Here

the word angle appears in the sense of ~A . ~B = AB cos θ. (b) What is the angle if you use the scalar
product of problem 6.7? (c) With the first of these scalar products, what combination of 1 and x is
orthogonal to 1? Ans: 14.48◦

6.32 In the online text linked on the second page of this chapter, you will find that section two of
chapter three has enough additional problems to keep you happy.

6.33 Show that the sequence of rational numbers an =
∑n
k=1 1/k is not a Cauchy sequence. What

about
∑n
k=1 1/k2?

6.34 In the vector space of polynomials of the form αx + βx3, use the scalar product
〈
f, g

〉
=∫ 1

0 dx f(x)∗g(x) and construct an orthogonal basis for this space. Ans: One pair is x, x3 − 3
5x.

6.35 You can construct the Chebyshev polynomials by starting from the successive powers, xn, n =
0, 1, 2, . . . and applying the Gram-Schmidt process. The scalar product in this case is

〈
f, g

〉
=

∫ 1

−1
dx

f(x)∗g(x)√
1− x2

The conventional normalization for these polynomials is Tn(1) = 1, so you should not try to make the
norm of the resulting vectors one. Construct the first four of these polynomials, and show that these
satisfy Tn(cos θ) = cos(nθ). These polynomials are used in numerical analysis because they have the
property that they oscillate uniformly between −1 and +1 on the domain −1 < x < 1. Verify that your
results for the first four polynomials satisfy the recurrence relation: Tn+1(x) = 2xTn(x) − Tn−1(x).
Also show that cos

(
(n+ 1)θ

)
= 2 cos θ cos

(
nθ
)
− cos

(
(n− 1)θ

)
.

6.36 In spherical coordinates (θ, φ), the angle θ is measured from the z-axis, and the function
f1(θ, φ) = cos θ can be written in terms of rectangular coordinates as (section 8.8)

f1(θ, φ) = cos θ =
z
r

=
z√

x2 + y2 + z2

Pick up the function f1 and rotate it by 90◦ counterclockwise about the positive y-axis. Do this rotation
in terms of rectangular coordinates, but express the result in terms of spherical coordinates: sines and
cosines of θ and φ. Call it f2. Draw a picture and figure out where the original and the rotated function
are positive and negative and zero.
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Now pick up the same f1 and rotate it by 90◦ clockwise about the positive x-axis, again finally expressing
the result in terms of spherical coordinates. Call it f3.
If now you take the original f1 and rotate it about some random axis by some random angle, show that
the resulting function f4 is a linear combination of the three functions f1, f2, and f3. I.e., all these
possible rotated functions form a three dimensional vector space. Again, calculations such as these are
much easier to demonstrate in rectangular coordinates.

6.37 Take the functions f1, f2, and f3 from the preceding problem and sketch the shape of the
functions

r e−rf1(θ, φ), r e−rf2(θ, φ), r e−rf3(θ, φ)

To sketch these, picture them as defining some sort of density in space, ignoring the fact that they are
sometimes negative. You can just take the absolute value or the square in order to visualize where they
are big or small. Use dark and light shading to picture where the functions are big and small. Start by
finding where they have the largest and smallest magnitudes. See if you can find similar pictures in an
introductory chemistry text. Alternately, check out winter.group.shef.ac.uk/orbitron/

6.38 Use the results of problem 6.17 and apply it to the Legendre equation Eq. (4.55) to demonstrate

that the Legendre polynomials obey
∫ 1
−1 dxPn(x)Pm(x) = 0 if n 6= m. Note: the function T (x)

from problem 6.17 is zero at these endpoints. That does not imply that there are no conditions on
the functions y1 and y2 at those endpoints. The product of T (x)y′1y2 has to vanish there. Use the
result stated just after Eq. (4.59) to show that only the Legendre polynomials and not the more general
solutions of Eq. (4.58) work.

6.39 Using the result of the preceding problem that the Legendre polynomials are orthogonal, show
that the equation (4.62)(a) follows from Eq. (4.62)(e). Square that equation (e) and integrate

∫ 1
−1 dx.

Do the integral on the left and then expand the result in an infinite series in t. On the right you have
integrals of products of Legendre polynomials, and only the squared terms are non-zero. Equate like
powers of t and you will have the result.

6.40 Use the scalar product of Eq. (6.16) and construct an orthogonal basis using the Gram-Schmidt

process and starting from

(
1
0

)
and

(
0
1

)
. Verify that your answer works in at least one special case.

6.41 For the differential equation ẍ + x = 0, pick a set of independent solutions to the differential
equation — any ones you like. Use the scalar product

〈
f, g

〉
=
∫ 1

0 dx f(x)*g(x) and apply the Gram-
Schmidt method to find an orthogonal basis in this space of solutions. Is there another scalar product
that would make this analysis simpler? Sketch the orthogonal functions that you found.

http://winter.group.shef.ac.uk/orbitron/


Operators and Matrices
.

You’ve been using operators for years even if you’ve never heard the term. Differentiation falls into this
category; so does rotation; so does wheel-alignment. In the subject of quantum mechanics, familiar
ideas such as energy and momentum will be represented by operators. You probably think that pressure
is simply a scalar, but no. It’s an operator.

7.1 The Idea of an Operator
You can understand the subject of matrices as a set of rules that govern certain square or rectangular
arrays of numbers — how to add them, how to multiply them. Approached this way the subject is
remarkably opaque. Who made up these rules and why? What’s the point? If you look at it as simply
a way to write simultaneous linear equations in a compact way, it’s perhaps convenient but certainly
not the big deal that people make of it. It is a big deal.

There’s a better way to understand the subject, one that relates the matrices to more fundamental
ideas and that even provides some geometric insight into the subject. The technique of similarity
transformations may even make a little sense. This approach is precisely parallel to one of the basic
ideas in the use of vectors. You can draw pictures of vectors and manipulate the pictures of vectors and
that’s the right way to look at certain problems. You quickly find however that this can be cumbersome.
A general method that you use to make computations tractable is to write vectors in terms of their
components, then the methods for manipulating the components follow a few straight-forward rules,
adding the components, multiplying them by scalars, even doing dot and cross products.

Just as you have components of vectors, which are a set of numbers that depend on your choice
of basis, matrices are a set of numbers that are components of — not vectors, but functions (also
called operators or transformations or tensors). I’ll start with a couple of examples before going into
the precise definitions.

The first example of the type of function that I’ll be interested in will be a function defined on
the two-dimensional vector space, arrows drawn in the plane with their starting points at the origin.
The function that I’ll use will rotate each vector by an angle α counterclockwise. This is a function,
where the input is a vector and the output is a vector.

f(~v )
α

~v

f(~v1 + ~v2)

α ~v1 + ~v2

What happens if you change the argument of this function, multiplying it by a scalar? You know
f(~v ), what is f(c~v )? Just from the picture, this is c times the vector that you got by rotating ~v.
What happens when you add two vectors and then rotate the result? The whole parallelogram defining
the addition will rotate through the same angle α, so whether you apply the function before or after
adding the vectors you get the same result.

This leads to the definition of the word linearity:

f(c~v ) = cf(~v ), and f(~v1 + ~v2) = f(~v1) + f(~v2) (7.1)

Keep your eye on this pair of equations! They’re central to the whole subject.

143
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Another example of the type of function that I’ll examine is from physics instead of mathematics.
A rotating rigid body has some angular momentum. The greater the rotation rate, the greater the
angular momentum will be. Now how do I compute the angular momentum assuming that I know the
shape and the distribution of masses in the body and that I know the body’s angular velocity? The
body is made of a lot of point masses (atoms), but you don’t need to go down to that level to make
sense of the subject. As with any other integral, you start by dividing the object in to a lot of small
pieces.

What is the angular momentum of a single point mass? It starts from basic Newtonian mechanics,

and the equation ~F = d~p/dt. (It’s better in this context to work with this form than with the more

common expressions ~F = m~a.) Take the cross product with ~r, the displacement vector from the origin.

~r × ~F = ~r × d~p/dt

Add and subtract the same thing on the right side of the equation (add zero) to get

~r × ~F = ~r × d~p
dt

+
d~r
dt
× ~p− d~r

dt
× ~p

=
d
dt

(
~r × ~p

)
− d~r
dt
× ~p

Now recall that ~p is m~v, and ~v = d~r/dt, so the last term in the preceding equation is zero because
you are taking the cross product of a vector with itself. This means that when adding and subtracting
a term from the right side above, I was really adding and subtracting zero.

~r × ~F is the torque applied to the point mass m and ~r × ~p is the mass’s angular momentum
about the origin. Now if there are many masses and many forces, simply put an index on this torque
equation and add the resulting equations over all the masses in the rigid body. The sums on the left
and the right provide the definitions of torque and of angular momentum.

~τtotal =
∑
k

~rk × ~Fk =
d
dt

∑
k

(
~rk × ~pk

)
=
d~L
dt

For a specific example, attach two masses to the ends of a light rod and attach that rod to
a second, vertical one as sketched — at an angle. Now spin the vertical rod and figure out what
the angular velocity and angular momentum vectors are. Since the spin is along the vertical rod, that
specifies the direction of the angular velocity vector ~ω to be upwards in the picture. (Viewed from above
everything is rotating counter-clockwise.) The angular momentum of one point mass is ~r×~p = ~r×m~v.
The mass on the right has a velocity pointing into the page and the mass on the left has it pointing
out. Take the origin to be where the supporting rod is attached to the axis, then ~r × ~p for the mass
on the right is pointing up and to the left. For the other mass both ~r and ~p are reversed, so the cross
product is in exactly the same direction as for the first mass. The total angular momentum the sum of
these two parallel vectors, and it is not in the direction of the angular velocity.

~v2(out)

~r2 ×m2~v2

m2

~r2

~ω

~r1

~r1 ×m1~v1

~v1(in)

m1
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Now make this quantitative and apply it to a general rigid body. There are two basic pieces to
the problem: the angular momentum of a point mass and the velocity of a point mass in terms of its
angular velocity. The position of one point mass is described by its displacement vector from the origin,
~r. Its angular momentum is then ~r×~p, where ~p = m~v. If the rigid body has an angular velocity vector
~ω, the linear velocity of a mass at coordinate ~r is ~ω × ~r.

~ω

θ
~r

~v

r sin θ

~r

~ω

dm

The total angular momentum of a rotating set of masses mk at respective coordinates ~rk is the
sum of all the individual pieces of angular momentum

~L =
∑
k

~rk ×mk~vk, and since ~vk = ~ω × ~rk,

~L =
∑
k

~rk ×mk

(
~ω × ~rk

) (7.2)

If you have a continuous distribution of mass then using an integral makes more sense. For a given
distribution of mass, this integral (or sum) depends on the vector ~ω. It defines a function having a

vector as input and a vector ~L as output. Denote the function by I , so ~L = I(~ω ).

~L =

∫
dm~r ×

(
~ω × ~r

)
= I(~ω ) (7.3)

This function satisfies the same linearity equations as Eq. (7.1). When you multiply ~ω by a

constant, the output, ~L is multiplied by the same constant. When you add two ~ω’s together as the

argument, the properties of the cross product and of the integral guarantee that the corresponding ~L’s
are added.

I(c~ω ) = cI(~ω ), and I(~ω1 + ~ω2) = I(~ω1) + I(~ω2)

This function I is called the “inertia operator” or more commonly the “inertia tensor.” It’s not simply

multiplication by a scalar, so the rule that appears in an introductory course in mechanics (~L = I~ω) is
valid only in special cases, for example those with enough symmetry.

Note: I is not a vector and ~L is not a function. ~L is the output of the function I when you
feed it the argument ~ω. This is the same sort of observation appearing in section 6.3 under “Function
Spaces.”

If an electromagnetic wave passes through a crystal, the electric field will push the electrons
around, and the bigger the electric field, the greater the distance that the electrons will be pushed.
They may not be pushed in the same direction as the electric field however, as the nature of the crystal
can make it easier to push the electrons in one direction than in another. The relation between the
applied field and the average electron displacement is a function that (for moderate size fields) obeys
the same linearity relation that the two previous functions do.

~P = α( ~E )



7—Operators and Matrices 146

~P is the electric dipole moment density and ~E is the applied electric field. The function α is called the
polarizability.

If you have a mass attached to six springs that are in turn attached to six walls,
the mass will come to equilibrium somewhere. Now push on this mass with another
(not too large) force. The mass will move, but will it move in the direction that
you push it? If the six springs are all the same it will, but if they’re not then the
displacement will be more in the direction of the weaker springs. The displacement,
~d, will still however depend linearly on the applied force, ~F .

7.2 Definition of an Operator
An operator, also called a linear transformation, is a particular type of function. It is first of all, a vector
valued function of a vector variable. Second, it is linear; that is, if A is such a function then A(~v) is a
vector, and

A(α~v1 + β~v2) = αA(~v1) + βA(~v2). (7.4)

The domain is the set of variables on which the operator is defined. The range is the set of all values
put out by the function. Are there nonlinear operators? Yes, but not here.

7.3 Examples of Operators
The four cases that I started with, rotation in the plane, angular momentum of a rotating rigid body,
polarization of a crystal by an electric field, and the mass attached to some springs all fit this definition.
Other examples:

5. The simplest example of all is just multiplication by a scalar: A(~v) ≡ c~v for all ~v. This applies to
any vector space and its domain is the entire space.

6. On the vector space of all real valued functions on a given interval, multiply any function f by
1 + x2: (Af)(x) = (1 + x2)f(x). The domain of A is the entire space of functions of x. This
is an infinite dimensional vector space, but no matter. There’s nothing special about 1 + x2, and
any other function will do to define an operator.

7. On the vector space of square integrable functions
[ ∫

dx |f(x)|2 < ∞
]

on a < x < b, define
the operator as multiplication by x. The only distinction to make here is that if the interval is
infinite, then xf(x) may not itself be square integrable. The domain of this operator in this case is
therefore not the entire space, but just those functions such that xf(x) is also square-integrable.
On the same vector space, differentiation is a linear operator: (Af)(x) = f ′(x). This too has a
restriction on the domain: It is necessary that f ′ also exist and be square integrable.

8. On the vector space of infinitely differentiable functions, the operation of differentiation, d/dx, is
itself a linear operator. It’s certainly linear, and it takes a differentiable function into a differentiable
function.

So where are the matrices? This chapter started by saying that I’m going to show you the inside scoop
on matrices and so far I’ve failed to produce even one.

When you describe vectors you can use a basis as a computational tool and manipulate the
vectors using their components. In the common case of three-dimensional vectors we usually denote
the basis in one of several ways

ı̂, ̂, k̂, or x̂, ŷ, ẑ, or ~e1, ~e2, ~e3

and they all mean the same thing. The first form is what you see in the introductory physics texts. The
second form is one that you encounter in more advanced books, and the third one is more suitable when
you want to have a compact index notation. It’s that third one that I’ll use here; it has the advantage
that it doesn’t bias you to believe that you must be working in three spatial dimensions. The index
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could go beyond 3, and the vectors that you’re dealing with may not be the usual geometric arrows.
(And why does it have to start with one? Maybe I want the indices 0, 1, 2 instead.) These need not
be perpendicular to each other or even to be unit vectors.

The way to write a vector ~v in components is

~v = vx x̂+ vy ŷ + vz ẑ, or v1~e1 + v2~e2 + v3~e3 =
∑
k

vk~ek (7.5)

Once you’ve chosen a basis, you can find the three numbers that form the components of that
vector. In a similar way, define the components of an operator, only that will take nine numbers to do
it (in three dimensions). If you evaluate the effect of an operator on any one of the basis vectors, the
output is a vector. That’s part of the definition of the word operator. This output vector can itself be
written in terms of this same basis. The defining equation for the components of an operator f is

f(~ei) =

3∑
k=1

fki~ek (7.6)

For each input vector you have the three components of the output vector. Pay careful attention
to this equation! It is the defining equation for the entire subject of matrix theory, and everything in
that subject comes from this one innocuous looking equation. (And yes if you’re wondering, I wrote
the indices in the correct order.)

Why?
Take an arbitrary input vector for f : ~u = f(~v ). Both ~u and ~v are vectors, so write them in

terms of the basis chosen.

~u =
∑
k

uk~ek = f(~v ) = f
(∑

i

vi~ei
)

=
∑
i

vif(~ei) (7.7)

The last equation is the result of the linearity property, Eq. (7.1), already assumed for f . Now pull the
sum and the numerical factors vi out in front of the function, and write it out. It is then clear:

f(v1~e1 + v2~e2) = f(v1~e1) + f(v2~e2) = v1f(~e1) + v2f(~e2)

Now you see where the defining equation for operator components comes in. Eq. (7.7) is∑
k

uk~ek =
∑
i

vi
∑
k

fki~ek

For two vectors to be equal, the corresponding coefficients of ~e1, ~e2, etc. must match; their respective
components must be equal, and this is

uk =
∑
i

vifki, usually written uk =
∑
i

fkivi (7.8)

so that in the latter form it starts to resemble what you may think of as matrix manipulation. frow,column

is the conventional way to write the indices, and multiplication is defined so that the following product
means Eq. (7.8). u1

u2

u3

 =

 f11 f12 f13

f21 f22 f23

f31 f32 f33

 v1

v2

v3

 (7.9)
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u1

u2

u3

 =

 f11 f12 f13

f21 f22 f23

f31 f32 f33

 v1

v2

v3

 is u1 = f11v1 + f12v2 + f13v3 etc.

And this is the reason behind the definition of how to multiply a matrix and a column matrix. The
order in which the indices appear is the conventional one, and the indices appear in the matrix as they
do because I chose the order of the indices in a (seemingly) backwards way in Eq. (7.6).

Components of Rotations
Apply this to the first example, rotate all vectors in the plane through the angle α. I don’t want to
keep using the same symbol f for every function, so I’ll call this function R instead, or better yet Rα.
Rα(~v ) is the rotated vector. Pick two perpendicular unit vectors for a basis. You may call them x̂ and
ŷ, but again I’ll call them ~e1 and ~e2. Use the definition of components to get

Rα(~e2)
~e2

cosα
α

Rα(~e1)

sinα

~e1

Rα(~e1) =
∑
k

Rk1~ek

Rα(~e2) =
∑
k

Rk2~ek
(7.10)

The rotated ~e1 has two components, so

Rα(~e1) = ~e1 cosα+ ~e2 sinα = R11~e1 +R21~e2 (7.11)

This determines the first column of the matrix of components,

R11 = cosα, and R21 = sinα

Similarly the effect on the other basis vector determines the second column:

Rα(~e2) = ~e2 cosα− ~e1 sinα = R12~e1 +R22~e2 (7.12)

Check: Rα(~e1) .Rα(~e2) = 0.

R12 = − sinα, and R22 = cosα

The component matrix is then (
Rα
)

=

(
cosα − sinα
sinα cosα

)
(7.13)

Components of Inertia
The definition, Eq. (7.3), and the figure preceding it specify the inertia tensor as the function that
relates the angular momentum of a rigid body to its angular velocity.

~L =

∫
dm~r ×

(
~ω × ~r

)
= I(~ω) (7.14)

Use the vector identity,
~A× ( ~B × ~C ) = ~B( ~A . ~C )− ~C( ~A . ~B ) (7.15)

then the integral is

~L =

∫
dm

[
~ω(~r .~r )− ~r(~ω .~r )

]
= I(~ω) (7.16)

Pick the common rectangular, orthogonal basis and evaluate the components of this function. Equa-
tion (7.6) says ~r = x~e1 + y~e2 + z~e3 so
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I(~ei) =
∑
k

Iki~ek

I(~e1) =

∫
dm

[
~e1(x2 + y2 + z2)− (x~e1 + y~e2 + z~e3)(x)

]
= I11~e1 + I21~e2 + I31~e3

from which I11 =

∫
dm (y2 + z2), I21 = −

∫
dmyx, I31 = −

∫
dmzx

This provides the first column of the components, and you get the rest of the components the same
way. The whole matrix is ∫

dm

 y2 + z2 −xy −xz
−xy x2 + z2 −yz
−xz −yz x2 + y2

 (7.17)

These are the components of the tensor of inertia. The diagonal elements of the matrix may be
familiar; they are the moments of inertia. x2 + y2 is the perpendicular distance-squared to the z-axis,
so the element I33 (≡ Izz) is the moment of inertia about that axis,

∫
dmr2

⊥. The other components
are less familiar and are called the products of inertia. This particular matrix is symmetric: Iij = Iji.
That’s a special property of the inertia tensor.

Components of Dumbbell
Look again at the specific case of two masses rotating about an axis. Do it quantitatively.

~v2(out)

~r2 ×m2~v2

m2

~r2

~ω

~r1

~r1 ×m1~v1

~v1(in)

m1

~e2
~e1

The integrals in Eq. (7.17) are simply sums this time, and the sums have just two terms. I’m
making the approximation that these are point masses. Make the coordinate system match the indicated
basis, with x right and y up, then z is zero for all terms in the sum, and the rest are∫

dm (y2 + z2) = m1r
2
1 cos2 α+m2r

2
2 cos2 α

−
∫
dmxy = −m1r

2
1 cosα sinα−m2r

2
2 cosα sinα∫

dm (x2 + z2) = m1r
2
1 sin2 α+m2r

2
2 sin2 α∫

dm (x2 + y2) = m1r
2
1 +m2r

2
2

The matrix is then

(I ) =
(
m1r

2
1 +m2r

2
2

) cos2 α − cosα sinα 0
− cosα sinα sin2 α 0

0 0 1

 (7.18)
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Don’t count on all such results factoring so nicely.

In this basis, the angular velocity ~ω has just one component, so what is ~L?

(
m1r

2
1 +m2r

2
2

) cos2 α − cosα sinα 0
− cosα sinα sin2 α 0

0 0 1

 0
ω
0

 =

(
m1r

2
1 +m2r

2
2

)−ω cosα sinα
ω sin2 α

0


Translate this into vector form:

~L =
(
m1r

2
1 +m2r

2
2

)
ω sinα

(
− ~e1 cosα+ ~e2 sinα

)
(7.19)

When α = 90◦, then cosα = 0 and the angular momentum points along the y-axis. This is the
symmetric special case where everything lines up along one axis. Notice that if α = 0 then everything
vanishes, but then the masses are both on the axis, and they have no angular momentum. In the general

case as drawn, the vector ~L points to the upper left, perpendicular to the line between the masses.

Parallel Axis Theorem
When you know the tensor of inertia about one origin, you can relate the result to the tensor about a
different origin.

The center of mass of an object is

~rcm =
1

M

∫
~r dm (7.20)

where M is the total mass. Compare the operator I using an origin at the center of mass to I about
another origin.

~r

~rcm

~r − ~rcm

I(~ω ) =

∫
dm~r × (~ω × ~r ) =

∫
dm [~r − ~rcm + ~rcm]×

(
~ω × [~r − ~rcm + ~rcm]

)
=

∫
dm [~r − ~rcm]×

(
~ω × [~r − ~rcm]

)
+

∫
dm~rcm ×

(
~ω × ~rcm

)
+ two cross terms

(7.21)

The two cross terms vanish, problem 7.17. What’s left is

I(~ω ) =

∫
dm [~r − ~rcm]×

(
~ω × [~r − ~rcm]

)
+M rcm ×

(
~ω × ~rcm

)
= Icm(~ω ) +M ~rcm ×

(
~ω × ~rcm

) (7.22)
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Put this in words and it says that the tensor of inertia about any point is equal to the tensor of inertia
about the center of mass plus the tensor of inertia of a point mass M placed at the center of mass.

As an example, place a disk of mass M and radius R and uniform mass density so that its center
is at (x, y, z) = (R, 0, 0) and it is lying in the x-y plane. Compute the components of the inertia
tensor. First get the components about the center of mass, using Eq. (7.17).

x

z

y

The integrals such as

−
∫
dmxy, −

∫
dmyz

are zero. For fixed y each positive value of x has a corresponding negative value to make the integral
add to zero. It is odd in x (or y); remember that this is about the center of the disk. Next do the I33

integral. ∫
dm (x2 + y2) =

∫
dmr2 =

∫
M
πR2

dAr2

For the element of area, use dA = 2πr dr and you have

I33 =
M
πR2

∫ R

0
dr 2πr3 =

M
πR2

2π
R4

4
=

1

2
MR2

For the next two diagonal elements,

I11 =

∫
dm (y2 + z2) =

∫
dmy2 and I22 =

∫
dm (x2 + z2) =

∫
dmx2

Because of the symmetry of the disk, these two are equal, also you see that the sum is

I11 + I22 =

∫
dmy2 +

∫
dmx2 = I33 =

1

2
MR2 (7.23)

This saves integration. I11 = I22 = MR2/4.
For the other term in the sum (7.22), you have a point mass at the distance R along the x-axis,

(x, y, z) = (R, 0, 0). Substitute this point mass into Eq. (7.17) and you have

M

 0 0 0
0 R2 0
0 0 R2


The total about the origin is the sum of these two calculations.

MR2

 1/4 0 0
0 5/4 0
0 0 3/2
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Why is this called the parallel axis theorem when you’re translating a point (the origin) and not an
axis? Probably because this was originally stated for the moment of inertia alone and not for the whole
tensor. In that case you have only an axis to deal with.

Components of the Derivative
The set of all polynomials in x having degree ≤ 2 forms a vector space. There are three independent
vectors that I can choose to be 1, x, and x2. Differentiation is a linear operator on this space because
the derivative of a sum is the sum of the derivatives and the derivative of a constant times a function
is the constant times the derivative of the function. With this basis I’ll compute the components of
d/dx. Start the indexing for the basis from zero instead of one because it will cause less confusion
between powers and subscripts.

~e0 = 1, ~e1 = x, ~e2 = x2

By the definition of the components of an operator — I’ll call this one D,

D(~e0) =
d
dx

1 = 0, D(~e1) =
d
dx
x = 1 = ~e0, D(~e2) =

d
dx
x2 = 2x = 2~e1

These define the three columns of the matrix.

(D) =

 0 1 0
0 0 2
0 0 0

 check:
dx2

dx
= 2x is

 0 1 0
0 0 2
0 0 0

 0
0
1

 =

 0
2
0


There’s nothing here about the basis being orthonormal. It isn’t.

7.4 Matrix Multiplication
How do you multiply two matrices? There’s a rule for doing it, but where does it come from?

The composition of two functions means you first apply one function then the other, so

h = f ◦ g means h(~v ) = f
(
g(~v )

)
(7.24)

I’m assuming that these are vector-valued functions of a vector variable, but this is the general definition
of composition anyway. If f and g are linear, does it follow the h is? Yes, just check:

h(c~v ) = f
(
g(c~v )

)
= f

(
cg(~v )

)
= c f

(
g(~v )

)
, and

h(~v1 + ~v2) = f
(
g(~v1 + ~v2)

)
= f

(
g(~v1) + g(~v2)

)
= f

(
g(~v1)

)
+ f

(
g(~v2)

)
What are the components of h? Again, use the definition and plug in.

h(~ei) =
∑
k

hki~ek = f
(
g(~ei)

)
= f

(∑
j

gji~ej
)

=
∑
j

gjif
(
~ej
)

=
∑
j

gji
∑
k

fkj~ek (7.25)

and now all there is to do is to equate the corresponding coefficients of ~ek.

hki =
∑
j

gjifkj or more conventionally hki =
∑
j

fkjgji (7.26)

This is in the standard form for matrix multiplication, recalling the subscripts are ordered as frc for
row-column. h11 h12 h13

h21 h32 h23

h31 h32 h33

 =

 f11 f12 f13

f21 f32 f23

f31 f32 f33

 g11 g12 g13

g21 g32 g23

g31 g32 g33

 (7.27)
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The computation of h12 from Eq. (7.26) ish11 h12 h13

h21 h22 h23

h31 h32 h33

 =

 f11 f12 f13

f21 f22 f23

f31 f32 f33

 g11 g12 g13

g21 g22 g23

g31 g32 g33


−→ h12 = f11g12 + f12g22 + f13g32

Matrix multiplication is just the component representation of the composition of two functions,
Eq. (7.26), and there’s nothing here that restricts this to three dimensions. In Eq. (7.25) I may have
made it look too easy. If you try to reproduce this without looking, the odds are that you will not
get the indices to match up as nicely as you see there. Remember: When an index is summed it is a
dummy, and you are free to relabel it as anything you want. You can use this fact to make the indices
come out neatly.

Composition of Rotations
In the first example, rotating vectors in the plane, the operator that rotates every vector by the angle
α has components (

Rα
)

=

(
cosα − sinα
sinα cosα

)
(7.28)

What happens if you do two such transformations, one by α and one by β? The result better be a total
rotation by α+ β. One function, Rβ is followed by the second function Rα and the composition is

Rα+β = RαRβ

This is mirrored in the components of these operators, so the matrices must obey the same equation.(
cos(α+ β) − sin(α+ β)
sin(α+ β) cos(α+ β)

)
=

(
cosα − sinα
sinα cosα

)(
cosβ − sinβ
sinβ cosβ

)
Multiply the matrices on the right to get(

cosα cosβ − sinα sinβ − cosα sinβ − sinα cosβ
sinα cosβ + cosα sinβ cosα cosβ − sinα sinβ

)
(7.29)

The respective components must agree, so this gives an immediate derivation of the formulas for the
sine and cosine of the sum of two angles. Cf. Eq. (3.8)

7.5 Inverses
The simplest operator is the one that does nothing. f(~v ) = ~v for all values of the vector ~v. This implies
that f(~e1) = ~e1 and similarly for all the other elements of the basis, so the matrix of its components
is diagonal. The 2× 2 matrix is explicitly the identity matrix

(I ) =

(
1 0
0 1

)
or in index notation δij =

{
1 (if i = j)
0 (if i 6= j)

(7.30)

and the index notation is completely general, not depending on whether you’re dealing with two dimen-
sions or many more. Unfortunately the words “inertia” and “identity” both start with the letter “I” and
this symbol is used for both operators. Live with it. The δ symbol in this equation is the Kronecker
delta — very handy.

The inverse of an operator is defined in terms of Eq. (7.24), the composition of functions. If the
composition of two functions takes you to the identity operator, one function is said to be the inverse of
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the other. This is no different from the way you look at ordinary real valued functions. The exponential
and the logarithm are inverse to each other because*

ln(ex) = x for all x.

For the rotation operator, Eq. (7.10), the inverse is obviously going to be rotation by the same angle
in the opposite direction.

RαR−α = I

Because the matrix components of these operators mirror the original operators, this equation must
also hold for the corresponding components, as in Eqs. (7.27) and (7.29). Set β = −α in (7.29) and
you get the identity matrix.

In an equation such as Eq. (7.7), or its component version Eqs. (7.8) or (7.9), if you want to
solve for the vector ~u, you are asking for the inverse of the function f .

~u = f(~v ) implies ~v = f−1(~u)

The translation of these equations into components is Eq. (7.9)(
u1

u2

)
=

(
f11 f12

f21 f22

)(
v1

v2

)

which implies
1

f11f22 − f12f21

(
f22 −f12

−f21 f11

)(
u1

u2

)
=

(
v1

v2

)
(7.31)

The verification that these are the components of the inverse is no more than simply multiplying the
two matrices and seeing that you get the identity matrix.

7.6 Rotations, 3-d
In three dimensions there are of course more basis vectors to rotate. Start by rotating vectors about
the axes and it is nothing more than the two-dimensional problem of Eq. (7.10) done three times. You
do have to be careful about signs, but not much more — as long as you draw careful pictures!

x

y

z

x

y

z

x

y

z

α

β

γ

The basis vectors are drawn in the three pictures: ~e1 = x̂, ~e2 = ŷ, ~e3 = ẑ.
In the first sketch, rotate vectors by the angle α about the x-axis. In the second case, rotate by

the angle β about the y-axis, and in the third case, rotate by the angle γ about the z-axis. In the first
case, the ~e1 is left alone. The ~e2 picks up a little positive ~e3, and the ~e3 picks up a little negative ~e2.

Rα~e1
(
~e1

)
= ~e1, Rα~e1

(
~e2

)
= ~e2 cosα+ ~e3 sinα, Rα~e1

(
~e3

)
= ~e3 cosα− ~e2 sinα (7.32)

* The reverse, elnx works just for positive x, unless you recall that the logarithm of a negative
number is complex. Then it works there too. This sort of question doesn’t occur with finite dimensional
matrices.
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Here the notation R~θ represents the function prescribing a rotation by θ about the axis pointing along

θ̂. These equations are the same as Eqs. (7.11) and (7.12).
The corresponding equations for the other two rotations are now easy to write down:

Rβ~e2
(
~e1

)
= ~e1 cosβ − ~e3 sinβ, Rβ~e2

(
~e2

)
= ~e2, Rβ~e2

(
~e3

)
= ~e1 sinβ + ~e3 cosβ (7.33)

Rγ~e3
(
~e1

)
= ~e1 cos γ + ~e2 sin γ, Rγ~e3

(
~e2

)
= −~e1 sin γ + ~e2 cos γ, Rγ~e3

(
~e3

)
= ~e3 (7.34)

From these vector equations you immediate read the columns of the matrices of the components of the
operators as in Eq. (7.6).(

Rα~e1
) (

Rβ~e2
) (

Rγ~e3
) 1 0 0

0 cosα − sinα
0 sinα cosα

 ,
 cosβ 0 sinβ

0 1 0
− sinβ 0 cosβ

 ,
 cos γ − sin γ 0

sin γ cos γ 0
0 0 1

 (7.35)

As a check on the algebra, did you see if the rotated basis vectors from any of the three sets of equations
(7.32)-(7.34) are still orthogonal sets?

Do these rotation operations commute? No. Try the case of two 90◦ rotations to see. Rotate
by this angle about the x-axis then by the same angle about the y-axis.

(
R~e2π/2

)(
R~e1π/2

)
=

 0 0 1
0 1 0
−1 0 0

 1 0 0
0 0 −1
0 1 0

 =

 0 1 0
0 0 −1
−1 0 0

 (7.36)

In the reverse order, for which the rotation about the y-axis is done first, these are

(
R~e1π/2

)(
R~e2π/2

)
=

 1 0 0
0 0 −1
0 1 0

 0 0 1
0 1 0
−1 0 0

 =

 0 0 1
1 0 0
0 1 0

 (7.37)

Translate these operations into the movement of a physical object. Take the same x-y-z coor-
dinate system as in this section, with x pointing toward you, y to your right and z up. Pick up a book
with the cover toward you so that you can read it. Now do the operation R~e1π/2 on it so that the cover

still faces you but the top is to your left. Next do R~e2π/2 and the book is face down with the top still
to your left. See problem 7.57 for and algebraic version of this.

Start over with the cover toward you as before and do R~e2π/2 so that the top is toward you

and the face is down. Now do the other operation R~e1π/2 and the top is toward you with the cover
facing right — a different result. Do these physical results agree with the matrix products of the last
two equations? For example, what happens to the vector sticking out of the cover, initially the column
matrix ( 1 0 0 )? This is something that you cannot simply read. You have to do the experiment for
yourself.

7.7 Areas, Volumes, Determinants
In the two-dimensional example of arrows in the plane, look what happens to areas when an operator
acts. The unit square with corners at the origin and (0, 1), (1, 1), 1, 0) gets distorted into a paral-
lelogram. The arrows from the origin to every point in the square become arrows that fill out the
parallelogram.
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What is the area of this parallelogram?
I’ll ask a more general question. (It isn’t really, but it looks like it.) Start with any region in the

plane, and say it has area A1. The operator takes all the vectors ending in this area into some new area
of a size A2, probably different from the original. What is the ratio of the new area to the old one?
A2/A1. How much does this transformation stretch or squeeze the area? What isn’t instantly obvious
is that this ratio of areas depends on the operator alone, and not on how you chose the initial region
to be transformed. If you accept this for the moment, then you see that the question in the previous
paragraph, which started with the unit square and asked for the area into which it transformed, is the
same question as finding the ratio of the two more general areas. (Or the ratio of two volumes in three
dimensions.) See the end of the next section for a proof.

This ratio is called the determinant of the operator.

The first example is the simplest. Rotations in the plane, Rα. Because rotations leave area
unchanged, this determinant is one. For almost any other example you have to do some work. Use the
component form to do the computation. The basis vector ~e1 is transformed into the vector f11~e1+f21~e2

with a similar expression for the image of ~e2. You can use the cross product to compute the area of
the parallelogram that these define. For another way, see problem 7.3. This is(

f11~e1 + f21~e2

)
×
(
f12~e1 + f22~e2

)
=
(
f11f22 − f21f12

)
~e3 (7.38)

The product in parentheses is the determinant of the transformation.

det(f) = f11f22 − f21f12 (7.39)

What if I had picked a different basis, maybe even one that isn’t orthonormal? From the definition of
the determinant it is a property of the operator and not of the particular basis and components you
use to describe it, so you must get the same answer. But will the answer be the same simple formula
(7.39) if I pick a different basis? Now that’s a legitimate question. The answer is yes, and that fact
will come out of the general computation of the determinant in a moment. [What is the determinant
of Eq. (7.13)?]

det > 0

det < 0

The determinant can be either positive or negative. That tells you more than simply how the
transformation alters the area; it tells you whether it changes the orientation of the area. If you place
a counterclockwise loop in the original area, does it remain counterclockwise in the image or is it
reversed? In three dimensions, the corresponding plus or minus sign for the determinant says that
you’re changing from a right-handed set of vectors to a left-handed one. What does that mean? Make
an x-y-z coordinate system out of the thumb, index finger, and middle finger of your right hand. Now
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do it with your left hand. You cannot move one of these and put it on top of the other (unless you
have very unusual joints). One is a mirror image of the other.

The equation (7.39) is a special case of a rule that you’ve probably encountered elsewhere. You
compute the determinant of a square array of numbers by some means such as expansion in minors or
Gauss reduction. Here I’ve defined the determinant geometrically, and it has no obvious relation the
traditional numeric definition. They are the same, and the reason for that comes by looking at how the
area (or volume) of a parallelogram depends on the vectors that make up its sides. The derivation is
slightly involved, but no one step in it is hard. Along the way you will encounter a new and important
function: Λ.

Start with the basis ~e1, ~e2 and call the output of the transformation ~v1 = f(~e1) and ~v2 = f(~e2).
The final area is a function of these last two vectors, call it Λ

(
~v1,~v2

)
, and this function has two key

properties:

Λ
(
~v,~v

)
= 0, and Λ

(
~v1, α~v2 + β~v3

)
= αΛ

(
~v1,~v2

)
+ βΛ

(
~v1,~v3

)
(7.40)

That the area vanishes if the two sides are the same is obvious. That the area is a linear function of
the vectors forming the two sides is not so obvious. (It is linear in both arguments.) Part of the proof
of linearity is easy:

Λ
(
~v1, α~v2) = αΛ

(
~v1,~v2)

simply says that if one side of the parallelogram remains fixed and the other changes by some factor,
then the area changes by that same factor. For the other part, Λ

(
~v1,~v2 +~v3

)
, start with a picture and

see if the area that this function represents is the same as the sum of the two areas made from the
vectors ~v1&~v2 and ~v1&~v3.

~v1&~v2 form the area OCBA. ~v1&~v3 form the area OCED.

O

A

B

C

D

E

F G

H
J

~v1

~v2

~v3

HDF ∼= JEG

HDO ∼= JEC

so

area HJGF = area DEGF = area OCBA

area OCJH = area OCED

add these equations:

area OCGF = area OCBA + area OCED

The last line is the statement that sum of the areas of the two parallelograms is the area of the
parallelogram formed using the sum of the two vectors:

Λ
(
~v1,~v2 + ~v3

)
= Λ

(
~v1,~v2

)
+ Λ

(
~v1,~v3

)
This sort of function Λ, generalized to three dimensions, is characterized by

(1) Λ
(
α~v1 + β~v ′1,~v2,~v3

)
= αΛ

(
~v1,~v2,~v3

)
+ βΛ

(
~v ′1,~v2,~v3

)
(2) Λ

(
~v1,~v1,~v3

)
= 0 (7.41)

It is linear in each variable, and it vanishes if any two arguments are equal. I’ve written it for three
dimensions, but in N dimensions you have the same equations with N arguments, and these properties
hold for all of them.
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Theorem: Up to an overall constant factor, this function is unique.

An important result is that these assumptions imply the function is antisymmetric in any two
arguments. Proof:

Λ
(
~v1 + ~v2,~v1 + ~v2,~v3

)
= 0 = Λ

(
~v1,~v1,~v3

)
+ Λ

(
~v1,~v2,~v3

)
+ Λ

(
~v2,~v1,~v3

)
+ Λ

(
~v2,~v2,~v3

)
This is just the linearity property. Now the left side, and the 1st and 4th terms on the right, are zero
because two arguments are equal. The rest is

Λ
(
~v1,~v2,~v3

)
+ Λ

(
~v2,~v1,~v3

)
= 0 (7.42)

and this says that interchanging two arguments of Λ changes the sign. (The reverse is true also. Assume
antisymmetry and deduce that it vanishes if two arguments are equal.)

I said that this function is unique up to a factor. Suppose that there are two of them: Λ and Λ′.
Now show for some constant α, that Λ − αΛ′ is identically zero. To do this, take three independent
vectors and evaluate the number Λ′

(
~va,~vb,~vc

)
There is some set of ~v ’s for which this is non-zero,

otherwise Λ′ is identically zero and that’s not much fun. Now consider

α =
Λ
(
~va,~vb,~vc

)
Λ′
(
~va,~vb,~vc

) and define Λ0 = Λ− αΛ′

This function Λ0 is zero for the special argument: (~va,~vb,~vc), and now I’ll show why it is zero for all
arguments. That means that it is the zero function, and says that the two functions Λ and Λ′ are
proportional.

The vectors (~va,~vb,~vc) are independent and there are three of them (in three dimensions). They
are a basis. You can write any vector as a linear combination of these. E.g.

~v1 = A~va +B~vb and ~v2 = C~va +D~vb and

Put these (and let’s say ~vc) into Λ0.

Λ0

(
~v1,~v2, vc

)
= ACΛ0

(
~va,~va,~vc

)
+ADΛ0

(
~va,~vb,~vc

)
+BCΛ0

(
~vb,~va,~vc

)
+BDΛ0

(
~vb,~vb,~vc

)
All these terms are zero. Any argument that you put into Λ0 is a linear combination of ~va, ~vb, and ~vc,
and that means that this demonstration extends to any set of vectors, which in turn means that Λ0

vanishes for any arguments. It is identically zero and that implies Λ and Λ′ are, up to a constant overall
factor, the same.

In N dimensions, a scalar-valued function of N vector variables,
linear in each argument and antisymmetric under interchanging any
pairs of arguments, is unique up to a factor.

I’ve characterized this volume function Λ by two simple properties, and surprisingly enough this is
all you need to compute it in terms of the components of the operator! With just this much information
you can compute the determinant of a transformation.

Recall: ~v1 has for its components the first column of the matrix for the components of f , and
~v2 forms the second column. Adding any multiple of one vector to another leaves the volume alone.
This is

Λ
(
~v1,~v2 + α~v1,~v3

)
= Λ

(
~v1,~v2,~v3

)
+ αΛ

(
~v1,~v1,~v3

)
(7.43)
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and the last term is zero. Translate this into components. Use the common notation for a determinant,
a square array with vertical bars, but forget that you know how to compute this symbol! I’m going
to use it simply as a notation by keep track of vector manipulations. The numerical value will come
out at the end as the computed value of a volume. ~vi = f

(
~ei
)

=
∑
j fji~ej , then Λ

(
~v1,~v2,~v3

)
=

Λ
(
~v1,~v2 + α~v1,~v3

)
=∣∣∣∣∣∣

f11 f12 + αf11 f13

f21 f22 + αf21 f23

f31 f32 + αf31 f33

∣∣∣∣∣∣ =

∣∣∣∣∣∣
f11 f12 f13

f21 f22 f23

f31 f32 f33

∣∣∣∣∣∣+ α

∣∣∣∣∣∣
f11 f11 f13

f21 f21 f23

f31 f31 f33

∣∣∣∣∣∣ =

∣∣∣∣∣∣
f11 f12 f13

f21 f22 f23

f31 f32 f33

∣∣∣∣∣∣
To evaluate this object, simply choose α to make the element f12 + αf11 = 0. Then repeat the
operation, adding a multiple of the first column to the third, making the element f13 +βf11 = 0. This
operation doesn’t change the original value of Λ

(
~v1,~v2,~v3

)
.

Λ
(
~v1,~v2 + α~v1,~v3 + β~v1

)
=

∣∣∣∣∣∣
f11 0 0
f21 f22 + αf21 f23 + βf21

f31 f32 + αf31 f33 + βf31

∣∣∣∣∣∣ =

∣∣∣∣∣∣
f11 0 0
f21 f ′22 f ′23

f31 f ′32 f ′33

∣∣∣∣∣∣
Repeat the process to eliminate f ′23, adding γ~v ′2 to the third argument, where γ = −f ′23/f

′
22.

=

∣∣∣∣∣∣
f11 0 0
f21 f ′22 f ′23

f31 f ′32 f ′33

∣∣∣∣∣∣ =

∣∣∣∣∣∣
f11 0 0
f21 f ′22 f ′23 + γf ′22

f31 f ′32 f ′33 + γf ′32

∣∣∣∣∣∣ =

∣∣∣∣∣∣
f11 0 0
f21 f ′22 0
f31 f ′32 f ′′33

∣∣∣∣∣∣ (7.44)

Written in the last form, as a triangular array, the final result for the determinant does not depend
on the elements f21, f31, f ′32. They may as well be zero. Why? Just do the same sort of column
operations, but working toward the left. Eliminate f31 and f ′32 by adding a constant times the third
column to the first and second columns. Then eliminate f21 by using the second column. You don’t
actually have to do this, you just have to recognize that it can be done so that you can ignore the lower
triangular part of the array.

Translate this back to the original vectors and Λ is unchanged:

Λ
(
~v1,~v2,~v3

)
= Λ

(
f11~e1, f

′
22~e2, f

′′
33~e3

)
= f11f

′
22f
′′
33 Λ

(
~e1,~e2,~e3

)
The volume of the original box is Λ

(
~e1,~e2,~e3

)
, so the quotient of the new volume to the old

one is
det = f11f

′
22f
′′
33 (7.45)

The fact that Λ is unique up to a constant factor doesn’t matter. Do you want to measure volume
in cubic feet, cubic centimeters, or cubic light-years? This algorithm is called Gauss elimination.
It’s development started with the geometry and used vector manipulations to recover what you may
recognize from elsewhere as the traditional computed value of the determinant.

Did I leave anything out in this computation of the determinant? Yes, one point. What if
in Eq. (7.44) the number f ′22 = 0? You can’t divide by it then. You can however interchange any
two arguments of Λ, causing simply a sign change. If this contingency occurs then you need only
interchange the two columns to get a component of zero where you want it. Just keep count of such
switches whenever they occur.

Trace
There’s a property closely related to the determinant of an operator. It’s called the trace. If you have
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an operator f , then consider the determinant of M = I+εf , where I is the identity. This combination
is very close to the identity if ε is small enough, so its determinant is very close to one. How close?
The first order in ε is called the trace of f , or more formally

Tr(f) =
d
dε

det
(
I + εf

)∣∣∣∣
ε=0

(7.46)

Express this in components for a two dimensional case, and

(f) =

(
a b
c d

)
⇒ det

(
I + εf

)
= det

(
1 + εa εb
εc 1 + εd

)
= (1 + εa)(1 + εd)− ε2bc (7.47)

The first order coefficient of ε is a + d, the sum of the diagonal elements of the matrix. This is the
form of the result in any dimension, and the proof involves carefully looking at the method of Gauss
elimination for the determinant, remembering at every step that you’re looking for only the first order
term in ε. See problem 7.53.

7.8 Matrices as Operators
There’s an important example of a vector space that I’ve avoided mentioning up to now. Example 5
in section 6.3 is the set of n-tuples of numbers: (a1, a2, . . . , an). I can turn this on its side, call it a
column matrix, and it forms a perfectly good vector space. The functions (operators) on this vector
space are the matrices themselves.

When you have a system of linear equations, you can translate this into the language of vectors.

ax+ by = e and cx+ dy = f −→
(
a b
c d

)(
x
y

)
=

(
e
f

)
Solving for x and y is inverting a matrix.

There’s an aspect of this that may strike you as odd. This matrix is an operator on the vector
space of column matrices. What are the components of this operator? What? Isn’t the matrix a set of
components already? That depends on your choice of basis. Take an example

M =

(
1 2
3 4

)
with basis ~e1 =

(
1
0

)
, ~e2 =

(
0
1

)
Compute the components as usual.

M~e1 =

(
1 2
3 4

)(
1
0

)
=

(
1
3

)
= 1~e1 + 3~e2

This says that the first column of the components of M in this basis are

(
1
3

)
. What else would you

expect? Now select a different basis.

~e1 =

(
1
1

)
, ~e2 =

(
1
−1

)
Again compute the component.

M~e1 =

(
1 2
3 4

)(
1
1

)
=

(
3
7

)
= 5

(
1
1

)
− 2

(
1
−1

)
= 5~e1 − 2~e2

M~e2 =

(
1 2
3 4

)(
1
−1

)
=

(
−1
−1

)
= −1~e1
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The components of M in this basis are

(
5 −1
−2 0

)
It doesn’t look at all the same, but it represents the same operator. Does this matrix have the same
determinant, using Eq. (7.39)?

Determinant of Composition
If you do one linear transformation followed by another one, that is the composition of the two functions,
each operator will then have its own determinant. What is the determinant of the composition? Let
the operators be F and G. One of them changes areas by a scale factor det(F ) and the other ratio of
areas is det(G). If you use the composition of the two functions, FG or GF , the overall ratio of areas
from the start to the finish will be the same:

det(FG) = det(F ) . det(G) = det(G) . det(F ) = det(GF ) (7.48)

Recall that the determinant measures the ratio of areas for any input area, not just a square; it can be
a parallelogram. The overall ratio of the product of the individual ratios, det(F ) det(G). The product
of these two numbers is the total ratio of a new area to the original area and it is independent of the
order of F and G, so the determinant of the composition of the functions is also independent of order.

Now what about the statement that the definition of the determinant doesn’t depend on the
original area that you start with. To show this takes a couple of steps. First, start with a square that’s
not at the origin. You can always picture it as a piece of a square that is at the origin. The shaded
square that is 1/16 the area of the big square goes over to a parallelogram that’s 1/16 the area of the
big parallelogram. Same ratio.

An arbitrary shape can be divided into a lot of squares. That’s how you do an integral. The
image of the whole area is distorted, but it retains the fact that a square that was inside the original
area will become a parallelogram that is inside the new area. In the limit as the number of squares goes
to infinity you still maintain the same ratio of areas as for the single original square.

7.9 Eigenvalues and Eigenvectors
There is a particularly important basis for an operator, the basis in which the components form a
diagonal matrix. Such a basis almost always* exists, and it’s easy to see from the definition as usual
just what this basis must be.

f(~ei) =

N∑
k=1

fki~ek

* See section 7.12.
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To be diagonal simply means that fki = 0 for all i 6= k, and that in turn means that all but one term
in the sum disappears. This defining equation reduces to

f(~ei) = fii~ei (with no sum this time) (7.49)

This is called an eigenvalue equation. It says that for any one of these special vectors, the operator f
on it returns a scalar multiple of that same vector. These multiples are called the eigenvalues, and the
corresponding vectors are called the eigenvectors. The eigenvalues are then the diagonal elements of
the matrix in this basis.

The inertia tensor is the function that relates the angular momentum of a rigid body to its
angular velocity. The axis of rotation is defined by those points in the rotating body that aren’t moving,
and the vector ~ω lies along that line. The angular momentum is computed from Eq. (7.3) and when
you’ve done all those vector products and integrals you can’t really expect the angular momentum to
line up with ~ω unless there is some exceptional reason for it. As the body rotates around the ~ω axis,
~L will be carried with it, making ~L rotate about the direction of ~ω. The vector ~L is time-dependent

and that implies there will be a torque necessary to keep it going, ~τ = d~L/dt. Because ~L is rotating
with frequency ω, this rotating torque will be felt as a vibration at this rotation frequency. If however
the angular momentum happens to be parallel to the angular velocity, the angular momentum will not

be changing; d~L/dt = 0 and the torque ~τ = d~L/dt will be zero, implying that the vibrations will be
absent. Have you ever taken your car in for servicing and asked the mechanic to make the angular
momentum and the angular velocity vectors of the wheels parallel? It’s called wheel-alignment.

How do you compute these eigenvectors? Just move everything to the left side of the preceding
equation.

f(~ei)− fii~ei = 0, or (f − fiiI)~ei = 0

I is the identity operator, output equals input. This notation is cumbersome. I’ll change it.

f(~v ) = λ~v ↔ (f − λI)~v = 0 (7.50)

λ is the eigenvalue and ~v is the eigenvector. This operator (f − λI) takes some non-zero vector into
the zero vector. In two dimensions then it will squeeze an area down to a line or a point. In three
dimensions it will squeeze a volume down to an area (or a line or a point). In any case the ratio of the
final area (or volume) to the initial area (or volume) is zero. That says the determinant is zero, and
that’s the key to computing the eigenvectors. Figure out which λ’s will make this determinant vanish.

Look back at section 4.9 and you’ll see that the analysis there closely parallels what I’m doing
here. In that case I didn’t use the language of matrices or operators, but was asking about the possible
solutions of two simultaneous linear equations.

ax+ by = 0 and cx+ dy = 0, or

(
a b
c d

)(
x
y

)
=

(
0
0

)
The explicit algebra there led to the conclusion that there can be a non-zero solution (x, y) to the two
equations only if the determinant of the coefficients vanishes, ad− bc = 0, and that’s the same thing
that I’m looking for here: a non-zero vector solution to Eq. (7.50).

Write the problem in terms of components, and of course you aren’t yet in the basis where the
matrix is diagonal. If you were, you’re already done. The defining equation is f(~v ) = λ~v, and in
components this reads

∑
i

fkivi = λvk, or

 f11 f12 f13

f21 f22 f23

f31 f32 f33

 v1

v2

v3

 = λ

 v1

v2

v3
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Here I arbitrarily wrote the equation for three dimensions. That will change with the problem. Put
everything on the left side and insert the components of the identity, the unit matrix. f11 f12 f13

f21 f22 f23

f31 f32 f33

− λ
 1 0 0

0 1 0
0 0 1

 v1

v2

v3

 =

 0
0
0

 (7.51)

The one way that this has a non-zero solution for the vector ~v is for the determinant of the whole matrix
on the left-hand side to be zero. This equation is called the characteristic equation of the matrix, and in
the example here that’s a cubic equation in λ. If it has all distinct roots, no double roots, then you’re
guaranteed that this procedure will work, and you will be able to find a basis in which the components
form a diagonal matrix. If this equation has a multiple root then there is no guarantee. It may work, but
it may not; you have to look closer. See section 7.12. If the operator has certain symmetry properties
then it’s guaranteed to work. For example, the symmetry property found in problem 7.16 is enough
to insure that you can find a basis in which the matrix for the inertia tensor is diagonal. It is even an
orthogonal basis in that case.

Example of Eigenvectors
To keep the algebra to a minimum, I’ll work in two dimensions and will specify an arbitrary but simple
example:

f(~e1) = 2~e1 + ~e2, f (~e2) = 2~e2 + ~e1 with components M =

(
2 1
1 2

)
(7.52)

The eigenvalue equation is, in component form(
2 1
1 2

)(
v1

v2

)
= λ

(
v1

v2

)
or

[(
2 1
1 2

)
− λ

(
1 0
0 1

)](
v1

v2

)
= 0 (7.53)

The condition that there be a non-zero solution to this is

det

[(
2 1
1 2

)
− λ

(
1 0
0 1

)]
= 0 = (2− λ)2 − 1

The solutions to this quadratic are λ = 1, 3. For these values then, the apparently two equation for
the two unknowns v1 and v2 are really one equation. The other is not independent. Solve this single
equation in each case. Take the first of the two linear equations for v1 and v2 as defined by Eq. (7.53).

2v1 + v2 = λv1

λ = 1 implies v2 = −v1, λ = 3 implies v2 = v1

The two new basis vectors are then

~e ′1 = (~e1 − ~e2) and ~e ′2 = (~e1 + ~e2) (7.54)

and in this basis the matrix of components is the diagonal matrix of eigenvalues.(
1 0
0 3

)
If you like to keep your basis vectors normalized, you may prefer to say that the new basis is (~e1−~e2)/

√
2

and (~e1 + ~e2)/
√

2. The eigenvalues are the same, so the new matrix is the same.
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Example: Coupled Oscillators
Another example drawn from physics: Two masses are connected to a set of springs and fastened
between two rigid walls. This is a problem that appeared in chapter 4, Eq. (4.45).

m1d
2x1/dt

2 = −k1x1 − k3(x1 − x2), and m2d
2x2/dt

2 = −k2x2 − k3(x2 − x1)

The exponential form of the solution was

x1(t) = Aeiωt, x2(t) = Beiωt

The algebraic equations that you get by substituting these into the differential equations are a
pair of linear equations for A and B, Eq. (4.47). In matrix form these equations are, after rearranging
some minus signs, (

k1 + k3 −k3

−k3 k2 + k3

)(
A
B

)
= ω2

(
m1 0
0 m2

)(
A
B

)
You can make it look more like the previous example with some further arrangement[(

k1 + k3 −k3

−k3 k2 + k3

)
− ω2

(
m1 0
0 m2

)](
A
B

)
=

(
0
0

)
The matrix on the left side maps the column matrix to zero. That can happen only if the matrix has
zero determinant (or the column matrix is zero). If you write out the determinant of this 2× 2 matrix
you have a quadratic equation in ω2. It’s simple but messy, so rather than looking first at the general
case, look at a special case with more symmetry. Take m1 = m2 = m and k1 = k2.

det

[(
k1 + k3 −k3

−k3 k1 + k3

)
− ω2m

(
1 0
0 1

)]
= 0 =

(
k1 + k3 −mω2

)2 − k2
3

This is now so simple that you don’t even need the quadratic formula; it factors directly.(
k1 + k3 −mω2 − k3

)(
k1 + k3 −mω2 + k3

)
= 0

The only way that the product of two numbers is zero is if one of the numbers is zero, so either

k1 −mω2 = 0 or k1 + 2k3 −mω2 = 0

This determines two possible frequencies of oscillation.

ω1 =

√
k1

m
and ω2 =

√
k1 + 2k3

m

You’re not done yet; these are just the eigenvalues. You still have to find the eigenvectors and then go

back to apply them to the original problem. This is ~F = m~a after all. Look back to section 4.10 for
the development of the solutions.
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7.10 Change of Basis
In many problems in physics and mathematics, the correct choice of basis can enormously simplify a
problem. Sometimes the obvious choice of a basis turns out in the end not to be the best choice, and
you then face the question: Do you start over with a new basis, or can you use the work that you’ve
already done to transform everything into the new basis?

For linear transformations, this becomes the problem of computing the components of an operator
in a new basis in terms of its components in the old basis.

First: Review how to do this for vector components, something that ought to be easy to do. The
equation (7.5) defines the components with respect to a basis, any basis. If I have a second proposed
basis, then by the definition of the word basis, every vector in that second basis can be written as a
linear combination of the vectors in the first basis. I’ll call the vectors in the first basis, ~ei and those in
the second basis ~e ′i, for example in the plane you could have

~e1 = x̂, ~e2 = ŷ, and ~e ′1 = 2 x̂+ 0.5 ŷ, ~e ′2 = 0.5 x̂+ 2 ŷ (7.55)

Each vector ~e ′i is a linear combination* of the original basis vectors:

~e ′i = S(~ei) =
∑
j

Sji~ej (7.56)

This follows the standard notation of Eq. (7.6); you have to put the indices in this order in order to
make the notation come out right in the end. One vector expressed in two different bases is still one
vector, so

~v =
∑
i

v′i~e
′
i =

∑
i

vi~ei

and I’m using the fairly standard notation of v′i for the ith component of the vector ~v with respect to
the second basis. Now insert the relation between the bases from the preceding equation (7.56).

~v =
∑
i

v′i
∑
j

Sji~ej =
∑
j

vj~ej

and this used the standard trick of changing the last dummy label of summation from i to j so that it
is easy to compare the components.∑

i

Sjiv
′
i = vj or in matrix notation (S)(v′) = (v), =⇒ (v′) = (S)−1(v)

Similarity Transformations
Now use the definition of the components of an operator to get the components in the new basis.

f
(
~e ′i
)

= =
∑
j

f ′ji~e
′
j

f
(∑

j

Sji~ej
)

=
∑
j

Sjif
(
~ej
)

=
∑
j

Sji
∑
k

fkj~ek =
∑
j

f ′ji
∑
k

Skj~ek

* There are two possible conventions here. You can write ~e ′i in terms of the ~ei, calling the
coefficients Sji, or you can do the reverse and call those components Sji. [~ei = S(~e ′i)] Naturally, both
conventions are in common use. The reverse convention will interchange the roles of the matrices S
and S−1 in what follows.
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The final equation comes from the preceding line. The coefficients of ~ek must agree on the two sides
of the equation. ∑

j

Sjifkj =
∑
j

f ′jiSkj

Now rearrange this in order to place the indices in their conventional row,column order.∑
j

Skjf
′
ji =

∑
j

fkjSji(
S11 S12

S21 S22

)(
f ′11 f ′12

f ′21 f ′22

)
=

(
f11 f12

f21 f22

)(
S11 S12

S21 S22

) (7.57)

In turn, this matrix equation is usually written in terms of the inverse matrix of S,

(S)(f ′) = (f)(S) is (f ′) = (S)−1(f)(S) (7.58)

and this is called a similarity transformation. For the example Eq. (7.55) this is

~e ′1 = 2 x̂+ 0.5 ŷ = S11~e1 + S21~e2

which determines the first column of the matrix (S), then ~e ′2 determines the second column.

(S) =

(
2 0.5

0.5 2

)
then (S)−1 =

1

3.75

(
2 −0.5
−0.5 2

)

Eigenvectors
In defining eigenvalues and eigenvectors I pointed out the utility of having a basis in which the com-
ponents of an operator form a diagonal matrix. Finding the non-zero solutions to Eq. (7.50) is then
the way to find the basis in which this holds. Now I’ve spent time showing that you can find a matrix
in a new basis by using a similarity transformation. Is there a relationship between these two subjects?
Another way to ask the question: I’ve solved the problem to find all the eigenvectors and eigenvalues,
so what is the similarity transformation that accomplishes the change of basis (and why is it necessary
to know it if I already know that the transformed, diagonal matrix is just the set of eigenvalues, and I
already know them)?

For the last question, the simplest answer is that you don’t need to know the explicit transforma-
tion once you already know the answer. It is however useful to know that it exists and how to construct
it. If it exists — I’ll come back to that presently. Certain manipulations are more easily done in terms
of similarity transformations, so you ought to know how they are constructed, especially because almost
all the work in constructing them is done when you’ve found the eigenvectors.

The equation (7.57) tells you the answer. Suppose that you want the transformed matrix to be
diagonal. That means that f ′12 = 0 and f ′21 = 0. Write out the first column of the product on the
right. (

f11 f12

f21 f22

)(
S11 S12

S21 S22

)
−→

(
f11 f12

f21 f22

)(
S11

S21

)
This equals the first column on the left of the same equation

f ′11

(
S11

S21

)
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This is the eigenvector equation that you’ve supposedly already solved. The first column of the com-
ponent matrix of the similarity transformation is simply the set of components of the first eigenvector.
When you write out the second column of Eq. (7.57) you’ll see that it’s the defining equation for the
second eigenvector. You already know these, so you can immediately write down the matrix for the
similarity transformation.

For the example Eq. (7.52) the eigenvectors are given in Eq. (7.54). In components these are

~e ′1 →
(

1
−1

)
, and ~e ′2 →

(
1
1

)
, implying S =

(
1 1
−1 1

)
The inverse to this matrix is

S−1 =
1

2

(
1 −1
1 1

)
You should verify that S−1MS is diagonal.

7.11 Summation Convention
In all the manipulation of components of vectors and components of operators you have to do a lot of
sums. There are so many sums over indices that a convention* was invented (by Einstein) to simplify
the notation.

A repeated index in a term is summed.

Eq. (7.6) becomes f(~ei) = fki~ek.
Eq. (7.8) becomes uk = fkivi.
Eq. (7.26) becomes hki = fkjgji.
IM = M becomes δijMjk = Mik.

What if there are three identical indices in the same term? Then you made a mistake; that can’t
happen. What about Eq. (7.49)? That has three indices. Yes, and there I explicitly said that there is
no sum. This sort of rare case you have to handle as an exception.

7.12 Can you Diagonalize a Matrix?
At the beginning of section 7.9 I said that the basis in which the components of an operator form a
diagonal matrix “almost always exists.” There’s a technical sense in which this is precisely true, but
that’s not what you need to know in order to manipulate matrices; the theorem that you need to have
is that every matrix is the limit of a sequence of diagonalizable matrices. If you encounter a matrix that
cannot be diagonalized, then you can approximate it as closely as you want by a matrix that can be
diagonalized, do your calculations, and finally take a limit. You already did this if you did problem 4.11,
but in that chapter it didn’t look anything like a problem involving matrices, much less diagonalization
of matrices. Yet it is the same.

Take the matrix (
1 2
0 1

)
You can’t diagonalize this. If you try the standard procedure, here is what happens:(

1 2
0 1

)(
v1

v2

)
= λ

(
v1

v2

)
then det

(
1− λ 2

0 1− λ

)
= 0 = (1− λ)2

The resulting equations you get for λ = 1 are

0v1 + 2v2 = 0 and 0 = 0

* There is a modification of this convention that appears in chapter 12, section 12.5
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This provides only one eigenvector, a multiple of

(
1
0

)
. You need two for a basis.

Change this matrix in any convenient way to make the two roots of the characteristic equation
different from each other. For example,

Mε =

(
1 + ε 2

0 1

)
The eigenvalue equation is now

(1 + ε− λ)(1− λ) = 0

and the resulting equations for the eigenvectors are

λ = 1 : εv1 + 2v2 = 0, 0 = 0 λ = 1 + ε : 0v1 + 2v2 = 0, εv2 = 0

Now you have two distinct eigenvectors,

λ = 1 :

(
1
−ε/2

)
, and λ = 1 + ε :

(
1
0

)
You see what happens to these vectors as ε→ 0.

Differential Equations at Critical
Problem 4.11 was to solve the damped harmonic oscillator for the critical case that b2 − 4km = 0.

m
d2x
dt2

= −kx− bdx
dt

(7.59)

Write this as a pair of equations, using the velocity as an independent variable.

dx
dt

= vx and
dvx
dt

= − k
m
x− b

m
vx

In matrix form, this is a matrix differential equation.

d
dt

(
x
vx

)
=

(
0 1

−k/m −b/m

)(
x
vx

)
This is a linear, constant-coefficient differential equation, but now the constant coefficients are matrices.
Don’t let that slow you down. The reason that an exponential form of solution works is that the
derivative of an exponential is an exponential. Assume such a solution here.(

x
vx

)
=

(
A
B

)
eαt, giving α

(
A
B

)
eαt =

(
0 1

−k/m −b/m

)(
A
B

)
eαt (7.60)

When you divide the equation by eαt, you’re left with an eigenvector equation where the eigenvalue
is α. As usual, to get a non-zero solution set the determinant of the coefficients to zero and the
characteristic equation is

det

(
0− α 1
−k/m −b/m− α

)
= α(α+ b/m) + k/m = 0
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with familiar roots
α =

(
− b±

√
b2 − 4km

)
/2m

If the two roots are equal you may not have distinct eigenvectors, and in this case you do not. No
matter, you can solve any such problem for the case that b2− 4km 6= 0 and then take the limit as this
approaches zero.

The eigenvectors come from the either one of the two equations represented by Eq. (7.60). Pick

the simpler one, αA = B. The column matrix

(
A
B

)
is then A

(
1
α

)
.

(
x
vx

)
(t) = A+

(
1
α+

)
eα+t +A−

(
1
α−

)
eα−t

Pick the initial conditions that x(0) = 0 and vx(0) = v0. You must choose some initial conditions in
order to apply this technique. In matrix terminology this is(

0
v0

)
= A+

(
1
α+

)
+A−

(
1
α−

)
These are two equations for the two unknowns

A+ +A− = 0, α+A+ + α−A− = v0, so A+ =
v0

α+ − α−
, A− = −A+

(
x
vx

)
(t) =

v0

α+ − α−

[(
1
α+

)
eα+t −

(
1
α−

)
eα−t

]
If you now take the limit as b2 → 4km, or equivalently as α− → α+, this expression is just the definition
of a derivative. (

x
vx

)
(t) −→ v0

d
dα

(
1
α

)
eαt = v0

(
teαt

(1 + αt)eαt

)
α = − b

2m
(7.61)

7.13 Eigenvalues and Google
The motivating idea behind the search engine Google is that you want the first items returned by a
search to be the most important items. How do you do this? How do you program a computer to
decide which web sites are the most important?

A simple idea is to count the number of sites that contain a link to a given site, and the site that
is linked to the most is then the most important site. This has the drawback that all links are treated
as equal. If your site is referenced from the home page of Al Einstein, it counts no more than if it’s
referenced by Joe Blow. This shouldn’t be.

A better idea is to assign each web page a numerical importance rating. If your site, #1, is
linked from sites #11, #59, and #182, then your rating, x1, is determined by adding those ratings
(and multiplying by a suitable scaling constant).

x1 = C
(
x11 + x59 + x182

)
Similarly the second site’s rating is determined by what links to it, as

x2 = C
(
x137 + x157983 + x1 + x876

)
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But this assumes that you already know the ratings of the sites, and that’s what you’re trying to find!
Write this in matrix language. Each site is an element in a huge column matrix {xi}.

xi = C
N∑
j=1

αijxj or

x1

x2
...

 = C


0 0 1 0 1 . . .
1 0 0 0 0 . . .
0 1 0 1 1 . . .
. . .


x1

x2
...


An entry of 1 indicates a link and a 0 is no link. This is an eigenvector problem with the eigenvalue
λ = 1/C, and though there are many eigenvectors, there is a constraint that lets you pick the right
one. All the xis must be non-negative, and there’s a theorem (Perron-Frobenius) guaranteeing that
you can find such an eigenvector. This algorithm is a key idea behind Google’s ranking methods. They
have gone well beyond this basic technique of course, but the spirit of the method remains.

See www-db.stanford.edu/˜backrub/google.html for more on this.

7.14 Special Operators
Symmetric
Antisymmetric
Hermitian
Antihermitian
Orthogonal
Unitary
Idempotent
Nilpotent
Self-adjoint

In no particular order of importance, these are names for special classes of operators. It is often
the case that an operator defined in terms of a physical problem will be in some way special, and it’s
then worth knowing the consequent simplifications. The first ones involve a scalar product.

Symmetric:
〈
~u, S(~v )

〉
=
〈
S(~u ),~v

〉
Antisymmetric:

〈
~u,A(~v )

〉
= −

〈
A(~u ),~v

〉
The inertia operator of Eq. (7.3) is symmetric.

I(~ω ) =

∫
dm~r ×

(
~ω × ~r

)
satisfies

〈
~ω1, I(~ω2)

〉
= ~ω1 . I(~ω2) =

〈
I(~ω1), ~ω2

〉
= I(~ω1) . ~ω2

Proof: Plug in.

~ω1 . I(~ω2) = ~ω1 .
∫
dm~r ×

(
~ω2 × ~r

)
= ~ω1 .

∫
dm

[
~ω2 r

2 − ~r (~ω2 .~r )
]

=

∫
dm

[
~ω1 . ~ω2 r

2 − (~ω1 .~r )(~ω2 .~r )
]

= I(~ω1) . ~ω2

What good does this do? You will be guaranteed that all eigenvalues are real, all eigenvectors are
orthogonal, and the eigenvectors form an orthogonal basis. In this example, the eigenvalues are moments
of inertia about the axes defined by the eigenvectors, so these moments better be real. The magnetic
field operator (problem 7.28) is antisymmetric.

Hermitian operators obey the same identity as symmetric:
〈
~u,H(~v )

〉
=
〈
H(~u ),~v

〉
. The

difference is that in this case you allow the scalars to be complex numbers. That means that the scalar
product has a complex conjugation implied in the first factor. You saw this sort of operator in the

http://www-db.stanford.edu/~backrub/google.html
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chapter on Fourier series, section 5.3, but it didn’t appear under this name. You will become familiar
with this class of operators when you hit quantum mechanics. Then they are ubiquitous. The same
theorem as for symmetric operators applies here, that the eigenvalues are real and that the eigenvectors
are orthogonal.

Orthogonal operators satisfy
〈
O(~u ),O(~v )

〉
=
〈
~u,~v

〉
. The most familiar example is rotation.

When you rotate two vectors, their magnitudes and the angle between them do not change. That’s all
that this equation says — scalar products are preserved by the transformation.

Unitary operators are the complex analog of orthogonal ones:
〈
U(~u), U(~v )

〉
=
〈
~u,~v

〉
, but all

the scalars are complex and the scalar product is modified accordingly.
The next couple you don’t see as often. Idempotent means that if you take the square of the

operator, it equals the original operator.
Nilpotent means that if you take successive powers of the operator you eventually reach the

zero operator.
Self-adjoint in a finite dimensional vector space is exactly the same thing as Hermitian. In

infinite dimensions it is not, and in quantum mechanics the important operators are the self-adjoint
ones. The issues involved are a bit technical. As an aside, in infinite dimensions you need one extra
hypothesis for unitary and orthogonal: that they are invertible.
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Problems

7.1 Draw a picture of the effect of these linear transformations on the unit square with vertices at
(0, 0), (1, 0), (1, 1), (0, 1). The matrices representing the operators are

(a)

(
1 2
3 4

)
, (b)

(
1 −2
2 −4

)
, (c)

(
−1 2
1 2

)
Is the orientation preserved or not in each case? See the figure at the end of section 7.7

7.2 Using the same matrices as the preceding question, what is the picture resulting from doing (a)
followed by (c)? What is the picture resulting from doing (c) followed by (a)? The results of section
7.4 may prove helpful.

(a, c)

(b, d)

(a+ b, c+ d)
7.3 Look again at the parallelogram that is the image of the unit square in
the calculation of the determinant. In Eq. (7.39) I used the cross product to
get its area, but sometimes a brute-force method is more persuasive. If the

transformation has components

(
a b
c d

)
The corners of the parallelogram

that is the image of the unit square are at (0, 0), (a, c), (a + b, c + d),
(b, d). You can compute its area as sums and differences of rectangles and
triangles. Do so; it should give the same result as the method that used a
cross product.

7.4 In three dimensions, there is an analogy to the geometric interpretation of the cross product as the

area of a parallelogram. The triple scalar product ~A . ~B × ~C is the volume of the parallelepiped having
these three vectors as edges. Prove both of these statements starting from the geometric definitions
of the two products. That is, from the AB cos θ and AB sin θ definitions of the dot product and the
magnitude of the cross product (and its direction).

7.5 Derive the relation ~v = ~ω × ~r for a point mass rotating about an axis. Refer to the figure before
Eq. (7.2).

7.6 You have a mass attached to four springs in a plane and that are in turn attached to four walls as
on page 145; the mass is at equilibrium. Two opposing spring have spring constant k1 and the other

two are k2. Push on the mass with a (small) force ~F and the resulting displacement of m is ~d = f(~F ),
defining a linear operator. Compute the components of f in an obvious basis and check a couple of
special cases to see if the displacement is in a plausible direction, especially if the two k’s are quite
different.

7.7 On the vector space of quadratic polynomials, degree ≤ 2, the operator d/dx is defined: the
derivative of such a polynomial is a polynomial. (a) Use the basis ~e0 = 1, ~e1 = x, and ~e2 = x2

and compute the components of this operator. (b) Compute the components of the operator d2/dx2.
(c) Compute the square of the first matrix and compare it to the result for (b). Ans: (a)2 = (b)

7.8 Repeat the preceding problem, but look at the case of cubic polynomials, a four-dimensional space.

7.9 In the preceding problem the basis 1, x, x2, x3 is too obvious. Take another basis, the Legendre
polynomials:

P0(x) = 1, P1(x) = x, P2(x) =
3

2
x2 − 1

2
, P3(x) =

5

2
x3 − 3

2
x
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and repeat the problem, finding components of the first and second derivative operators. Verify an
example explicitly to check that your matrix reproduces the effect of differentiation on a polynomial of
your choice. Pick one that will let you test your results.

7.10 What is the determinant of the inverse of an operator, explaining why?
Ans: 1/det(original operator)

7.11 Eight identical point masses m are placed at the corners of a cube that has one corner at the origin
of the coordinates and has its sides along the axes. The side of the cube is length = a. In the basis that
is placed along the axes as usual, compute the components of the inertia tensor. Ans: I11 = 8ma2

7.12 For the dumbbell rotating about the off-axis axis in Eq. (7.19), what is the time-derivative of ~L?

In very short time dt, what new direction does ~L take and what then is d~L? That will tell you d~L/dt.

Prove that this is ~ω × ~L.

7.13 A cube of uniform volume mass density, mass m, and side a has one corner at the origin of
the coordinate system and the adjacent edges are placed along the coordinate axes. Compute the
components of the tensor of inertia. Do it (a) directly and (b) by using the parallel axis theorem to
check your result.

Ans: ma2

 2/3 −1/4 −1/4
−1/4 2/3 −1/4
−1/4 −1/4 2/3


7.14 Compute the cube of Eq. (7.13) to find the trigonometric identities for the cosine and sine of
triple angles in terms of single angle sines and cosines. Compare the results of problem 3.9.

7.15 On the vectors of column matrices, the operators are matrices. For the two dimensional case take

M =

(
a b
c d

)
and find its components in the basis

(
1
1

)
and

(
1
−1

)
.

What is the determinant of the resulting matrix? Ans: M11 = (a+ b+ c+ d)/2, and the determinant
is still ad− bc.

7.16 Show that the tensor of inertia, Eq. (7.3), satisfies ~ω1 . I(~ω2) = I(~ω1) . ~ω2. What does this
identity tell you about the components of the operator when you use the ordinary orthonormal basis?
First determine in such a basis what ~e1 . I(~e2) is.

7.17 Use the definition of the center of mass to show that the two cross terms in Eq. (7.21) are zero.

7.18 Prove the Perpendicular Axis Theorem. This says that for a mass that lies flat in a plane, the
moment of inertia about an axis perpendicular to the plane equals the sum of the two moments of
inertia about the two perpendicular axes that lie in the plane and that intersect the third axis.

7.19 Verify in the conventional, non-matrix way that Eq. (7.61) really does provide a solution to the
original second order differential equation (7.59).

7.20 The Pauli spin matrices are

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
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Show that σxσy = iσz and the same for cyclic permutations of the indices x, y, z. Compare the
products σxσy and σyσx and the other pairings of these matrices.

7.21 Interpret ~σ . ~A as σxAx + σyAy + σzAz and prove that

~σ . ~A~σ . ~B = ~A . ~B + i~σ . ~A× ~B

where the first term on the right has to include the identity matrix for this to make sense.

7.22 Evaluate the matrix
I

I − ~σ . ~A
=
(
I − ~σ . ~A

)−1

Evaluate this by two methods: (a) You may assume that ~A is in some sense small enough for you to
manipulate by infinite series methods. This then becomes a geometric series that you can sum. Use
the results of the preceding problem.
(b) You can manipulate the algebra directly without series. I suggest that you recall the sort of
manipulation that allows you to write the complex number 1/(1−i) without any i’s in the denominator.
I suppose you could do it a third way, writing out the 2 × 2 matrix and explicitly inverting it, but I
definitely don’t recommend this.

7.23 Evaluate the sum of the infinite series defined by e−iσyθ. Where have you seen this result before?
The first term in the series must be interpreted as the identity matrix. Ans: I cos θ − iσy sin θ

7.24 For the moment of inertia about an axis, the integral is
∫
r2
⊥ dm. State precisely what this m

function must be for this to make sense as a Riemann-Stieltjes integral, Eq. (1.28). For the case that
you have eight masses, all m0 at the 8 corners of a cube of side a, write explicitly what this function
is and evaluate the moment of inertia about an axis along one edge of the cube.

7.25 The summation convention allows you to write some compact formulas. Evaluate these, assuming
that you’re dealing with three dimensions. Note Eq. (7.30). Define the alternating symbol εijk to be
1: It is totally anti-symmetric. That is, interchange any two indices and you change the sign of the
value.
2: ε123 = 1. [E.g. ε132 = −1, ε312 = +1]

δii, εijkAjBk, δijεijk, δmnAmBn, Smnumvn, unvn,

εijkεmnk = δimδjn − δinδjm

Multiply the last identity by AjBmCn and interpret.

7.26 The set of Hermite polynomials starts out as

H0 = 1, H1 = 2x, H2 = 4x2 − 2, H3 = 8x3 − 12x, H4 = 16x4 − 48x2 + 12,

(a) For the vector space of cubic polynomials in x, choose a basis of Hermite polynomials and compute
the matrix of components of the differentiation operator, d/dx.
(b) Compute the components of the operator d2/dx2 and show the relation between this matrix and
the preceding one.

7.27 On the vector space of functions of x, define the translation operator

Taf = g means g(x) = f(x− a)
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This picks up a function and moves it by a to the right.
(a) Pick a simple example function f and test this definition graphically to verify that it does what I
said.
(b) On the space of cubic polynomials and using a basis of your choice, find the components of this
operator.
(c) Square the resulting matrix and verify that the result is as it should be.
(d) What is the inverse of the matrix? (You should be able to guess the answer and then verify it. Or
you can work out the inverse the traditional way.)
(e) What if the parameter a is huge? Interpret some of the components of this first matrix and show
why they are clearly correct. (If they are.)
(f) What is the determinant of this operator?
(g) What are the eigenvectors and eigenvalues of this operator?

7.28 The force by a magnetic field on a moving charge is ~F = q~v × ~B. The operation ~v × ~B defines

a linear operator on ~v, stated as f(~v ) = ~v × ~B. What are the components of this operator expressed

in terms of the three components of the vector ~B? What are the eigenvectors and eigenvalues of this
operator? For this last part, pick the basis in which you want to do the computations. If you’re not
careful about this choice, you are asking for a lot of algebra. Ans: eigenvalues: 0, ±iB

7.29 In section 7.8 you have an operator M expressed in two different bases. What is its determinant
computed in each basis?

7.30 In a given basis, an operator has the values

A(~e1) = ~e1 + 3~e2 and A(~e2) = 2~e1 + 4~e4

(a) Draw a picture of what this does. (b) Find the eigenvalues and eigenvectors and determinant of A
and see how this corresponds to the picture you just drew.

7.31 The characteristic polynomial of a matrix M is det(M − λI). I is the identity matrix and λ is
the variable in the polynomial. Write the characteristic polynomial for the general 2× 2 matrix. Then
in place of λ in this polynomial, put the matrix M itself. The constant term will have to include the
factor I as usual. For this 2× 2 case verify the Cayley-Hamilton Theorem, that the matrix satisfies its
own characteristic equation, making this polynomial in M the zero matrix.

7.32 (a) For the magnetic field operator defined in problem 7.28, place ẑ = ~e3 along the direction of
~B. Then take ~e1 = (x̂ − i ŷ)/

√
2, ~e2 = (x̂ + i ŷ)/

√
2 and find the components of the linear operator

representing the magnetic field. (b) A charged particle is placed in this field and the equations of

motion are m~a = ~F = q~v × ~B. Translate this into the operator language with a matrix like that of

problem 7.28, and write ~F = m~a in this language and this basis. Ans: (part) mr̈1 = −iqBr1, where
r1 = (x+ iy)/

√
2. mr̈2 = +iqBr2, where r2 = (x− iy)/

√
2.

7.33 For the operator in problem 7.27 part (b), what are the eigenvectors and eigenvalues?

7.34 A nilpotent operator was defined in section 7.14. For the operator defined in problem 7.8, show
that it is nilpotent. How does this translate into the successive powers of its matrix components?

7.35 A cube of uniform mass density has side a and mass m. Evaluate its moment of inertia about an
axis along a longest diagonal of the cube. Note: If you find yourself entangled in a calculation having
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multiple integrals with hopeless limits of integration, toss it out and start over. You may even find
problem 7.18 useful. Ans: ma2/6

7.36 Show that the set of all 2× 2 matrices forms a vector space. Produce a basis for it, and so what
is its dimension?

7.37 In the vector space of the preceding problem, the following transformation defines an operator.
f(M) = SMS−1. For S, use the rotation matrix of Eq. (7.13) and compute the components of this
operator f . The obvious choice of basis would be matrices with a single non-zero element 1. Instead,
try the basis I , σx, σy, σz. Ans: A rotation by 2α about the y-axis, e.g. f(~e1 ) = ~e1 cos 2α−~e3 sin 2α.

7.38 What are the eigenvectors and eigenvalues of the operator in the preceding problem? Now you’ll
be happy I suggested the basis that I did.

7.39 (a) The commutator of two matrices is defined to be [A,B ] = AB − BA. Show that this
commutator satisfies the Jacobi identity.

[A, [B,C ]] + [B, [C,A ]] + [C, [A,B ]] = 0

(b) The anti-commutator of two matrices is {A,B } = AB +BA. Show that there is an identity like
the Jacobi identity, but with one of the two commutators (the inner one or the outer one) replaced by
an anti-commutator. I’ll leave it to you to figure out which.

7.40 Diagonalize each of the Pauli spin matrices of problem 7.20. That is, find their eigenvalues and
specify the respective eigenvectors as the basis in which they are diagonal.

7.41 What are the eigenvalues and eigenvectors of the rotation matrix Eq. (7.13)? Translate the answer
back into a statement about rotating vectors, not just their components.

7.42 Same as the preceding problem, but replace the circular trigonometric functions in Eq. (7.13)
with hyperbolic ones. Also change the sole minus sign in the matrix to a plus sign. Draw pictures of
what this matrix does to the basis vectors. What is its determinant?

7.43 Compute the eigenvalues and eigenvectors of the matrix Eq. (7.18). Interpret each.

7.44 Look again at the vector space of problem 6.36 and use the basis f1, f2, f3 that you constructed
there. (a) In this basis, what are the components of the two operators described in that problem?
(b) What is the product of these two matrices? Do it in the order so that it represents the composition
of the first rotation followed by the second rotation.
(c) Find the eigenvectors of this product and from the result show that the combination of the two
rotations is a third rotation about an axis that you can now specify. Can you anticipate before solving
it, what one of the eigenvalues will be?
(d) Does a sketch of this rotation axis agree with what you should get by doing the two original rotations
in order?

7.45 Verify that the Gauss elimination method of Eq. (7.44) agrees with (7.38).

7.46 What is the determinant of a nilpotent operator? See problem 7.34.

7.47 (a) Recall (or look up) the method for evaluating a determinant using cofactors (or minors). For
2×2, 3×3, and in fact, for N×N arrays, how many multiplication operations are required for this.
Ignore the time to do any additions and assume that a computer can do a product in 10−10 seconds.
How much time does it take by this method to do the determinant for 10×10, 20×20, and 30×30
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arrays? Express the times in convenient units.
(b) Repeat this for the Gauss elimination algorithm at Eq. (7.44). How much time for the above three
matrices and for 100×100 and 1000×1000? Count division as taking the same time as multiplication.
Ans: For the first method, 30×30 requires 10 000×age of universe. For Gauss it is 3µs.

7.48 On the vector space of functions on 0 < x < L, (a) use the basis of complex exponentials,
Eq. (5.20), and compute the matrix components of d/dx.
(b) Use the basis of Eq. (5.17) to do the same thing.

7.49 Repeat the preceding problem, but for d2/dx2. Compare the result here to the squares of the
matrices from that problem.

7.50 Repeat problem 7.27 but using a different vector space of functions with basis
(a) enπix/L, (n = 0, ±1, ±2, . . .)
(b) cos(nπx/L), and sin(mπx/L).
These functions will be a basis in the set of periodic functions of x, and these will be very big matrices.

7.51 (a) What is the determinant of the translation operator of problem 7.27?
(b) What is the determinant of d/dx on the vector space of problem 7.26?

7.52 (a) Write out the construction of the trace in the case of a three dimensional operator, analogous
to Eq. (7.47). What are the coefficients of ε2 and ε3? (b) Back in the two dimensional case, draw a
picture of what (I + εf) does to the basis vectors to first order in ε.

7.53 Evaluate the trace for arbitrary dimension. Use the procedure of Gauss elimination to compute
the determinant, and note at every step that you are keeping terms only through ε0 and ε1. Any higher

orders can be dropped as soon as they appear. Ans:
∑N
i=1 fii

7.54 The set of all operators on a given vector space forms a vector space.* (Show this.) Consider
whether you can or should restrict yourself to real numbers or if you ought to be dealing with complex
scalars.
Now what about the list of operators in section 7.14. Which of them form vector spaces?
Ans: Yes(real), Yes(real), No, No, No, No, No, No, No

7.55 In the vector space of cubic polynomials, choose the basis

~e0 = 1, ~e1 = 1 + x, ~e2 = 1 + x+ x2, ~e3 = 1 + x+ x2 + x3.

In this basis, compute the matrix of components of the operator P , where this is the parity operator,
defined as the operator that takes the variable x and changes it to −x. For example P (~e1) = 1 − x.
Compute the square of the resulting matrix. What is the determinant of P ? If you had only the
quadratic polynomials with basis ~e0, ~e1, ~e2, what is the determinant? What about linear polynomials,
with basis ~e0, ~e1? Maybe even constant polynomials?

7.56 On the space of quadratic polynomials define an operator that permutes the coefficients: f(x) =
ax2 + bx + c, then Of = g has g(x) = bx2 + cx + a. Find the eigenvalues and eigenvectors of this
operator.

* If you’re knowledgeable enough to recognize the difficulty caused by the question of domains,
you’ll recognize that this is false in infinite dimensions. But if you know that much then you don’t need
to be reading this chapter.
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7.57 The results in Eq. (7.36) is a rotation about some axis. Where is it? Notice that a rotation about
an axis leaves the axis itself alone, so this is an eigenvector problem. If it leaves the vector alone, you
even know what the eigenvalue is, so you can easily find the vector. Repeat for the other rotation,
found in Eq. (7.37) Ans: ~e1 + ~e2 − ~e3

7.58 Find the eigenvectors and eigenvalues of the matrices in problem 7.1.



Multivariable Calculus
.

The world is not one-dimensional, and calculus doesn’t stop with a single independent variable. The
ideas of partial derivatives and multiple integrals are not too different from their single-variable coun-
terparts, but some of the details about manipulating them are not so obvious. Some are downright
tricky.

8.1 Partial Derivatives
The basic idea of derivatives and of integrals in two, three, or more dimensions follows the same pattern
as for one dimension. They’re just more complicated.

The derivative of a function of one variable is defined as

df(x)

dx
= lim

∆x→0

f(x+ ∆x)− f(x)

∆x
(8.1)

You would think that the definition of a derivative of a function of x and y would then be defined as

∂f (x, y)

∂x
= lim

∆x→0

f(x+ ∆x, y)− f(x, y)

∆x
(8.2)

and more-or-less it is. The ∂ notation instead of d is a reminder that there are other coordinates floating
around that are temporarily being treated as constants.

In order to see why I used the phrase “more-or-less,” take a very simple example: f(x, y) = y.
Use the preceding definition, and because y is being held constant, the derivative ∂f/∂x = 0. What
could be easier?

I don’t like these variables so I’ll switch to a different set of coordinates, x′ and y′:

y′ = x+ y and x′ = x

What is ∂f/∂x′ now?
f(x, y) = y = y′ − x = y′ − x′

Now the derivative of f with respect to x′ is −1, because I’m keeping the other coordinate fixed. Or is
the derivative still zero because x′ = x and I’m taking ∂f/∂x and why should that change just because
I’m using a different coordinate system?

The problem is that the notation is ambiguous. When you see ∂f/∂x it doesn’t tell you what
to hold constant. Is it to be y or y′ or yet something else? In some contexts the answer is clear and
you won’t have any difficulty deciding, but you’ve already encountered cases for which the distinction
is crucial. In thermodynamics, when you add heat to a gas to raise its temperature does this happen at
constant pressure or at constant volume or with some other constraint? The specific heat at constant
pressure is not the same as the specific heat at constant volume; it is necessarily bigger because during
an expansion some of the energy has to go into the work of changing the volume. This sort of derivative
depends on type of process that you’re using, and for a classical ideal gas the difference between the
two molar specific heats obeys the equation

cp − cv = R

If the gas isn’t ideal, this equation is replaced by a more complicated and general one, but the same
observation applies, that the two derivatives dQ/dT aren’t the same.

179
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In thermodynamics there are so many variables in use that there is a standard notation for a
partial derivative, indicating exactly which other variables are to be held constant.(

∂U
∂V

)
T

and

(
∂U
∂V

)
P

represent the change in the internal energy of an object per change in volume during processes in which
respectively the temperature and the pressure are held constant. In the previous example with the
function f = y, this says (

∂f
∂x

)
y

= 0 and

(
∂f
∂x

)
y′

= −1

This notation is a way to specify the direction in the x-y plane along which you’re taking the derivative.

8.2 Chain Rule
For functions of one variable, the chain rule allows you to differentiate with respect to still another
variable: y a function of x and x a function of t allows

dy
dt

=
dy
dx
dx
dt

(8.3)

You can derive this simply from the definition of a derivative.

∆y
∆t

=
y
(
x(t+ ∆t)

)
− y
(
x(t)

)
∆t

=
y
(
x(t+ ∆t)

)
− y
(
x(t)

)
x(t+ ∆t)− x(t)

. x(t+ ∆t)− x(t)
∆t

=
∆y
∆x

. ∆x
∆t

Take the limit of this product as ∆t → 0. Necessarily then you have that ∆x → 0 too (unless the
derivative doesn’t exist anyway). The second factor is then the definition of the derivative dx/dt, and
the first factor is the definition of dy/dx. The Leibnitz notation as written in Eq. (8.3) leads you to
the required proof.

What happens with more variables? Roughly the same thing but with more manipulation, the
same sort of manipulation that you use to derive the rule for differentiating more complicated functions
of one variable (as in section 1.5).

Compute
d
dt
f
(
x(t), y(t)

)
Back to the ∆’s. The manipulation is much like the preceding except that you have to add and subtract
a term in the second line.

∆f
∆t

=
f
(
x(t+ ∆t), y(t+ ∆t)

)
− f

(
x(t), y(t)

)
∆t

=
f
(
x(t+ ∆t), y(t+ ∆t)

)
− f

(
x(t), y(t+ ∆t)

)
+ f

(
x(t), y(t+ ∆t)

)
− f

(
x(t), y(t)

)
∆t

=
f
(
x(t+ ∆t), y(t+ ∆t)

)
− f

(
x(t), y(t+ ∆t)

)
x(t+ ∆t)− x(t)

. x(t+ ∆t)− x(t)
∆t

+
f
(
x(t), y(t+ ∆t)

)
− f

(
x(t), y(t)

)
y(t+ ∆t)− y(t)

. y(t+ ∆t)− y(t)
∆t

=
∆f
∆x

. ∆x
∆t

+
∆f
∆y

. ∆y
∆t
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In the first factor of the first term, ∆f/∆x, the variable x is changed but y is not. In the first factor
of the second term, the reverse holds true. The limit of this expression is then

lim
∆t→0

∆f
∆t

=
df
dt

=

(
∂f
∂x

)
y

dx
dt

+

(
∂f
∂y

)
x

dy
dt

(8.4)

If these manipulations look familiar, it’s probably because they mimic the procedures of section 1.5.
That case is like this one, with the special values x ≡ y ≡ t.

Example: (When you want to check out an equation, you should construct an example so that
it reveals a lot of structure without requiring a lot of calculation.)

f(x, y) = Axy2, and x(t) = Ct3, y(t) = Dt2

First do it using the chain rule.

df
dt

=

(
∂f
∂x

)
y

dx
dt

+

(
∂f
∂y

)
x

dy
dt

=
(
Ay2

)(
3Ct2

)
+
(
2Axy

)(
2Dt

)
=
(
A(Dt2)2

)(
3Ct2

)
+
(
2A(Ct3)(Dt2)

)(
2Dt

)
= 7ACD2t6

Now repeat the calculation by first substituting the values of x and y and then differentiating.

df
dt

=
d
dt

[
A(Ct3)(Dt2)2

]
=
d
dt

[
ACD2t7

]
= 7ACD2t6

What if f also has an explicit t in it: f
(
t, x(t), y(t)

)
? That simply adds another term. Remem-

ber, dt/dt = 1.
df
dt

=

(
∂f
∂t

)
x,y

+

(
∂f
∂x

)
y,t

dx
dt

+

(
∂f
∂y

)
x,t

dy
dt

(8.5)

Sometimes you see the chain rule written in a slightly different form. You can change coordinates
from (x, y) to (r, φ), switching from rectangular to polar. You can switch from (x, y) to a system such
as (x′, y′) = (x+ y, x− y). The function can be expressed in the new coordinates explicitly. Solve for
x, y in terms of r, φ or x′, y′ and then differentiate with respect to the new coordinate. OR you can
use the chain rule to differentiate with respect to the new variable.(

∂f
∂x′

)
y′

=

(
∂f
∂x

)
y

(
∂x
∂x′

)
y′

+

(
∂f
∂y

)
x

(
∂y
∂x′

)
y′ (8.6)

This is actually not a different equation from Eq. (8.4). It only looks different because in addition to t
there’s another variable that you have to keep constant: t→ x′, and y′ is constant.

Example: When you switch from rectangular to plane polar coordinates what is ∂f/∂φ in terms
of the x and y derivatives?

x = r cosφ, y = r sinφ, so(
∂f
∂φ

)
r

=

(
∂f
∂x

)
y

(
∂x
∂φ

)
r

+

(
∂f
∂y

)
x

(
∂y
∂φ

)
r

=

(
∂f
∂x

)
y

(−r sinφ) +

(
∂f
∂y

)
x

(r cosφ)
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If f(x, y) = x2 +y2 this better be zero, because I’m finding how f changes when r is held fixed. Check
it out; it is. The equation (8.6) presents the form that is most important in many applications.

Example: What is the derivative of y with respect to φ at constant x?(
∂y
∂φ

)
x

=

(
∂y
∂r

)
φ

(
∂r
∂φ

)
x

+

(
∂y
∂φ

)
r

(
∂φ
∂φ

)
x

= [sinφ] .
[
r

sinφ
cosφ

]
+ [r cosφ] . 1 = r

1

cosφ
(8.7)

φ

∆φ

r∆φ ∆y

You see a graphical interpretation of the calculation in this diagram: φ changes by ∆φ, so the
coordinate moves up by ∆y (x is constant). The angle between the lines ∆y and r∆φ is φ itself. This
means that ∆y ÷ r∆φ = 1/ cosφ, and that is precisely the preceding equation for

(
∂y/∂φ

)
x.

In doing the calculation leading to Eq. (8.7), do you see how to do the calculation for
(
∂r/∂φ

)
x?

Differentiate the equation x = r cosφ with respect to φ.

x = r cosφ →
(
∂x
∂φ

)
x

= 0 =

(
∂r
∂φ

)
x

cosφ+ r

(
∂ cosφ
∂φ

)
x

=

(
∂r
∂φ

)
x

cosφ− r sinφ

Solve for the unknown derivative and you have the result.
Another example: f(x, y) = x2 − 2xy. The transformation between rectangular and polar

coordinates is x = r cosφ, y = r sinφ. What is
(
∂f/∂x

)
r?(

∂f
∂x

)
r

=

(
∂f
∂x

)
y

(
∂x
∂x

)
r

+

(
∂f
∂y

)
x

(
∂y
∂x

)
r

= (2x− 2y) + (−2x)

(
∂y
∂x

)
r(

∂y
∂x

)
r

=

(
∂y/∂φ

)
r(

∂x/∂φ
)
r

=
r cosφ
−r sinφ

= − cotφ (8.8)

(Remember problem 1.49?) Put these together and(
∂f
∂x

)
r

= (2x− 2y) + (−2x)(− cotφ) = 2x− 2y + 2x cotφ (8.9)

The brute-force way to do this is to express the function f explicitly in terms of the variables x and r,
eliminating y and φ.

y = r sinφ =
√
r2 − x2, then(

∂f
∂x

)
r

=
∂
∂x

[
x2 − 2x

√
r2 − x2

]
r

= 2x− 2
√
r2 − x2 − 2x

1√
r2 − x2

(−x) = 2x+
−2
(
r2 − x2

)
+ 2x2

√
r2 − x2

(8.10)

You can see that this is the same as the equation (8.9) if you look at the next-to-last form of equation
(8.10).

x√
r2 − x2

=
r cosφ√

r2 − r2 cos2 φ
= cotφ
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∆x

∆yIs this result reasonable? Look at what happens to y when you change x by
a little bit. Constant r is a circle, and if φ puts the position over near the right
side (ten or twenty degrees), a little change in x causes a big change in y as shown
by the rectangle. As drawn, ∆y/∆x is big and negative, sort of like the (negative)
cotangent of φ as in Eq. (8.8).

8.3 Differentials
For a function of a single variable you can write

df =
df
dx
dx (8.11)

and read (sort of) that the infinitesimal change in the function f is the slope times the infinitesimal
change in x. Does this really make any sense? What is an infinitesimal change? Is it zero? Is dx a
number or isn’t it? What’s going on?

It is possible to translate this intuitive idea into something fairly simple and that makes perfectly
good sense. Once you understand what it really means you’ll be able to use the intuitive idea and its
notation with more security.

Let g be a function of two variables, x and h.

g(x, h) =
df(x)

dx
h has the property that

1

h

∣∣f(x+ h)− f(x)− g(x, h)
∣∣ −→ 0 as h→ 0

That is, the function g(x, h) approximates very well the change in f as you go from x to x+ h. The
difference between g and ∆f = f(x+h)− f(x) goes to zero so fast that even after you’ve divided by
h the difference goes to zero.

The usual notation is to use the symbol dx instead of h and to call the function df instead* of
g.

df(x, dx) = f ′(x) dx has the property that

1

dx

∣∣f(x+ dx)− f(x)− df(x, dx)
∣∣ −→ 0 as dx→ 0

(8.12)

In this language dx is just another variable that can go from −∞ to +∞ and df is just a specified
function of two variables. The point is that this function is useful because when the variable dx is small
df provides a very good approximation to the increment ∆f in f .

What is the volume of the peel on an orange? The volume of a sphere is V = 4πr3/3, so its
differential is dV = 4πr2 dr. If the radius of the orange is 3 cm and the thickness of the peel is 2 mm,
the volume of the peel is

dV = 4πr2 dr = 4π(3 cm)2(0.2 cm) = 23 cm3

The whole volume of the orange is 4
3π(3 cm)3 = 113 cm3, so this peel is about 20% of the volume.

Differentials in Several Variables
The analog of Eq. (8.11) for several variables is

df = df(x, y, dx, dy) =

(
∂f
∂x

)
y
dx+

(
∂f
∂y

)
x
dy (8.13)

* Who says that a variable in algebra must be a single letter? You would never write a computer
program that way. d Fred2

/
d Fred = 2 Fred is perfectly sensible.
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Roughly speaking, near a point in the x-y plane, the value of the function f changes as a linear function
of the coordinates as you move a (little) distance away. This function df describes this change to high
accuracy. It bears the same relation to Eq. (8.4) that (8.11) bears to Eq. (8.3).

For example, take the function f(x, y) = x2 + y2. At the point (x, y) = (1, 2), the differential
is

df(1, 2, dx, dy) = (2x)

∣∣∣∣
(1,2)

dx+ (2y)

∣∣∣∣
(1,2)

dy = 2dx+ 4dy

so that

f(1.01, 1.99) ≈ f(1, 2) + df(1, 2, .01,−.01) = 12 + 22 + 2(.01) + 4(−.01) = 4.98

compared to the exact answer, 4.9802.

The equation analogous to (8.12) is

df(x, y, dx, dy) has the property that
1

dr

∣∣f(x+ dx, y + dy)− f(x, y)− df(x, y, dx, dy)
∣∣ −→ 0 as dr → 0 (8.14)

where dr =
√
dx2 + dy2 is the distance to (x, y). It’s not that you will be able to do a lot more with

this precise definition than you could with the intuitive idea. You will however be able to work with a
better understanding of you’re actions. When you say that “dx is an infinitesimal” you can understand
that this means simply that dx is any number but that the equations using it are useful only for very
small values of that number.

You can’t use this notation for everything as the notation for the derivative demonstrates. The
symbol “df/dx” does not mean to divide a function by a length; it refers to a well-defined limiting
process. This notation is however constructed so that it provides an intuitive guide, and even if you do
think of it as the function df divided by the variable dx, you get the right answer.

Why should such a thing as a differential exist? It’s essentially the first terms after the constant
in the power series representation of the original function: section 2.5. But how to tell if such a series
works anyway? I’ve been notably cavalier about proofs. The answer is that there is a proper theorem
guaranteeing Eq. (8.14) works. It is that if both partial derivatives exist in the neighborhood of the
expansion point and if these derivatives are continuous there, then the differential exists and has the
value that I stated in Eq. (8.13). It has the properties stated in Eq. (8.14). For all this refer to one of
many advanced calculus texts, such as Apostol’s.*

8.4 Geometric Interpretation
For one variable, the picture of the differential is simple. Start with a graph of the function and at a
point (x, y) = (x, f(x)), find the straight line that best approximates the function in the immediate
neighborhood of that point. Now set up a new coordinate system with origin at this (x, y) and call the
new coordinates dx and dy. In this coordinate system the straight line passes through the origin and
the slope is the derivative df(x)/dx. The equation for the straight line is then Eq. (8.11), describing
the differential.

dy =
df(x)

dx
dx

* Mathematical Analysis, Addison-Wesley
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y

x

dy

dx

For two variables, the picture parallels this one. At a point (x, y, z) = (x, y, f (x, y)) find the
plane that best approximates the function in the immediate neighborhood of that point. Set up a
new coordinate system with origin at this (x, y, z) and call the new coordinates dx, dy, and dz. The
equation for a plane that passes through this origin is αdx + β dy + γ dz = 0, and for this best
approximating plane, the equation is nothing more than the equation for the differential, Eq. (8.13).

dz =

(
∂f (x, y)

∂x

)
y
dx+

(
∂f (x, y)

∂y

)
x
dy

dx

dy

dz

The picture is a bit harder to draw, but with a little practice you can do it.

For the case of three independent variables, I’ll leave the sketch to you.

Examples
The temperature on the surface of a heated disk is given to be T (r, φ) = T0 + T1

(
1− r2/a2

)
, where

a is the radius of the disk and T0 and T1 are constants. If you start at position x = c < a, y = 0 and
move parallel to the y-axis at speed v0 what is the rate of change of temperature that you feel?

Use Eq. (8.4), and the relation r =
√
x2 + y2.

dT
dt

=

(
∂T
∂r

)
φ

dr
dt

+

(
∂T
∂φ

)
r

dφ
dt

=

(
∂T
∂r

)
φ

[(
∂r
∂x

)
y

dx
dt

+

(
∂r
∂y

)
x

dy
dt

]

=
(
−2T1

r
a2

)[ y√
x2 + y2

v0

]
= −2T1

√
c2 + v2

0t
2

a2
. v2

0t√
c2 + v2

0t
2

= −2T1
v2

0t
a2

As a check, the dimensions are correct (are they?). At time zero, this vanishes, and that’s what
you should expect because at the beginning of the motion you’re starting to move in the direction
perpendicular to the direction in which the temperature is changing. The farther you go, the more
nearly parallel to the direction of the radius you’re moving. If you are moving exactly parallel to the
radius, this time-derivative is easier to calculate; it’s then almost a problem in a single variable.

dT
dt
≈ dT
dr

dr
dt
≈ −2T1

r
a2
v0 ≈ −2T1

V0t
a2
v0

So the approximate and the exact calculation agree. In fact they agree so well that you should try to
find out if this is a lucky coincidence or if there some special aspect of the problem that you might have
seen from the beginning and that would have made the whole thing much simpler.
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8.5 Gradient
The equation (8.13) for the differential has another geometric interpretation. For a function such as
f(x, y) = x2 + 4y2, the equations representing constant values of f describe curves in the x-y plane.
In this example, they are ellipses. If you start from any fixed point in the plane and start to move away
from it, the rate at which the value of f changes will depend on the direction in which you move. If you
move along the curve defined by f = constant then f won’t change at all. If you move perpendicular
to that direction then f may change a lot.

The gradient of f at a point is the vector pointing in
the direction in which f is increasing most rapidly, and
the component of the gradient along that direction is the
derivative of f with respect to the distance in that direction.

To relate this to the partial derivatives that we’ve been using, and to understand how to compute
and to use the gradient, return to Eq. (8.13) and write it in vector form. Use the common notation for
the basis: x̂ and ŷ. Then let

d~r = dxx̂+ dy ŷ and ~G =

(
∂f
∂x

)
y
x̂+

(
∂f
∂y

)
x
ŷ (8.15)

The equation for the differential is now

df = df(x, y, dx, dy) = ~G . d~r (8.16)

~G

d~r

θ

Because you know the properties of the dot product, you know that this is Gdr cos θ and it is

largest when the directions of d~r and of ~G are the same. It’s zero when they are perpendicular. You
also know that df is zero when d~r is in the direction along the curve where f is constant. The vector
~G is therefore perpendicular to this curve. It is in the direction in which f is changing most rapidly.
Also because df = Gdr cos 0, you see that G is the derivative of f with respect to distance along that

direction. ~G is the gradient.

For the example f(x, y) = x2 +4y2, ~G = 2xx̂+8y ŷ. At each point in the x-y plane it provides
a vector showing the steepness of f at that point and the direction in which f is changing most rapidly.

Notice that the gradient vectors are twice as long where the ellipses are closest together as
they are at the ends where the ellipses are farthest apart. The function changes more rapidly in the
y-direction.
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The U.S.Coast and Geodetic Survey makes a large number of maps, and hikers are particularly
interested in the contour maps. They show curves indicating the lines of constant altitude. When
Apollo 16 went to the Moon in 1972, NASA prepared a similar map for the astronauts, and this is a
small segment of that map. The contour lines represent 10 meter increments in altitude.*

The gravitational potential energy of a mass m near the Earth’s (or Moon’s) surface is mgh.
This divided by m is the gravitational potential, gh. These lines of constant altitude are then lines of
constant potential, equipotentials of the gravitational field. Walk along an equipotential and you are
doing no work against gravity, just walking on the level.

8.6 Electrostatics
The electric field can be described in terms of a gradient. For a single point charge at the origin the
electric field is

~E(x, y, z) =
kq
r2
r̂

where r̂ is the unit vector pointing away from the origin and r is the distance to the origin. This

vector can be written as a gradient. Because this ~E is everywhere pointing away from the origin, it’s
everywhere perpendicular to the sphere centered at the origin.

~E = −grad
kq
r

You can verify this a several ways. The first is to go straight to the definition of a gradient. (There’s
a blizzard of minus signs in this approach, so have a little patience. It will get better.) This function is
increasing most rapidly in the direction moving toward the origin. (1/r) The derivative with respect to
distance in this direction is −d/dr, so
−d/dr(1/r) = +1/r2. The direction of greatest increase is along −r̂, so grad (1/r) = −r̂(1/r2). But
the relation to the electric field has another −1 in it, so

−grad
kq
r

= +r̂
kq
r2

There’s got to be a better way.
Yes, instead of insisting that you move in the direction in which the function is increasing most

rapidly, simply move in the direction in which it is changing most rapidly. The derivative with respect
to distance in that direction is the component in that direction and the plus or minus signs take care of
themselves. The derivative with respect to r of (1/r) is −1/r2. That is the component in the direction
r̂, the direction in which you took the derivative. This says grad (1/r) = −r̂(1/r2). You get the same
result as before but without so much fussing. This also makes it look more like the familiar ordinary
derivative in one dimension.

* history.nasa.gov/alsj/a16/ scan by Robin Wheeler

http://history.nasa.gov/alsj/a16/
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Still another way is from the Stallone-Schwarzenegger brute force school of computing. Put
everything in rectangular coordinates and do the partial derivatives using Eqs. (8.15) and (8.6).(

∂(1/r)
∂x

)
y,z

=

(
∂(1/r)
∂r

)
θ,φ

(
∂r
∂x

)
y,z

= − 1

r2

∂
∂x

√
x2 + y2 + z2 = − 1

r2

x√
x2 + y2 + z2

Repeat this for y and z with similar results and assemble the output.

−grad
kq
r

=
kq
r2

xx̂+ y ŷ + z ẑ√
x2 + y2 + z2

=
kq
r2

~r
r

=
kq
r2
r̂

The symbol ∇ is commonly used for the gradient operator. This vector operator will appear in
several other places, the curl of a vector field will be the one you see most often.

∇ = x̂
∂
∂x

+ ŷ
∂
∂y

+ ẑ
∂
∂z

(8.17)

From Eq. (8.15) you have
grad f = ∇f (8.18)

8.7 Plane Polar Coordinates
When doing integrals in the plane there are many coordinate systems to choose from, but rectangular
and polar coordinates are the most common. You can find the element of area with a simple sketch:
The lines (or curves) of constant coordinate enclose an area that is, for small enough increments in the
coordinates, a rectangle. Then you just multiply the sides. In one case ∆x . ∆y and in the other case
∆r . r∆φ.

x x+ dx

y
y + dy

r r + dr

φ

φ+ dφ

Vibrating Drumhead
A circular drumhead can vibrate in many complicated ways. The simplest and lowest frequency mode
is approximately

z(r, φ, t) = z0

(
1− r2/R2

)
cosωt (8.19)

where R is the radius of the drum and ω is the frequency of oscillation. (The shape is more accurately
described by Eq. (4.22) but this approximation is pretty good for a start.) The kinetic energy density

of the moving drumhead is u = 1
2σ
(
∂z/∂t

)2
. That is, in a small area ∆A, the kinetic energy is

∆K = u∆A and the limit as ∆A → 0 of ∆K/∆A is the area-energy-density. In the same way, σ is
the area mass density, dm/dA.

What is the total kinetic energy because of this oscillation? It is
∫
udA =

∫
ud2r. To evaluate

it, use polar coordinates and integrate over the area of the drumhead. The notation d2r is another
notation for dA just as d3r is used for a piece of volume.
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∫
udA =

∫ R

0
r dr

∫ 2π

0
dφ

σ
2
z2

0

(
(1− r2/R2)ω sinωt

)2
=
σ
2

2πz2
0ω

2 sin2 ωt
∫ R

0
dr r

(
1− r2/R2

)2
= σπz2

0ω
2 sin2 ωt

1

2

∫ r=R

r=0
d(r2)

(
1− r2/R2

)2
= σπz2

0ω
2 sin2 ωt

1

2
R2 1

3

(
1− r2/R2

)3
(−1)

∣∣∣∣r=R
0

=
1

6
σR2πz2

0ω
2 sin2 ωt

(8.20)

See problem 8.10 and following for more on this.*

8.8 Cylindrical, Spherical Coordinates

The three common coordinate systems used in three dimensions are rectangular, cylindrical, and spher-
ical coordinates, and these are the ones you have to master. When you need to use prolate spheroidal
coordinates you can look them up.

x

z

y

φ

r

z

φ

θ r

−∞ < x <∞ 0 < r <∞ 0 < r <∞
−∞ < y <∞ 0 < φ < 2π 0 < θ < π
−∞ < z <∞ −∞ < z <∞ 0 < φ < 2π
The surfaces that have constant values of these coordinates are planes in rectangular coordinates;

planes and cylinders in cylindrical; planes, spheres, and cones in spherical. In every one of these cases
the constant-coordinate surfaces intersect each other at right angles, hence the name “orthogonal
coordinate” systems. In spherical coordinates I used the coordinate θ as the angle from the z-axis and
φ as the angle around the axis. In mathematics books these are typically reversed, so watch out for
the notation. On the globe of the Earth, φ is like the longitude and θ like the latitude except that
longitude goes 0 to 180◦ East and 0 to 180◦ West from the Greenwich meridian instead of zero to 2π.
Latitude is 0 to 90◦ North or South from the equator instead of zero to π from the pole. Except for
the North-South terminology, latitude is 90◦ − θ.

The volume elements for these systems come straight from the drawings, just as the area elements
do in plane coordinates. In every case you can draw six surfaces, bounded by constant coordinates, and
surrounding a small box. Because these are orthogonal coordinates you can compute the volume of the
box easily as the product of its three edges.

In the spherical case, one side is ∆r. Another side is r∆θ. The third side is not r∆φ; it is
r sin θ∆φ. The reason for the factor sin θ is that the arc of the circle made at constant r and constant

* For some animations showing these oscillations and others, check out
www.physics.miami.edu/nearing/mathmethods/drumhead-animations.html

www.physics.miami.edu/nearing/mathmethods/drumhead-animations.html
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θ is not in a plane passing through the origin. It is in a plane parallel to the x-y plane, so it has a
radius r sin θ.

rectangular cylindrical spherical
volume d3r = dxdy dz r dr dφdz r2 sin θ dr dθ dφ
area d2r = dxdy r dφdz or r dφdr r2 sin θ dθ dφ

Examples of Multiple Integrals
Even in rectangular coordinates integration can be tricky. That’s because you have to pay attention to
the limits of integration far more closely than you do for simple one dimensional integrals. I’ll illustrate
this with two dimensional rectangular coordinates first, and will choose a problem that is easy but still
shows what you have to look for.

An Area
Find the area in the x-y plane between the curves y = x2/a and y = x.

(A)

∫ a

0
dx
∫ x

x2/a
dy 1 and (B)

∫ a

0
dy
∫ √ay
y

dx 1

y

x

y

x

In the first instance I fix x and add the pieces of dy in the strip indicated. The lower limit of the
dy integral comes from the specified equation of the lower curve. The upper limit is the value of y for
the given x at the upper curve. After that the limits on the sum over dx comes from the intersection
of the two curves: y = x = x2/a gives x = a for that limit.

In the second instance I fix y and sum over dx first. The left limit is easy, x = y, and the upper
limit comes from solving y = x2/a for x in terms of y. When that integral is done, the remaining dy
integral starts at zero and goes up to the intersection at y = x = a.

Now do the integrals.

(A)

∫ a

0
dx
[
x− x2/a

]
=
a2

2
− a3

3a
=
a2

6

(B)

∫ a

0
dy
[√
ay − y

]
= a1/2a

3/2

3/2
− a

2

2
=
a2

6

If you would care to try starting this calculation from the beginning, without drawing any pictures, be
my guest.
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b

a

A Moment of Inertia
The moment of inertia about an axis is

∫
r2
⊥ dm. Here, r⊥ is the perpendicular distance to the axis.

What is the moment of inertia of a uniform sheet of mass M in the shape of a right triangle of sides
a and b? Take the moment about the right angled vertex. The area mass density, σ = dm/dA is
2M/ab. The moment of inertia is then∫

(x2 + y2)σ dA =

∫ a

0
dx
∫ b(a−x)/a

0
dy σ(x2 + y2) =

∫ a

0
dxσ

[
x2y + y3/3

]b(a−x)/a

0

=

∫ a

0
dxσ

[
x2 b
a

(a− x) +
1

3

(
b
a

)3

(a− x)3

]

= σ

[
b
a

(
a4

3
− a

4

4

)
+

1

3

(
b3

a3

a4

4

)]
=

1

12
σ
(
ba3 + ab3

)
=
M
6

(
a2 + b2

)
The dimensions are correct. For another check take the case where a = 0, reducing this to Mb2/6. But
wait, this now looks like a thin rod, and I remember that the moment of inertia of a thin rod about its
end is Mb2/3. What went wrong? Nothing. Look again more closely. Show why this limiting answer
ought to be less than Mb2/3.

Volume of a Sphere
What is the volume of a sphere of radius R? The most obvious approach would be to use spherical
coordinates. See problem 8.16 for that. I’ll use cylindrical coordinates instead. The element of volume
is dV = r drdφdz, and the integrals can be done a couple of ways.∫

d3r =

∫ R

0
r dr

∫ 2π

0
dφ
∫ +

√
R2−r2

−
√
R2−r2

dz =

∫ +R

−R
dz
∫ 2π

0
dφ
∫ √R2−z2

0
r dr (8.21)

You can finish these now, see problem 8.17.

A Surface Charge Density
An example that appears in electrostatics: The surface charge density, dq/dA, on a sphere of radius
R is σ(θ, φ) = σ0 sin2 θ cos2 φ. What is the total charge on the sphere?

The element of area is R2 sin θ dθ dφ, so the total charge is
∫
σ dA,

Q =

∫ π

0
sin θ dθR2

∫ 2π

0
dφσ0 sin2 θ cos2 φ = R2

∫ +1

−1
d cos θ σ0

(
1− cos2 θ

) ∫ 2π

0
dφ cos2 φ

The mean value of cos2 is 1/2. so the φ integral gives π. For the rest, it is

σ0πR
2

[
cos θ − 1

3
cos3 θ

]+1

−1

=
4

3
σ0πR

2

Limits of Integration
Sometimes the trickiest part of multiple integrals is determining the limits of integration. Especially
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when you have to change the order of integration, the new limits may not be obvious. Are there any
special techniques or tricks to doing this? Yes, there is one, perhaps obscure, method that you may
not be accustomed to.

Draw Pictures.

If you have an integral such as the first one, you have to draw a picture of the integration domain
to switch limits.∫ 1

0
dy
∫ √2−y2

y
dx f(x, y)

x

y [∫ 1

0
dx
∫ x

0
dy +

∫ √2

1
dx
∫ √2−x2

0
dy

]
f(x, y) (8.22)

Of course, once you’ve drawn the picture you may realize that simply interchanging the order of
integration won’t help, but that polar coordinates may.∫ √2

0
r dr

∫ π/4

0
dφ

8.9 Vectors: Cylindrical, Spherical Bases
When you describe vectors in three dimensions are you restricted to the basis x̂, ŷ, ẑ? In a different
coordinate system you should use basis vectors that are adapted to that system. In rectangular coordi-
nates these vectors have the convenient property that they point along the direction perpendicular to
the plane where the corresponding coordinate is constant. They also point in the direction in which the
other two coordinates are constant. E.g. the unit vector x̂ points perpendicular to the plane of constant
x (the y-z plane); it also point along the line where y and z are constant.

x

z

y
x̂

ẑ

ŷ

φ

r
ẑ

z
r̂

φ̂

φ

θ r

r̂

θ̂

φ̂

Do the same thing for cylindrical coordinates. The unit vector ẑ points perpendicular to the x-y
plane. The unit vector r̂ points perpendicular to the cylinder r = constant. The unit vector φ̂ points
perpendicular to the plane φ = constant and along the direction for which r and z are constant. The

conventional right-hand rule specifies ẑ = r̂ × φ̂.

For spherical coordinates r̂ points perpendicular to the sphere r = constant. The φ̂ vector
is perpendicular to the plane φ = constant and points along the direction where r = constant and

θ = constant and toward increasing coordinate φ. Finally θ̂ is perpendicular to the cone θ = constant

and again, points toward increasing θ. Then φ̂ = r̂ × θ̂, and on the Earth, these vectors r̂, θ̂, and φ̂
are ûp, ˆSouth, and ˆEast.

Solenoid
A standard solenoid is cylindrical coil of wire, so that when the wire carries a current it produces a
magnetic field. To describe this field, it seems that cylindrical coordinates are advised. Until you know
something about the field the most general thing that you can write is

~B(r, φ, z) = r̂Br(r, φ, z) + φ̂Bφ(r, φ, z) + ẑ Bz(r, φ, z)
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In a real solenoid that’s it; all three of these components are present. If you have an ideal, infinitely
long solenoid, with the current going strictly around in the φ̂ direction, (found only in textbooks) the
use of Maxwell’s equations and appropriately applied symmetry arguments will simplify this to ẑ Bz(r).

Gravitational Field
The gravitational field of the Earth is simple, ~g = −r̂GM/r2, pointing straight toward the center of
the Earth. Well no, not really. The Earth has a bulge at the equator; its equatorial diameter is about
43 km larger than its polar diameter. This changes the ~g-field so that it has a noticeable θ̂ component.
At least it’s noticeable if you’re trying to place a satellite in orbit or to send a craft to another planet.

A better approximation to the gravitational field of the Earth is

~g = −r̂GM
r2
−G3Q

r4

[
r̂
(
3 cos2 θ − 1

)
/2 + θ̂ cos θ sin θ

]
(8.23)

The letter Q stands for the quadrupole moment. |Q| � MR2, and it’s a measure of the bulge. By
convention a football (American football) has a positive Q; the Earth’s Q is negative. (What about a
European football?)

Nuclear Magnetic Field
The magnetic field from the nucleus of many atoms (even as simple an atom as hydrogen) is proportional
to

1

r3

[
2 r̂ cos θ + θ̂ sin θ

]
(8.24)

As with the preceding example these are in spherical coordinates, and the component along the φ̂
direction is zero. This field’s effect on the electrons in the atom is small but detectable. The magnetic
properties of the nucleus are central to the subject of nuclear magnetic resonance (NMR), and that has
its applications in magnetic resonance imaging* (MRI).

8.10 Gradient in other Coordinates
The equation for the gradient computed in rectangular coordinates is Eq. (8.15) or (8.18). How do
you compute it in cylindrical or spherical coordinates? You do it the same way that you got Eq. (8.15)
from Eq. (8.13). The coordinates r, φ, and z are just more variables, so Eq. (8.13) is simply

df = df(r, φ, z, dr, dφ, dz) =

(
∂f
∂r

)
φ,z
dr +

(
∂f
∂φ

)
r,z
dφ+

(
∂f
∂z

)
r,φ
dz (8.25)

All that’s left is to write d~r in these coordinates, just as in Eq. (8.15).

d~r = r̂ dr + φ̂r dφ+ ẑ dz (8.26)

The part in the φ̂ direction is the displacement of d~r in that direction. As φ changes by a small amount
the distance moved is not dφ; it is r dφ. The equation

df = df(r, φ, z, dr, dφ, dz) = grad f . d~r

combined with the two equations (8.25) and (8.26) gives grad f as

grad f = r̂
∂f
∂r

+ φ̂
1

r
∂f
∂φ

+ ẑ
∂f
∂z

= ∇f (8.27)

* In medicine MRI was originally called NMR, but someone decided that this would disconcert the
patients.
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Notice that the units work out right too.
In spherical coordinates the procedure is identical. All that you have to do is to identify what d~r

is.
d~r = r̂ dr + θ̂ r dθ + φ̂r sin θ dφ

Again with this case you have to look at the distance moved when the coordinates changes by a small
amount. Just as with cylindrical coordinates this determines the gradient in spherical coordinates.

grad f = r̂
∂f
∂r

+ θ̂
1

r
∂f
∂θ

+ φ̂
1

r sin θ
∂f
∂φ

= ∇f (8.28)

The equations (8.15), (8.27), and (8.28) define the gradient (and correspondingly ∇) in three
coordinate systems.

8.11 Maxima, Minima, Saddles
With one variable you can look for a maximum or a minimum by taking a derivative and setting it to
zero. For several variables you do it several times so that you will get as many equations as you have
unknown coordinates.

Put this in the language of gradients: ∇f = 0. The derivative of f vanishes in every direction
as you move from such a point. As examples,

f(x, y) = x2 + y2, or = −x2 − y2, or = x2 − y2

For all three of these the gradient is zero at (x, y) = (0, 0); the first has a minimum there, the second
a maximum, and the third neither — it is a “saddle point.” Draw a picture to see the reason for the
name. The generic term for all three of these is “critical point.”

An important example of finding a minimum is “least square fitting” of functions. How close are
two functions to each other? The most commonly used, and in every way the simplest, definition of
the distance (squared) between f and g on the interval a < x < b is∫ b

a
dx
∣∣f(x)− g(x)

∣∣2 (8.29)

This means that a large deviation of one function from the other in a small region counts more than
smaller deviations spread over a larger domain. The square sees to that. As a specific example, take a
function f on the interval 0 < x < L and try to fit it to the sum of a couple of trigonometric functions.
The best fit will be the one that minimizes the distance between f and the sum. (Take f to be a
real-valued function for now.)

D2(α, β) =

∫ L

0
dx

(
f(x)− α sin

πx
L
− β sin

2πx
L

)2

(8.30)

D is the distance between the given function and the sines used to fit it. To minimize the distance,
take derivatives with respect to the parameters α and β.

∂D2

∂α
= 2

∫ L

0
dx

(
f(x)− α sin

πx
L
− β sin

2πx
L

)(
− sin

πx
L

)
= 0

∂D2

∂β
= 2

∫ L

0
dx

(
f(x)− α sin

πx
L
− β sin

2πx
L

)(
− sin

2πx
L

)
= 0
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These two equations determine the parameters α and β.

α
∫ L

0
dx sin2 πx

L
=

∫ L

0
dx f(x) sin

πx
L

β
∫ L

0
dx sin2 2πx

L
=

∫ L

0
dx f(x) sin

2πx
L

The other integrals vanish because of the orthogonality of sinπx/L and sin 2πx/L on this interval.
What you get is exactly the coefficients of the Fourier series expansion of f . The Fourier series is the
best fit (in the least square sense) of a sum of orthogonal functions to f . See section 11.6 for more on
this

Is it a minimum? Yes. Look at the coefficients of α2 and β2 in Eq. (8.30). They are positive;
+α2 + β2 has a minimum, not a maximum or saddle point, and there is no cross term in αβ to mess
it up.

The distance function Eq. (8.29) is simply (the square of) the norm in the vector space sense of
the difference of the two vectors f and g. Equations(6.12) and (6.7) here become

‖f − g‖2 =
〈
f − g, f − g

〉
=

∫ b

a
dx
∣∣f(x)− g(x)

∣∣2
~e1

~e2

shortest distance
to the plane

The geometric meaning of Eq. (8.30) is that ~e1 and ~e2 provide a basis for the two dimensional space

α~e1 + β~e2 = α sin
πx
L

+ β sin
2πx
L

The plane is the set of all linear combinations of the two vectors, and for a general vector not in this
plane, the shortest distance to the plane defines the vector in the plane that is the best fit to the given
vector. It’s the one that’s closest. Because the vectors ~e1 and ~e2 are orthogonal it makes it easy to find
the closest vector. You require that the difference, ~v − α~e1 − β~e2 has only an ~e3 component. That is
Fourier series.

Hessian
In this example leading to Fourier components, it’s pretty easy to see that you are dealing with a
minimum and not anything else. In other situations it may not be so easy. You may have a lot of
variables. You may have complicated cross terms. Is x2 + xy + y2 a minimum at the origin? Is
x2 + 3xy + y2? (Yes and No respectively.)

When there’s just one variable there is a simple rule that lets you decide. Check the second
derivative. If it’s positive you have a minimum; if it’s negative you have a maximum. If it’s zero you
have more work to do. Is there a similar method for several variables? Yes, and I’ll show it explicitly for
two variables. Once you see how to do it in two dimensions, the generalization to N is just a matter
of how much work you’re willing to do (or how much computer time you can use).

The Taylor series in two variables, Eq. (2.16), is to second order

f(x+ dx, y + dy) = f(x, y) +
∂f
∂x
dx+

∂f
∂y
dy +

∂2f
∂x2

dx2 + 2
∂2f
∂x∂y

dxdy +
∂2f
∂y2

dy2 + · · ·
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Write this in a more compact notation in order to emphasize the important parts.

f(~r + d~r )− f(~r ) = ∇f . d~r +
〈
d~r,H d~r

〉
+ · · ·

The part with the gradient is familiar, and to have either a minimum or a maximum, that will have to
be zero. The next term introduces a new idea, the Hessian, constructed from all the second derivative
terms. Write these second order terms as a matrix to see what they are, and in order to avoid a lot of
clumsy notation use subscripts as an abbreviation for the partial derivatives.

〈
d~r,H d~r

〉
= (dx dy )

(
fxx fxy
fyx fyy

)(
dx
dy

)
where d~r = x̂dx+ ŷ dy (8.31)

This matrix is symmetric because of the properties of mixed partials. How do I tell from this
whether the function f has a minimum or a maximum (or neither) at a point where the gradient of f
is zero? Eq. (8.31) describes a function of two variables even after I’ve fixed the values of x and y by
saying that ∇f = 0. It is a quadratic function of dx and dy. Expressed in the language of vectors this
says that f has a minimum if (8.31) is positive no matter what the direction of d~r is — H is positive
definite.

Pull back from the problem a step. This is a 2× 2 symmetric matrix sandwiched inside a scalar
product.

h(x, y) = (x y )

(
a b
b c

)(
x
y

)
(8.32)

Is h positive definite? That is, positive for all x, y? If this matrix is diagonal it’s much easier to see
what is happening, so diagonalize it. Find the eigenvectors and use those for a basis.(

a b
b c

)(
x
y

)
= λ

(
x
y

)
requires det

(
a− λ b
b c− λ

)
= 0

λ2 − λ(a+ c) + ac− b2 = 0 =⇒ λ =
[
(a+ c)±

√
(a− c)2 + b2

]/
2 (8.33)

For the applications here all the a, b, c are the real partial derivatives, so the eigenvalues are real
and the only question is whether the λs are positive or negative, because they will be the (diagonal)
components of the Hessian matrix in the new basis. If this is a double root, the matrix was already
diagonal. You can verify that the eigenvalues are positive if a > 0, c > 0, and 4ac > b2, and that will
indicate a minimum point.

Geometrically the equation z = h(x, y) from Eq. (8.32) defines a surface. If it is positive definite
the surface is a paraboloid opening upward. If negative definite it is a paraboloid opening down. The
mixed case is a hyperboloid — a saddle.

In this 2×2 case you have a quadratic formula to fall back on, and with more variables there are
standard algorithms for determining eigenvalues of matrices, but I’ll leave those to some other book.

8.12 Lagrange Multipliers
This is an incredibly clever method to handle problems of maxima and minima in several variables when
there are constraints.

An example: “What is the largest rectangle?” obviously has no solution, but “What is the largest
rectangle contained in an ellipse?” does.

Another: Particles are to be placed into states of specified energies. You know the total number
of particles; you know the total energy. All else being equal, what is the most probable distribution of
the number of particles in each state?
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I’ll describe this procedure for two variables; it’s the same for more. The problem stated is that
I want to find the maximum (or minimum) of a function f(x, y) given the fact that the coordinates x
and y must lie on the curve φ(x, y) = 0. If you can solve the φ equation for y in terms of x explicitly,
then you can substitute it into f and turn it into a problem in ordinary one variable calculus. What if
you can’t?

Analyze this graphically. The equation φ(x, y) = 0 represents one curve in the plane. The
succession of equations f(x, y) = constant represent many curves in the plane, one for each constant.
Think of equipotentials.

φ = 0

f = 0
1 2 3

4

f = 5
φ = 0

f = 0
1 2 3

4

f = 5

Look at the intersections of the φ-curve and the f -curves. Where they intersect, they will usually
cross each other. Ask if such a crossing could possibly be a point where f is a maximum. Clearly the
answer is no, because as you move along the φ-curve you’re then moving from a point where f has one
value to where it has another.

The one way to have f be a maximum at a point on the φ-curve is for the two curves to touch
and not to cross. When that happens the values of f will increase as you approach the point from one
side and decrease on the other. That makes it a maximum. In this sketch, the values of f decrease
from 4 to 3 to 2 and then back to 3, 4, and 5. This point where the curve f = 2 touches the φ = 0
curve is then a minimum of f along φ = 0.

To implement this picture so that you can compute with it, look at the gradient of f and the
gradient of φ. The gradient vectors are perpendicular to the curves f =constant and φ =constant
respectively, and at the point where the curves are tangent to each other these gradients are in the
same direction (or opposite, no matter). Either way one vector is a scalar times the other.

∇f = λ∇φ (8.34)

In the second picture, the arrows are the gradient vectors for f and for φ. Break this into components
and you have

∂f
∂x
− λ∂φ

∂x
= 0,

∂f
∂y
− λ∂φ

∂y
= 0, φ(x, y) = 0

There are three equations in three unknowns (x, y, λ), and these are the equations to solve for the
position of the maximum or minimum value of f . You are looking for x and y, so you’ll be tempted to
ignore the third variable λ and to eliminate it. Look again. This parameter, the Lagrange multiplier,
has a habit of being significant.

Examples of Lagrange Multipliers
The first example that I mentioned: What is the largest rectangle that you can inscribe in an ellipse?
Let the ellipse and the rectangle be centered at the origin. The upper right corner of the rectangle is
at (x, y), then the area of the rectangle is

Area = f(x, y) = 4xy,

with constraint φ(x, y) =
x2

a2
+
y2

b2
− 1 = 0



8—Multivariable Calculus 198

The equations to solve are now

∇(f − λφ) = 0, and φ = 0, which become

4y − λ2x
a2

= 0, 4x− λ2y
b2

= 0,
x2

a2
+
y2

b2
− 1 = 0 (8.35)

The solutions to these three equations are straight-forward. They are x = a/
√

2, y = b/
√

2, λ = 2ab.
The maximum area is then 4xy = 2ab. The Lagrange multiplier turns out to be the required area.
Does this reduce to the correct result for a circle?

The second example said that you have several different allowed energies, typical of what happens
in quantum mechanics. If the total number of particles and the total energy are given, how are the
particles distributed among the different energies?

If there are N particles and exactly two energy levels, E1 and E2,

N = n1 + n2, and E = n1E1 + n2E2

you have two equations in two unknowns and all you have to do is solve them for the numbers n1 and
n2, the number of particles in each state. If there are three or more possible energies the answer isn’t
uniquely determined by just two equations, and there can be many ways that you can put particles into
different energy states and still have the same number of particles and the same total energy.

If you’re dealing with four particles and three energies, you can perhaps count the possibilities
by hand. How many ways can you put four particles in three states? (400), (310), (301), (220), 211),
etc. There’s only one way to get the (400) configuration: All four particles go into state 1. For (310)
there are four ways to do it; any one of the four particles can be in the second state and the rest in the
first. Keep going. If you have 1020 particles you have to find a better way.

If you have a total of N particles and you place n1 of them in the first state, the number
of ways that you can do that is N for the first particle, (N − 1) for the second particle, etc. =
N(N − 1)(N − 2) · · · (N − n1 + 1) = N !/(N − n1)!. This is over-counting because you don’t care
which one went into the first state first, just that it’s there. There are n1! rearrangements of these n1

particles, so you have to divide by that to get the number of ways that you can get this number of
particles into state 1: N !/n1!(N − n1)! For example, N = 4, n1 = 4 as in the (400) configuration in
the preceding paragraph is 4!/0!4! = 1, or 4!/3!1! = 4 as in the (310) configuration.

Once you’ve got n1 particles into the first state you want to put n2 into the second state (out
of the remaining N − n1). Then on to state 3.

The total number of ways that you can do this is the product of all of these numbers. For three
allowed energies it is

N !

n1!(N − n1)!
. (N − n1)!

n2!(N − n1 − n2)!
. (N − n1 − n2)!

n3!(N − n1 − n2 − n3)!
=

N !

n1!n2!n3!
(8.36)

There’s a lot of cancellation and the final factor in the denominator is one because of the constraint
n1 + n2 + n3 = N .

Lacking any other information about the particles, the most probable configuration is the one for
which Eq. (8.36) is a maximum. This calls for Lagrange multipliers because you want to maximize a
complicated function of several variables subject to constraints on N and on E. Now all you have to
do is to figure out out to differentiate with respect to integers. Answer: If N is large you will be able
to treat these variables as continuous and to use standard calculus to manipulate them.

For large n, recall Stirling’s formula, Eq. (2.20),

n! ∼
√

2πnnne−n or its log: ln(n!) ∼ ln
√

2πn+ n lnn− n (8.37)
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This, I can differentiate. Maximizing (8.36) is the same as maximizing its logarithm, and that’s easier
to work with.

maximize f = ln(N !)− ln(n1!)− ln(n2!)− ln(n3!)

subject to n1 + n2 + n3 = N and n1E1 + n2E2 + n3E3 = E

There are two constraints here, so there are two Lagrange multipliers.

∇
(
f − λ1(n1 + n2 + n3 −N)− λ2(n1E1 + n2E2 + n3E3 −E)

)
= 0

For f , use Stirling’s approximation, but not quite. The term ln
√

2πn is negligible. For n as small as
106, it is about 6× 10−7 of the whole. Logarithms are much smaller than powers. That means that I
can use

∇

(
3∑
`=1

(
− n` ln(n`) + n`

)
− λ1n` − λ2n`E`

)
= 0

This is easier than it looks because each derivative involves only one coordinate.

∂
∂n1

→ − lnn1 − 1 + 1− λ1 − λ2E1 = 0, etc.

This is

n` = e−λ1−λ2E` , ` = 1, 2, 3

There are two unknowns here, λ1 and λ2. There are two equations, for N and E, and the parameter
λ1 simply determines an overall constant, e−λ1 = C.

C
3∑
`=1

e−λ2E` = N, and C
3∑
`=1

E` e
−λ2E` = E

The quantity λ2 is usually denoted β in this type of problem, and it is related to temperature by
β = 1/kT where as usual the Lagrange multiplier is important on its own. It is usual to manipulate
these results by defining the “partition function”

Z(β) =

3∑
`=1

e−βE` (8.38)

In terms of this function Z you have

C = N/Z, and E = −N
Z
dZ
dβ

(8.39)

For a lot more on this subject, you can refer to any one of many books on thermodynamics or statistical
physics. There for example you can find the reason that β is related to the temperature and how the
partition function can form the basis for computing everything there is to compute in thermodynamics.
Especially there you will find that more powerful versions of the same ideas will arise when you allow
the total energy and the total number of particles to be variables too.
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8.13 Solid Angle
The extension of the concept of angle to three dimensions is called “solid angle.” To explain what this
is, I’ll first show a definition of ordinary angle that’s different from what you’re accustomed to. When
you see that, the extension to one more dimension is easy.

Place an object in the plane somewhere not at the origin. You are at the origin and look at it. I
want a definition that describes what fraction of the region around you is spanned by this object. For
this, draw a circle of radius R centered at the origin and draw all the lines from everywhere on the
object to the origin. These lines will intersect the circle on an arc (or even a set of arcs) of length s.
Define the angle subtended by the object to be θ = s/R.

s

R

A

R

Now step up to three dimensions and again place yourself at the origin. This time place a sphere
of radius R around the origin and draw all the lines from the three dimensional object to the origin.
This time the lines intersect the sphere on an area of size A. Define the solid angle subtended by the
object to be Ω = A/R2. (If you want four or more dimensions, see problem 8.52.)

For the circle, the circumference is 2πR, so if you’re surrounded, the angle subtended is 2πR/R =
2π radians. For the sphere, the area is 4πR2, so this time if you’re surrounded, the solid angle subtended
is 4πR2/R2 = 4π sterradians. That is the name for this unit.

All very pretty. Is it useful? Only if you want to describe radiative transfer, nuclear scattering,
illumination, the structure of the atom, or rainbows. Except for illumination, these subjects center
around one idea, that of a “cross section.”

Cross Section, Absorption
Before showing how to use solid angle to describe scattering, I’ll take a simpler example: absorption.
There is a hole in a wall and I propose to measure its area. Instead of taking a ruler to it I blindly fire
bullets at the wall and see how many go in. The bigger the area, the larger the fraction that will go
into the hole of course, but I have to make this quantitative to make it useful.

Define the flux of bullets: f = dN/(dt dA). That is, suppose that I’m firing all the bullets in
the same direction, but not starting from the same place. Pick an area ∆A perpendicular to the stream
of bullets and pick a time interval ∆t. How many bullets pass through this area in this time? ∆N ,
and that’s proportional to both ∆A and ∆t. The limit of this quotient is the flux.

lim
∆t→0
∆A→0

∆N
∆t∆A

= f (8.40)

Having defined the flux as a kind of density, call the (unknown) area of the hole σ. The rate at which
these bullets enter the hole is proportional to the size of the hole and to the flux of bullets, R = fσ,
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where R is the rate of entry and σ is the area of the hole. If I can measure the rate of absorption R
and the flux f , I have measured the area of the hole, σ = R/f . This letter is commonly used for cross
sections.

Why go to this complicated trouble for a hole? I probably shouldn’t, but to measure absorption
of neutrons hitting nuclei this is precisely what you do. I can’t use a ruler on a nucleus, but I can throw
things at it. In this example, neutron absorption by nuclei, the value of the measured absorption cross
section can vary from millibarns to kilobarns, where a barn is 10−24 cm2. The radii of nuclei vary by a
factor of only about six from hydrogen through uranium ( 3

√
238 = 6.2), so the cross section measured

by bombarding the nucleus has little to do with the geometric area πr2. It is instead a measure of
interaction strength

Cross Section, Scattering
There are many types of cross sections besides absorption, and the next simplest is the scattering cross
section, especially the differential scattering cross section.

θ b

b+ db

θ

dΩ

dσ = 2πb db

The same flux of particles that you throw at an object may not be absorbed, but may scatter
instead. You detect the scattering by using a detector. (You were expecting a catcher’s mitt?) The
detector will have an area ∆A facing the particles and be at a distance r from the center of scattering.
The detection rate will be proportional to the area of the detector, but if I double r for the same ∆A,
the detection rate will go down by a factor of four. The detection rate is proportional to ∆A/r2, but
this is just the solid angle of the detector from the center:

∆Ω = ∆A/r2 (8.41)

The detection rate is proportional to the incoming flux and to the solid angle of the detector. The
proportionality is an effective scattering area, ∆σ.

∆R = f∆σ, so
dσ
dΩ

=
dR
fdΩ

(8.42)

This is the differential scattering cross section.
You can compute this if you know something about the interactions involved. The one thing that

you need is the relationship between where the particle comes in and the direction in which it leaves.
That is, the incoming particle is aimed to hit at a distance b (called the impact parameter) from the
center and it scatters at an angle θ, called of course the scattering angle, from its original direction.
Particles that come in at distance between b and b + db from the axis through the center will scatter
into directions between θ and θ + dθ.

The cross section for being sent in a direction between these two angles is the area of the ring:
dσ = 2πb db. Anything that hits in there will scatter into the outgoing angles shown. How much
solid angle is this? Put the z-axis of spherical coordinates to the right, so that θ is the usual spherical
coordinate angle from z. The element of area on the surface of a sphere is dA = r2 sin θdθdφ, so the
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integral over all the azimuthal angles φ around the ring just gives a factor 2π. The element of solid
angle is then

dΩ =
dA
r2

= 2π sin θdθ

As a check on this, do the integral over all theta to get the total solid angle around a point, verifying
that it is 4π.

Divide the effective area for this scattering by the solid angle, and the result is the differential
scattering cross section.

dσ
dΩ

=
2πb db

2π sin θ dθ
=

b
sin θ

db
dθ

If you have θ as a function of b, you can compute this. There are a couple of very minor modifications
that you need in order to complete this development. The first is that the derivative db/dθ can easily
be negative, but both the area and the solid angle are positive. That means that you need an absolute
value here. One other complication is that one value of θ can come from several values of b. It may
sound unlikely, but it happens routinely. It even happens in the example that comes up in the next
section.

dσ
dΩ

=
∑
i

bi
sin θ

∣∣∣∣dbidθ
∣∣∣∣ (8.43)

The differential cross section often becomes much more involved than this, especially the when
it involves nuclei breaking up in a collision, resulting in a range of possible energies of each part of the
debris. In such collisions particles can even be created, and the probabilities and energy ranges of the
results are described by their own differential cross sections. You will wind up with differential cross
sections that look like dσ/dΩ1 dΩ2 . . . dE1 dE2 . . .. These rapidly become so complex that it takes
some elaborate computer programming to handle the information.

8.14 Rainbow
An interesting, if slightly complicated example is the rainbow. Sunlight scatters from small drops of
water in the air and the detector is your eye. The water drops are small enough that I’ll assume them
to be spheres, where surface tension is enough to hold them in this shape for the ordinary small sizes of
water droplets in the air. The first and simplest model uses geometric optics and Snell’s law to figure
out where the scattered light goes. This model ignores the wave nature of light and it does not take
into account the fraction of the light that is transmitted and reflected at each surface.

b

β

β

β
α

α

α
α

θ

sinβ = n sinα

θ = (β − α) + (π − 2α) + (β − α)

b = R sinβ

(8.44)

The light comes in at the indicated distance b from the axis through the center of the sphere.
It is then refracted, reflected, and refracted. Snell’s law describes the first and third of these, and the
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middle one has equal angles of incidence and reflection. The dashed lines are from the center of the
sphere. The three terms in Eq. (8.44) for the evaluation of θ come from the three places at which the
light changes direction, and they are the amount of deflection at each place. The third equation simply
relates b to the radius of the sphere.

From these three equations, eliminate the two variables α and β to get the single relation between
b and θ that I’m looking for. When you do this, you find that the resulting equations are a bit awkward.
It’s sometimes easier to use one of the two intermediate angles as a parameter, and in this case you will
want to use β. From the picture you know that it varies from zero to π/2. The third equation gives b
in terms of β. The first equation gives α in terms of β. The second equation determines θ in terms of
β and the α that you’ve just found.

The parametrized relation between b and θ is then

b = R sinβ, θ = π + 2β − 4 sin−1

(
1

n
sinβ

)
, (0 < β < π/2) (8.45)

or you can carry it through and eliminate β.

θ = π + 2 sin−1

(
b
R

)
− 4 sin−1

(
1

n
b
R

)
(8.46)

The derivative db/dθ = 1
/

[dθ/db]. Compute this.

dθ
db

=
2√

R2 − b2
− 4√

n2R2 − b2
(8.47)

In the parametrized form this is

db
dθ

=
db/dβ

dθ/dβ
=

R cosβ

2− 4 cosβ/
√
n2 − sin2 β

In analyzing this, it’s convenient to have both forms, as you never know which one will be easier to
interpret. (Have you checked to see if they agree with each other in any special cases?)

0

R

b

0 90 180
θ

n = 1 to 1.5, left to right

0 90 180
θ

dσ/dΩ

These graphs are generated from Eq. (8.45) for eleven values of the index of refraction equally
spaced from 1 to 1.5, and the darker curve corresponds to n = 1.3. The key factor that enters the
cross-section calculation, Eq. (8.43), is db/dθ, because it goes to infinity when the curve has a vertical
tangent. For water, with n = 1.33, the b-θ curve has a vertical slope that occurs for θ a little less than
140◦. That is the rainbow.
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To complete this I should finish with dσ/dΩ. The interesting part of the problem is near the
vertical part of the curve. To see what happens near such a point use a power series expansion near
there. Not b(θ) but θ(b). This has zero derivative here, so near the vertical point

θ(b) = θ0 + γ(b− b0)2

At (b0, θ0), Eq. (8.47) gives zero and Eq. (8.46) tells you θ0. The coefficient γ comes from the second
derivative of Eq. (8.46) at b0. What is the differential scattering cross section in this neighborhood?

b = b0 ±
√

(θ − θ0)/γ, so db/dθ = ± 1

2
√
γ(θ − θ0)

dσ
dΩ

=
∑
i

bi
sin θ

∣∣∣∣dbidθ
∣∣∣∣

=
b0 +

√
(θ − θ0)/γ
sin θ

1

2
√
γ(θ − θ0)

+
b0 −

√
(θ − θ0)/γ
sin θ

1

2
√
γ(θ − θ0)

=
b0

sin θ
√
γ(θ − θ0)

≈ b0

sin θ0

√
γ(θ − θ0)

(8.48)

In the final expression, because this is near θ − θ0 and because I’m doing a power series expansion of
the exact solution anyway, I dropped all the θ-dependence except the dominant factors. This is the
only consistent thing to do because I’ve previously dropped higher order terms in the expansion of θ(b).

Why is this a rainbow? (1) With the sun at your back you see a bright arc of a circle in
the direction for which the scattering cross-section is very large. The angular radius of this circle is
π − θ0 ≈ 42◦. (2) The value of θ0 depends on the index of refraction, n, and that varies slightly with
wavelength. The variation of this angle of peak intensity is

dθ0

dλ
=
dθ0

db0

db0

dn
dn
dλ

(8.49)

When you graph Eq. (8.48) note carefully that it is zero on the left of θ0 (smaller θ) and large on
the right. Large scattering angles correspond to the region of the sky underneath the rainbow, toward
the center of the circular arc. This implies that there is much more light scattered toward your eye
underneath the arc of the rainbow than there is above it. Look at your next rainbow and compare the
area of sky below and above the rainbow.

There’s a final point about this calculation. I didn’t take into account the fact that when light
hits a surface, some is transmitted and some is reflected. The largest effect is at the point of internal
reflection, because typically only about two percent of the light is reflected and the rest goes through.
The cross section should be multiplied by this factor to be complete. The detailed equations for this
are called the Fresnel formulas and they tell you the fraction of the light transmitted and reflected at
a surface as a function of angle and polarization.

This is far from the whole story about rainbows. Light is a wave, and the geometric optics
approximation that I’ve used doesn’t account for everything. In fact Eq. (8.43) doesn’t apply to waves,
so the whole development has to be redone. To get an idea of some of the other phenomena associated
with the rainbow, see for example
www.usna.edu/Users/oceano/raylee/RainbowBridge/Chapter 8.html
www.philiplaven.com/links.html

http://www.usna.edu/Users/oceano/raylee/RainbowBridge/Chapter_8.html
http://www.philiplaven.com/links.html
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Exercises

1 For the functions f(x, y) = Axy2 sin(xy), x(t) = Ct3, y(t) = Dt2, compute df/dt two ways.
First use the chain rule, then do explicit substitution and compute it directly.

2 Compute
(
∂f/∂x

)
y and

(
∂f/∂y

)
x for

(a) f(x, y) = x2 − 2xy + y2, (b) f(x, y) = ln(y/x), (c) f(x, y) = (y + x)/(y − x)

3 Compute df/dx using the chain rule for

(a) f(x, y) = ln(y/x), y = x2, (b) f(x, y) = (y + x)/(y − x), y = αx,

(c) f(x, y) = sin(xy), y = 1/x

Also calculate the results by substituting y explicitly and then differentiating, comparing the results.

4 Let f(x, y) = x2 − 2xy, and the polar coordinates are x = r cosφ, y = r sinφ. Compute(
∂f
∂x

)
y
,

(
∂f
∂y

)
x
,

(
∂f
∂x

)
r
,

(
∂f
∂y

)
r
,

(
∂f
∂x

)
φ
,

(
∂f
∂y

)
φ

5 Let f(x, y) = x2 − 2xy, and the polar coordinates are x = r cosφ, y = r sinφ. Compute(
∂f
∂r

)
φ
,

(
∂f
∂φ

)
r
,

(
∂f
∂r

)
x
,

(
∂f
∂φ

)
x
,

(
∂f
∂r

)
y
,

(
∂f
∂φ

)
y

6 For the function f(u, v) = u3 − v3, what is the value at (u, v) = (2, 1)? Approximately what is its
value at (u, v) = (2.01, 1.01)? Approximately what is its value at (u, v) = (2.01, 0.99)?

7 Assume the Earth’s atmosphere is uniform density and 10 km high, what is its volume? What is the
ratio of this volume to the Earth’s volume?

8 For a cube 1 m on a side, what volume of paint will you need in order to paint it to a thickness of
0.2 mm? Don’t forget to paint all the sides.

9 What is grad r2? Do it in both rectangular and polar coordinates. Two dimensions will do. Are your
results really the same?

10 What is grad
(
αx2 + βy2

)
. Do this in both rectangular and polar coordinates. For the polar form,

put x and y in terms of r and φ, then refer to Eq. (8.27) for the polar form of the gradient. Finally,
compare the two results.

11 The Moon has a radius about 1740 km and its distance from Earth averages about 384 000 km from
Earth. What solid angle does the Moon subtend from Earth? What solid angle does Earth (radius
6400 km) subtend from the Moon?

12 Express the cylindrical unit vectors r̂, φ̂, ẑ in terms of the rectangular ones. And vice versa.

13 Evaluate the volume of a sphere by integration in spherical coordinates.
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Problems

8.1 Let r =
√
x2 + y2, x = A sinωt, y = B cosωt. Use the chain rule to compute the derivative

with respect to t of ekr. Notice the various checks you can do on the result, verifying (or disproving)
your result.

8.2 Sketch these functions* in plane polar coordinates:
(a) r = a cosφ (b) r = a secφ (c) r = aφ (d) r = a/φ (e) r2 = a2 sin 2φ

8.3 The two coordinates x and y are related by f(x, y) = 0. What is the derivative of y with respect
to x under these conditions? [What is df along this curve? And have you drawn a sketch?] Make
up a test function (with enough structure to be a test but still simple enough to verify your answer
independently) and see if your answer is correct. Ans: −(∂f/∂x)

/
(∂f/∂y)

8.4 If x = u+ v and y = u− v, show that(
∂y
∂x

)
u

= −
(
∂y
∂x

)
v

Do this by application of the chain rule, Eq. (8.6). Then as a check do the calculation by explicit
elimination of the respective variables v and u.

8.5 If x = r cosφ and y = r sinφ, compute(
∂x
∂r

)
φ

and

(
∂x
∂r

)
y

8.6 What is the differential of f(x, y, z) = ln(xyz).

8.7 If f(x, y) = x3 + y3 and you switch to plane polar coordinates, use the chain rule to evaluate(
∂f
∂r

)
φ
,

(
∂f
∂φ

)
r
,

(
∂2f
∂r2

)
φ
,

(
∂2f
∂φ2

)
r
,

(
∂2f
∂r∂φ

)
Check one or more of these by substituting r and φ explicitly and doing the derivatives.

8.8 When current I flows through a resistance R the heat produced is I2R. Two terminals are
connected in parallel by two resistors having resistance R1 and R2. Given that the total current is
divided as I = I1 + I2, show that the condition that the total heat generated is a minimum leads to
the relation I1R1 = I2R2. You don’t need Lagrange multipliers to solve this problem, but try them
anyway.

8.9 Sketch the magnetic field represented by Eq. (8.24). I suggest that you start by fixing r and

drawing the ~B-vectors at various values of θ. It will probably help your sketch if you first compute
the magnitude of B to see how it varies around the circle. Recall, this field is expressed in spherical
coordinates, though you can take advantage of its symmetry about the z-axis to make the drawing

* See www-groups.dcs.st-and.ac.uk/˜history/Curves/Curves.html for more.

http://www-groups.dcs.st-and.ac.uk/~history/Curves/Curves.html
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simpler. Don’t stop with just the field at fixed r as I suggested you begin. The field fills space, so try
to describe it.

8.10 A drumhead can vibrate in more complex modes. One such mode that vibrates at a frequency
higher than that of Eq. (8.19) looks approximately like

z(r, φ, t) = Ar
(
1− r2/R2

)
sinφ cosω2t

(a) Find the total kinetic energy of this oscillating drumhead.
(b) Sketch the shape of the drumhead at t = 0. Compare it to the shape of Eq. (8.19).
At the instant that the total kinetic energy is a maximum, what is the shape of the drumhead?
Ans: π

48σA
2ω2

2R
4 sin2 ω2t

8.11 Just as there is kinetic energy in a vibrating drumhead, there is potential energy, and as the
drumhead moves its total potential energy will change because of the slight stretching of the material.
The potential energy density (dP.E./dA) in a drumhead is

up =
1

2
T
(
∇z
)2

T is the tension in the drumhead. It has units of Newtons/meter and it is the force per length you
would need if you cut a small slit in the surface and had to hold the two sides of the slit together. This
potential energy arises from the slight stretching of the drumhead as it moves away from the plane of
equilibrium.
(a) For the motion described by Eq. (8.19) compute the total potential energy. (Naturally, you will
have checked the dimensions first to see if the claimed expression for up is sensible.)
(b) Energy is conserved, so the sum of the total potential energy and the total kinetic energy from
Eq. (8.20) must be a constant. What must the frequency ω be for this to hold? Is this a plausible result?

A more accurate result, from solving a differential equation, is 2.405
√
T/σR2. Ans:

√
6T/σR2 =

2.45
√
T/σR2

8.12 Repeat the preceding problem for the drumhead mode of problem 8.10. The exact result, calcu-
lated in terms of roots of Bessel functions is 3.832

√
T/σR2. Ans: 4

√
T/σR2

8.13 Sketch the gravitational field of the Earth from Eq. (8.23). Is the direction of the field plausible?
Draw lots of arrows.

8.14 Prove that the unit vectors in polar coordinates are related to those in rectangular coordinates by

r̂ = x̂ cosφ+ ŷ sinφ, φ̂ = −x̂ sinφ+ ŷ cosφ

What are x̂ and ŷ in terms of r̂ and φ̂?

8.15 Prove that the unit vectors in spherical coordinates are related to those in rectangular coordinates
by

r̂ = x̂ sin θ cosφ+ ŷ sin θ sinφ+ ẑ cos θ

θ̂ = x̂ cos θ cosφ+ ŷ cos θ sinφ− ẑ sin θ

φ̂ = −x̂ sinφ+ ŷ cosφ
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8.16 Compute the volume of a sphere using spherical coordinates. Also do it using rectangular coor-
dinates. Also do it in cylindrical coordinates.

8.17 Finish both integrals Eq. (8.21). Draw sketches to demonstrate that the limits stated there are
correct.

8.18 Find the volume under the plane 2x + 2y + z = 8a and over the triangle bounded by the lines
x = 0, y = 2a, and x = y in the x-y plane. Ans: 8a3

8.19 Find the volume enclosed by the doughnut-shaped surface (spherical coordinates) r = a sin θ.
Ans: π2a3/4

8.20 In plane polar coordinates, compute ∂r̂/∂φ, also ∂φ̂/∂φ. This means that r is fixed and you’re
finding the change in these vectors as you move around a circle. In both cases express the answer in
terms of the r̂-φ̂ vectors. Draw pictures that will demonstrate that your answers are at least in the

right direction. Ans: ∂φ̂/∂φ = −r̂

8.21 Compute the gradient of the distance from the origin (in three dimensions) in three coordinate
systems and verify that they agree.

8.22 Taylor’s power series expansion of a function of several variables was discussed in section 2.5.
The Taylor series in one variable was expressed in terms of an exponential in problem 2.30. Show that
the series in three variables can be written as

e
~h .∇f(x, y, z)

8.23 The wave equation is (a) below. Change variables to z = x− vt and w = x+ vt and show that
in these coordinates this equation is (b) (except for a constant factor). Did you explicitly note which
variables are kept fixed at each stage of the calculation? See also problem 8.53.

(a)
∂2u
∂x2
− 1

v2

∂2u
∂t2

= 0 (b)
∂2u
∂z∂w

= 0

8.24 The equation (8.23) comes from taking the gradient of the Earth’s gravitational potential in an
expansion to terms in 1/r3.

V = −GM
r
− GQ

r3
P2(cos θ)

where P2(cos θ) = 3
2 cos2 θ − 1

2 is the second order Legendre polynomial. Compute ~g = −∇V .

8.25 In problem 2.25 you computed the electric potential at large distances from a pair of charges, −q
at the origin and +q at z = a (r � a). The result was

V =
kqa
r2

P1(cos θ)

where P1(cos θ) = cos θ is the first order Legendre polynomial. Compute the electric field from this

potential, ~E = −∇V . And sketch it of course.
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8.26 In problem 2.26 you computed the electric potential at large distances from a set of three charges,
−2q at the origin and +q at z = ±a (r � a). The result was

V =
kqa2

r3
P2(cos θ)

where P2(cos θ) is the second order Legendre polynomial. Compute the electric field from this potential,
~E = −∇V . And sketch it of course.

8.27 Compute the area of an ellipse having semi-major and semi-minor axes a and b. Compare your
result to that of Eq. (8.35). Ans: πab

8.28 Two equal point charges q are placed at z = ±a. The origin is a point of equilibrium; ~E = 0
there. (a) Compute the potential near the origin, writing V in terms of powers of x, y, and z near
there, carrying the powers high enough to describe the nature of the equilibrium point. Is V maximum,
minimum, or saddle point there? It will be easier if you carry the calculation as far as possible using
vector notation, such as |~r − aẑ| =

√
(~r − aẑ)2, and r � a.

(b) Write your result for V near the origin in spherical coordinates also.

Ans: 2q
4πε0a

[
1 + r2

a2
(

3
2 cos2 θ − 1

2

)]
8.29 When current I flows through a resistance R the heat produced is I2R. Two terminals are
connected in parallel by three resistors having resistance R1, R2, and R3. Given that the total current
is divided as I = I1 + I2 + I3, show that the condition that the total heat generated is a minimum
leads to the relation I1R1 = I2R2 = I3R3. You can easily do problem 8.8 by eliminating a coordinate
then doing a derivative. Here it’s starting to get sufficiently complex that you should use Lagrange
multipliers. Does λ have any significance this time?

8.30 Given a right circular cylinder of volume V , what radius and height will provide the minimum
total area for the cylinder. Ans: r = (V/2π)1/3, h = 2r

8.31 Sometimes the derivative isn’t zero at a maximum or a minimum. Also, there are two types
of maxima and minima; local and global. The former is one that is max or min in the immediate
neighborhood of a point and the latter is biggest or smallest over the entire domain of the function.
Examine these functions for maxima and minima both inside the domains and on the boundary.

|x|, (−1 ≤ x ≤ +2)

T0

(
x2 − y2

)
/a2, (−a ≤ x ≤ a, −a ≤ y ≤ a)

V0(r2/R2)P2(cos θ), (r ≤ R, 3 dimensions)

8.32 In Eq. (8.39) it is more common to specify N and β = 1/kT , the Lagrange multiplier, than it
is to specify N and E, the total energy. Pick three energies, E`, to be 1, 2, and 3 electron volts.
(a) What is the average energy, E/N , as β →∞ (T → 0)?
(b) What is the average energy as β → 0?
(c) What are n1, n2, and n3 in these two cases?

8.33 (a) Find the gradient of V , where V = V0(x2 + y2 + z2)a−2e−
√
x2+y2+z2 /a. (b) Find the

gradient of V , where V = V0(x+ y + z)a−1e−(x+y+z)/a.

8.34 A billiard ball of radius R is suspended in space and is held rigidly in position. Very small pellets
are thrown at it and the scattering from the surface is completely elastic, with no friction. Compute
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the relation between the impact parameter b and the scattering angle θ. Then compute the differential
scattering cross section dσ/dΩ.
Finally compute the total scattering cross section, the integral of this over dΩ.

8.35 Modify the preceding problem so that the incoming object is a ball of radius R1 and the fixed
billiard ball has radius R2.

8.36 Find the differential scattering cross section from a spherical drop of water, but instead of Snell’s
law, use a pre-Snell law: β = nα, without the sines. Is there a rainbow in this case? Sketch dσ/dΩ
versus θ.
Ans: R2 sin 2β

/[
4 sin θ|1− 2/n|

]
, where θ = π + 2(1− 2/n)β

8.37 From the equation (8.43), assuming just a single b for a given θ, what is the integral over all dΩ
of dσ/dΩ? Ans: πb2

max

8.38 Solve Eq. (8.47) for b when dθ/db = 0. For n = 1.33 what value of θ does this give?

8.39 If the scattering angle θ = π
2 sin(πb/R) for 0 < b < R, what is the resulting differential scattering

cross section (with graph). What is the total scattering cross section? Start by sketching a graph of θ
versus b. Ans: 2R2

/[
π2 sin θ

√
1− (2θ/π)2

]
8.40 Find the signs of all the factors in Eq. (8.49), and determine from that whether red or blue is on
the outside of the rainbow. Ans: Look

8.41 If it suddenly starts to rain small, spherical diamonds instead of water, what happens to the
rainbow? n = 2.4 for diamond.

8.42 What would the rainbow look like for n = 2? You’ll have to look closely at the expansions in this
case. For small b, where does the ray hit the inside surface of the drop?

8.43 (a) The secondary rainbow occurs because there can be two internal reflections before the light
leave the drop. What is the analog of Eqs. (8.44) for this case? (b) Repeat problems 8.38 and 8.40 for
this case.

8.44 What is the shortest distance from the origin to the plane defined by ~A .(~r − ~r0) = 0? Do this
using Lagrange multipliers, and then explain why of course the answer is correct.

8.45 The U.S. Post Office has decided to use a norm like Eq. (6.11)(2) to measure boxes. The size is
defined to be the sum of the height and the circumference of the box, and the circumference is around
the thickest part of the package: “length plus girth.” What is the maximum volume you can ship if
this size is constrained to be less than 130 inches? For this purpose, assume the box is rectangular, not
cylindrical, though you may expect the cylinder to improve the result. Assume that the box’s dimensions
are a, a, b, with volume a2b.
(a) Show that if you assume that the girth is 4a, then you will conclude that b > a and that you didn’t
measure the girth at the thickest part of the package.
(b) Do it again with the opposite assumption, that you assume b is big so that the girth is 2b + 2a.
Again show that it is a contradiction.
(c) You have two inequalities that you must satisfy: girth plus length measured one way is less than
L = 130 inches and girth plus length measured the other way is too. That is, 4a + b < L and
3a + 2b < L. Plot these regions in the a-b plane, showing the allowed region in a-b space. Also plot
some curves of constant volume, V = a2b. Show that the point of maximum volume subject to these
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constraints is on the edge of this allowed region, and that it is at the corner of intersection of the two
inequalities. This is the beginning of the subject called “linear programming.”
Ans: a cube

8.46 Plot θ versus b in equation (8.45) or (8.46).

8.47 A disk of radius R is at a distance c above the x-y plane and parallel to that plane. What is the
solid angle that this disk subtends from the origin? Ans: 2π

[
1− c/

√
c2 +R2

]
8.48 Within a sphere of radius R, what is the volume contained between the planes defined by z = a
and z = b? Ans: π(b− a)

(
R2 − 1

3(b2 + ab+ a2)
)

8.49 Find the mean-square distance, 1
V

∫
r2 dV , from a point on the surface of a sphere to points

inside the sphere. Note: Plan ahead and try to make this problem as easy as possible. Ans: 8R2/5

8.50 Find the mean distance, 1
V

∫
r dV , from a point on the surface of a sphere to points inside the

sphere. Unlike the preceding problem, this requires some brute force. Ans: 6R/5

8.51 A volume mass density is specified in spherical coordinates to be

ρ(r, θ, φ) = ρ0

(
1 + r2/R2

)[
1 + 1

2 cos θ sin2 φ+ 1
4 cos2 θ sin3 φ

]
Compute the total mass in the volume 0 < r < R. Ans: 32πρ0R3/15

8.52 The circumference of a circle is some constant times its radius (C1r). For the two-dimensional
surface that is a sphere in three dimensions the area is of the form C2r2. Start from the fact that you
know the integral

∫∞
−∞ dx e

−x2 = π1/2 and write out the following two dimensional integral twice. It
is over the entire plane.∫

dAe−r
2

using dA = dxdy and using dA = C1r dr

From this, evaluate C1. Repeat this for dV and C2r2 in three dimensions, evaluating C2.
Now repeat this in arbitrary dimensions to evaluate Cn. Do you need to reread chapter one? In
particular, what is C3? It tells you about the three dimensional hypersphere in four dimensions. From
this, what is the total “hypersolid angle” in four dimensions (like 4π in three)? Ans: 2π2

8.53 Do the reverse of problem 8.23. Start with the second equation there and change variables to see
that it reverts to a constant times the first equation.

8.54 Carry out the interchange of limits in Eq. (8.22). Does the drawing really represent the integral?

8.55 Is x2 + xy + y2 a minimum or maximum or something else at (0, 0)? Do the same question for
x2 + 2xy + y2 and for x2 + 3xy + y2. Sketch the surface z = f(x, y) in each case.

8.56 Derive the conditions stated after Eq. (8.33), expressing the circumstances under which the
Hessian matrix is positive definite.

8.57 In the spirit of problems 8.10 et seq. what happens if you have a rectangular drumhead instead
of a circular one? Let 0 < x < a and 0 < y < b. The drumhead is tied down at its edges, so an
appropriate function that satisfies these conditions is

z(x, y) = A sin(nπx/a) sin(mπy/b) cosωt
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Compute the total kinetic and the total potential energy for this oscillation, a function of time. For
energy to be conserved the total energy must be a constant, so compute the frequency ω for which
this is true. As compared to the previous problems about a circular drumhead, this turns out to give
the exact results instead of only approximate ones. Ans: ω2 = π2 µ

T

[
n2

a2 + m2

b2
]

8.58 Repeat problem 8.45 by another method. Instead of assuming that the box has a square end,
allow it to be any rectangular box, so that its volume is V = abc. Now you have three independent
variables to use, maximizing the volume subject to the post office’s constraint on length plus girth.
This looks like it will have to be harder. Instead, it’s much easier. Draw pictures! Ans: still a cube

b

8.59 An asteroid is headed in the general direction of Earth, and its speed when
far away is v0 relative to the Earth. What is the total cross section for it’s hitting
Earth? It is not necessary to compute the complete orbit; all you have to do is
use a couple of conservation laws. Express the result in terms of the escape speed
from Earth.
Ans: σ = πR2

(
1 + (vesc/v0)2

)
8.60 In three dimensions the differential scattering cross section appeared in Eqs. (8.42) and (8.43).
If the world were two dimensional this area would be a length instead. What are the two corresponding
equations in that case, giving you an expression for d`/dθ. Apply this to the light scattering from a
(two dimensional) drop of water and describe the scattering results. For simplicity this time, assume
the pre-Snell law as in problem 8.36.

8.61 As in the preceding problem, but use the regular Snell law instead.

t′

t′′
t

8.62 This double integral is over the isosceles right triangle in the figure. The
function to be integrated is f(t′) = αt′3, BUT FIRST, set it up for an arbitrary
f(t′) and then set it up again but with the order of integration reversed. In one
of the two cases you should be able to do one integral without knowing f . Having
done this, apply your two results to this particular f as a test case that your work
was correct. In the figure, t′ and t′′ are the two coordinates and t is the coordinate
of the top of the triangle.



Vector Calculus 1
.

The first rule in understanding vector calculus is draw lots of pictures. This subject can become rather
abstract if you let it, but try to visualize all the manipulations. Try a lot of special cases and explore
them. Keep relating the manipulations to the underlying pictures and don’t get lost in the forest of
infinite series. Along with the pictures, there are three types of derivatives, a couple of types of integrals,
and some theorems relating them.

9.1 Fluid Flow
When water or any fluid moves through a pipe, what is the relationship between the motion of the
fluid and the total rate of flow through the pipe (volume per time)? Take a rectangular pipe of sides a
and b with fluid moving at constant speed through it and with the velocity of the fluid being the same
throughout the pipe. It’s a simple calculation: In time ∆t the fluid moves a distance v∆t down the
pipe. The cross-section of the pipe has area A = ab, so the volume that move past a given flat surface
is ∆V = Av∆t. The flow rate is the volume per time, ∆V/∆t = Av. (The usual limit as ∆t → 0
isn’t needed here.)

A

v∆t (a)

A

v∆t (b)

Just to make the problem look a little more involved, what happens to the result if I ask for the
flow through a surface that is tilted at an angle to the velocity. Do the calculation the same way as
before, but use the drawing (b) instead of (a). The fluid still moves a distance v∆t, but the volume
that moves past this flat but tilted surface is not its new (bigger) area A times v∆t. The area of a
parallelogram is not the product of its sides and the volume of a parallelepiped is not the area of a base
times the length of another side.

A

h

v∆t

α

n̂

α

The area of a parallelogram is the length of one side times the perpendicular distance from
that side to its opposite side. Similarly the volume of a parallelepiped is the area of one side times
the perpendicular distance from that side to the side opposite. The perpendicular distance is not the
distance that the fluid moved (v∆t). This perpendicular distance is smaller by a factor cosα, where
α is the angle that the plane is tilted. It is most easily described by the angle that the normal to the
plane makes with the direction of the fluid velocity.

∆V = Ah = A(v∆t) cosα

The flow rate is then ∆V/∆t = Av cosα. Introduce the unit normal vector n̂, then this expression
can be rewritten in terms of a dot product,

Av cosα = A~v . n̂ = ~A .~v (9.1)

213
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where α is the angle between the direction of the fluid velocity and the normal to the area.

~C

~D

θ

~C × ~D
This invites the definition of the area itself as a vector, and that’s what I

wrote in the final expression. The vector ~A is a notation for An̂, and defines the
area vector. If it looks a little odd to have an area be a vector, do you recall the
geometric interpretation of a cross product? That’s the vector perpendicular to
two given vectors and it has a magnitude equal to the area of the parallelogram
between the two vectors. It’s the same thing.

General Flow, Curved Surfaces
The fluid velocity will not usually be a constant in space. It will be some function of position. The
surface doesn’t have to be flat; it can be cylindrical or spherical or something more complicated. How
do you handle this? That’s why integrals were invented.

The idea behind an integral is that you will divide a complicated thing into small pieces and add
the results of the small pieces to estimate the whole. Improve the estimation by making more, smaller
pieces, and in the limit as the size of the pieces goes to zero get an exact answer. That’s the procedure
to use here.

The concept of the surface integral is that you systematically divide a surface into a number (N)
of pieces (k = 1, 2, . . .N). The pieces have area ∆Ak and each piece has a unit normal vector n̂k.
Within the middle of each of these areas the fluid has a velocity ~vk. This may not be a constant, but as
usual with integrals, you pick a point somewhere in the little area and pick the ~v there; in the limit as
all the pieces of area shrink to zero it won’t matter exactly where you picked it. The flow rate through
one of these pieces is Eq. (9.1), ~vk . n̂k∆Ak, and the corresponding estimate of the total flow through

the surface is, using the notation ∆ ~Ak = n̂k∆Ak,

N∑
k=1

~vk . ∆ ~Ak

This limit as the size of each piece is shrunk to zero and correspondingly the number of pieces goes to
infinity is the definition of the integral

∫
~v . d ~A = lim

∆Ak→0

N∑
k=1

~vk . ∆ ~Ak (9.2)

Example of Flow Calculation
In the rectangular pipe above, suppose that the flow exhibits shear, rising from zero at the bottom to
v0 at the top. The velocity field is

~v(x, y, z) = vx(y) x̂ = v0
y
b
x̂ (9.3)

The origin is at the bottom of the pipe and the y-coordinate is measured upward from the origin. What
is the flow rate through the area indicated, tilted at an angle φ from the vertical? The distance in and
out of the plane of the picture (the z-axis) is the length a. Can such a fluid flow really happen? Yes,
real fluids such as water have viscosity, and if you construct a very wide pipe but not too high, and
leave the top open to the wind, the horizontal wind will drag the fluid at the top with it (even if not as
fast). The fluid at the bottom is kept at rest by the friction with the bottom surface. In between you
get a gradual transition in the flow that is represented by Eq. (9.3).
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y
x

φ

n̂k
b

Now to implement the calculation of the flow rate:
Divide the area into N pieces of length ∆`k along the slant.
The length in and out is a so the piece of area is ∆Ak = a∆`k.
The unit normal is n̂k = x̂ cosφ − ŷ sinφ. (It happens to be independent of the index k, but that’s
special to this example.)
The velocity vector at the position of this area is ~v = v0 x̂ yk/b.
Put these together and you have the piece of the flow rate contributed by this area.

∆flowk = ~v . ∆ ~Ak = v0
yk
b
x̂ .a∆`k

(
x̂ cosφ− ŷ sinφ

)
= v0

yk
b
a∆`k cosφ = v0

`k cosφ
b

a∆`k cosφ

In the last line I put all the variables in terms of `, using y = ` cosφ.
Now sum over all these areas and take a limit.

lim
∆`k→0

N∑
k=1

v0
`k cosφ

b
a∆`k cosφ =

∫ b/ cosφ

0
d` v0

a
b
` cos2 φ = v0

a
b
`2

2
cos2 φ

∣∣∣∣b/ cosφ

0

= v0
a
2b

(
b

cosφ

)2

cos2 φ = v0
ab
2

This turns out to be independent of the orientation of the plane; the parameter φ is absent from the
result. If you think of two planes, at angles φ1 and φ2, what flows into one flows out of the other.
Nothing is lost in between.

Another Flow Calculation
Take the same sort of fluid flow in a pipe, but make it a little more complicated. Instead of a flat
surface, make it a cylinder. The axis of the cylinder is in and out in the picture and its radius is half
the width of the pipe. Describe the coordinates on the surface by the angle θ as measured from the
midline. That means that −π/2 < θ < π/2. Divide the surface into pieces that are rectangular strips
of length a (in and out in the picture) and width b∆θk/2. (The radius of the cylinder is b/2.)

∆Ak = a
b
2

∆θk, and n̂k = x̂ cos θk + ŷ sin θk (9.4)

y
x

θk+1

n̂k
b

θk

ŷ

x̂
y

b/2

(b/2) sin θ

The velocity field is the same as before, ~v(x, y, z) = v0 x̂y/b, so the contribution to the flow rate
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through this piece of the surface is

~vk . ∆ ~Ak = v0
yk
b
x̂ .a

b
2

∆θk n̂k

The value of yk at the angle θk is

yk =
b
2

+
b
2

sin θk, so
yk
b

=
1

2
[1 + sin θk]

Put the pieces together and you have

v0
1

2

[
1 + sin θk

]
x̂ .a

b
2

∆θk
[
x̂ cos θk + ŷ sin θk

]
= v0

1

2

[
1 + sin θk

]
a
b
2

∆θk cos θk

The total flow is the sum of these over k and then the limit as ∆θk → 0.

lim
∆θk→0

∑
k

v0
1

2

[
1 + sin θk

]
a
b
2

∆θk cos θk =

∫ π/2

−π/2
v0

1

2

[
1 + sin θ

]
a
b
2
dθ cos θ

Finally you can do the two terms of the integral: Look at the second term first. You can of course
start grinding away and find the right trigonometric formula to do the integral, OR, you can sketch a
graph of the integrand, sin θ cos θ, on the interval −π/2 < θ < π/2 and write the answer down by
inspection. The first part of the integral is

v0
ab
4

∫ π/2

−π/2
cos θ = v0

ab
4

sin θ

∣∣∣∣π/2

−π/2

= v0
ab
2

And this is the same result as for the flat surface calculation. I set it up so that the two results are the
same; it’s easier to check that way. Gauss’s theorem of vector calculus will guarantee that you get the
same result for any surface spanning this pipe and for this particular velocity function.

9.2 Vector Derivatives
I want to show the underlying ideas of the vector derivatives, divergence and curl, and as the names
themselves come from the study of fluid flow, that’s where I’ll start. You can describe the flow of a
fluid, either gas or liquid or anything else, by specifying its velocity field, ~v(x, y, z) = ~v(~r ).

For a single real-valued function of a real variable, it is often too complex to capture all the
properties of a function at one glance, so it’s going to be even harder here. One of the uses of ordinary
calculus is to provide information about the local properties of a function without attacking the whole
function at once. That is what derivatives do. If you know that the derivative of a function is positive
at a point then you know that it is increasing there. This is such an ordinary use of calculus that you
hardly give it a second thought (until you hit some advanced calculus and discover that some continuous
functions don’t even have derivatives). The geometric concept of derivative is the slope of the curve
at a point — the tangent of the angle between the x-axis and the straight line that best approximates
the curve at that point. Going from this geometric idea to calculating the derivative takes some effort.
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How can you do this for fluid flow? If you inject a small amount of dye into the fluid at some
point it will spread into a volume that depends on how much you inject. As time goes on this region
will move and distort and possibly become very complicated, too complicated to grasp in one picture.

There must be a way to get a simpler picture. There is. Do it in the same spirit that you
introduce the derivative, and concentrate on a little piece of the picture. Inject just a little bit of dye
and wait only a little time. To make it explicit, assume that the initial volume of dye forms a sphere of
(small) volume V and let the fluid move for a little time.

1. In a small time ∆t the center of the sphere will move.
2. The sphere can expand or contract, changing its volume.
3. The sphere can rotate.
4. The sphere can distort.

Div, Curl, Strain
The first one, the motion of the center, tells you about the velocity at the center of the sphere. It’s
like knowing the value of a function at a point, and that tells you nothing about the behavior of the
function in the neighborhood of the point.

The second one, the volume, gives new information. You can simply take the time derivative
dV/dt to see if the fluid is expanding or contracting; just check the sign and determine if it’s positive
or negative. But how big is it? That’s not yet in a useful form because the size of this derivative
will depend on how much the original volume is. If you put in twice as much dye, each part of the
volume will change and there will be twice as much rate of change in the total volume. Divide the time
derivative by the volume itself and this effect will cancel. Finally, to get the effect at one point take
the limit as the volume approaches a point. This defines a kind of derivative of the velocity field called
the divergence.

lim
V→0

1

V
dV
dt

= divergence of ~v (9.5)

This doesn’t tell you how to compute it any more than saying that the derivative is the slope tells you
how to compute an ordinary* derivative. I’ll have to work that out.

But first look at the third way that the sphere can move: rotation. Again, if you take a large
object it will distort a lot and it will be hard to define a single rotation for it. Take a very small sphere
instead. The time derivative of this rotation is its angular velocity, the vector ~ω. In the limit as the
sphere approaches a point, this tells me about the rotation of the fluid in the immediate neighborhood
of that point. If I place a tiny paddlewheel in the fluid, how will it rotate?

2~ω = curl of ~v (9.6)

The factor of 2 is for later convenience.
After considering expansion and rotation, the final way that the sphere can change is that it

can alter its shape. In a very small time interval, the sphere can slightly distort into an ellipsoid. This
will lead to the mathematical concept of the strain. This is important in the subject of elasticity and

* Can you start from the definition of the derivative as a slope, use it directly with no limits, and
compute the derivative of x2 with respect to x, getting 2x? It can be done.
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viscosity, but I’ll put it aside for now save for one observation: how much information is needed to
describe whatever it is? The sphere changes to an ellipsoid, and the first question is: what is the
longest axis and how much stretch occurs along it — that’s the three components of a vector. After
that what is the shortest axis and how much contraction occurs along it? That’s one more vector,
but you need only two new components to define its direction because it’s perpendicular to the long
axis. After this there’s nothing left. The direction of the third axis is determined and so is its length if
you assume that the total volume hasn’t changed. You can assume that is so because the question of
volume change is already handled by the divergence; you don’t need it here too. The total number of
components needed for this object is 2 + 3 = 5. It comes under the heading of tensors.

9.3 Computing the divergence
Now how do you calculate these? I’ll start with the simplest, the divergence, and compute the time
derivative of a volume from the velocity field. To do this, go back to the definition of derivative:

dV
dt

= lim
∆t→0

V (t+ ∆t)− V (t)
∆t

(9.7)

~v∆t

Pick an arbitrary surface to start with and see how the volume changes as the fluid moves,
carrying the surface with it. In time ∆t a point on the surface will move by a distance ~v∆t and it will
carry with it a piece of neighboring area ∆A. This area sweeps out a volume. This piece of volume
is not ∆A times v∆t because the motion isn’t likely to be perpendicular to the surface. It’s only the
component of the velocity normal to the surface that contributes to the volume swept out. Use n̂ to
denote the unit vector perpendicular to ∆A, then this volume is ∆An̂ .~v∆t. This is the same as the
calculation for fluid flow except that I’m interpreting the picture differently.

If at a particular point on the surface the normal n̂ is more or less in the direction of the velocity
then this dot product is positive and the change in volume is positive. If it’s opposite the velocity then
the change is negative. The total change in volume of the whole initial volume is the sum over the
entire surface of all these changes. Divide the surface into a lot of pieces ∆Ai with accompanying unit
normals n̂i, then

∆Vtotal =
∑
i

∆Ai n̂i .~vi ∆t

Not really. I have to take a limit before this becomes an equality. The limit of this as all the ∆Ai → 0
defines an integral

∆Vtotal =

∮
dAn̂ .~v∆t

and this integral notation is special; the circle through the integral designates an integral over the whole
closed surface and the direction of n̂ is always taken to be outward. Finally, divide by ∆t and take the
limit as ∆t approaches zero.

dV
dt

=

∮
dAn̂ .~v (9.8)

The ~v . n̂dA is the rate at which the area dA sweeps out volume as it is carried with the fluid. Note:
There’s nothing in this calculation saying that I have to take the limit as V → 0; it’s a perfectly
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general expression for the rate of change of volume in a surface being carried with the fluid. It’s also a
completely general expression for the rate of flow of fluid through a fixed surface as the fluid moves past
it. I’m interested in the first interpretation for now, but the second is just as valid in other contexts.

Again, use the standard notation in which the area vector combines the unit normal and the area:

d ~A = n̂dA.

divergence of ~v = lim
V→0

1

V
dV
dt

= lim
V→0

1

V

∮
~v . d ~A (9.9)

If the fluid is on average moving away from a point then the divergence there is positive. It’s diverging.

The Divergence as Derivatives
This is still a long way from something that you can easily compute. I’ll first go through a detailed
analysis of how you turn this into a simple result, and I’ll then go back to try to capture the essence
of the derivation so you can see how it applies in a wide variety of coordinate systems. At that point
I’ll also show how to get to the result with a lot less algebra. You will see that a lot of the terms that
appear in this first calculation will vanish in the end. It’s important then to go back and see what was
really essential to the calculation and what was not. As you go through this derivation then, try to
anticipate which terms are going to be important and which terms are going to disappear.

Express the velocity in rectangular components, vx x̂+vy ŷ+vz ẑ. For the small volume, choose
a rectangular box with sides parallel to the axes. One corner is at point (x0, y0, z0) and the opposite
corner has coordinates that differ from these by (∆x,∆y,∆z). Expand everything in a power series
about the first corner as in section 2.5. Instead of writing out (x0, y0, z0) every time, I’ll abbreviate it
by (0).

∆z

(x0, y0, z0) ∆x
∆y

x̂
vx(x, y, z) = vx(0) + (x− x0)

∂vx
∂x

(0) + (y − y0)
∂vx
∂y

(0)

+ (z − z0)
∂vx
∂z

(0) +
1

2
(x− x0)2∂

2vx
∂x2

(0)

+ (x− x0)(y − y0)
∂2vx
∂x∂y

(0) + · · ·

(9.10)

There are six integrals to do, one for each face of the box, and there are three functions, vx, vy, and
vz to expand in three variables x, y, and z. Don’t Panic. A lot of these are zero. If you look at the
face on the right in the sketch you see that it is parallel to the y-z plane and has normal n̂ = x̂. When
you evaluate ~v . n̂, only the vx term survives; flow parallel to the surface (vy, vz) contributes nothing
to volume change along this part of the surface. Already then, many terms have simply gone away.

Write the two integrals over the two surfaces parallel to the y-z plane, one at x0 and one at
x0 + ∆x.∫

right
~v . d ~A+

∫
left
~v . d ~A

=

∫ y0+∆y

y0
dy
∫ z0+∆z

z0
dz vx(x0 + ∆x, y, z)−

∫ y0+∆y

y0
dy
∫ z0+∆z

z0
dz vx(x0, y, z)

The minus sign comes from the dot product because n̂ points left on the left side. You can evaluate
these integrals by using their power series representations, and though you may have an infinite number
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of terms to integrate, at least they’re all easy. Take the first of them:∫ y0+∆y

y0
dy
∫ z0+∆z

z0
dz

[
vx(0)+

(∆x)
∂vx
∂x

(0) + (y − y0)
∂vx
∂y

(0) + (z − z0)
∂vx
∂z

(0) +
1

2
(∆x)2∂

2vx
∂x2

(0) + · · ·
]

= vx(0)∆y∆z + (∆x)
∂vx
∂x

(0)∆y∆z+

1

2
(∆y)2∆z

∂vx
∂y

(0) +
1

2
(∆z)2∆y

∂vx
∂z

(0) +
1

2
(∆x)2∂

2vx
∂x2

(0)∆y∆z + · · ·

Now look at the second integral, the one that you have to subtract from this one. Before plunging in to
the calculation, stop and look around. What will cancel; what will contribute; what will not contribute?
The only difference is that this is now evaluated at x0 instead of at x0 + ∆x. The terms that have
∆x in them simply won’t appear this time. All the rest are exactly the same as before. That means
that all the terms in the above expression that do not have a ∆x in them will be canceled when you
subtract the second integral. All the terms that do have a ∆x will be untouched. The combination of
the two integrals is then

(∆x)
∂vx
∂x

(0)∆y∆z +
1

2
(∆x)2∂

2vx
∂x2

(0)∆y∆z +
1

2
(∆x)

∂2vx
∂x∂y

(0)(∆y)2∆z + · · ·

Two down four to go, but not really. The other integrals are the same except that x becomes y
and y becomes z and z becomes x. The integral over the two faces with y constant are then

(∆y)
∂vy
∂y

(0)∆z∆x+
1

2
(∆y)2∂

2vy
∂y2

(0)∆z∆x+ · · ·

and a similar expression for the final two faces. The definition of Eq. (9.9) says to add all three of these
expressions, divide by the volume, and take the limit as the volume goes to zero. V = ∆x∆y∆z, and
you see that this is a common factor in all of the terms above. Cancel what you can and you have

∂vx
∂x

(0) +
∂vy
∂y

(0) +
∂vx
∂x

(0) +
1

2
(∆x)

∂2vx
∂x2

(0) +
1

2
(∆y)

∂2vy
∂y2

(0) +
1

2
(∆z)

∂2vz
∂z2

(0) + · · ·

In the limit that the all the ∆x, ∆y, and ∆z shrink to zero the terms with a second derivative vanish, as
do all the other higher order terms. You are left then with a rather simple expression for the divergence.

divergence of ~v = div~v =
∂vx
∂x

+
∂vy
∂y

+
∂vx
∂x

(9.11)

This is abbreviated by using the differential operator ∇, “del.”

∇ = x̂
∂
∂x

+ ŷ
∂
∂y

+ ẑ
∂
∂z

(9.12)

Then you can write the preceding equation as

divergence of ~v = div~v = ∇ .~v (9.13)



9—Vector Calculus 1 221

The symbol ∇ will take other forms in other coordinate systems.
Now that you’ve waded through this rather technical set of manipulations, is there an easier way?

Yes but, without having gone through the preceding algebra you won’t be able to see and to understand
which terms are important and which terms are going to cancel or otherwise disappear. When you need
to apply these ideas to something besides rectangular coordinates you have to know what to keep and
what to ignore. Once you know this, you can go straight to the end of the calculation and write down
those terms that you know are going to survive, dropping the others. This takes practice.

Simplifying the derivation
In the long derivation of the divergence, the essence is that you find ~v . n̂ on one side of the box (maybe
take it in the center of the face), and multiply it by the area of that side. Do this on the other side,
remembering that n̂ isn’t in the same direction there, and combine the results. Do this for each side
and divide by the volume of the box.[

vx(x0 + ∆x,y0 + ∆y/2, z0 + ∆z/2)∆y∆z

−vx(x0, y0 + ∆y/2, z0 + ∆z/2)∆y∆z
]
÷
(
∆x∆y∆z

)
(9.14)

the ∆y and ∆z factors cancel, and what’s left is, in the limit ∆x→ 0, the derivative ∂vx/∂x.
I was careful to evaluate the values of vx in the center of the sides, but you see that it didn’t

matter. In the limit as all the sides go to zero I could just as easily taken the coordinates at one corner
and simplified the steps still more. Do this for the other sides, add, and you get the result. It all looks
very simple when you do it this way, but what if you need to do it in cylindrical coordinates?

∆r

∆z

r∆φ

When everything is small, the volume is close to a rectangular box, so its volume is V =
(∆r)(∆z)(r∆φ). Go through the simple version for the calculation of the surface integral. The top
and bottom present nothing significantly different from the rectangular case.

[
vz(r0, φ0, z0 + ∆z)− vz(r0, φ0, z0)

]
(∆r)(r0∆φ)÷ r0∆r0∆φ∆z −→ ∂vz

∂z

The curved faces of constant r are a bit different, because the areas of the two opposing faces
aren’t the same.[

vr(r0 + ∆r, φ0, z0)(r0 + ∆r)∆φ∆z − vr(r0, φ0, z0)r0∆φ∆z
]
÷ r0∆r∆φ∆z −→ 1

r
∂(rvr)
∂r

A bit more complex than the rectangular case, but not too bad.
Now for the constant φ sides. Here the areas of the two faces are the same, so even though they

are not precisely parallel to each other this doesn’t cause any difficulties.

[
vφ(r0, φ0 + ∆φ, z0)− vz(r0, φ0, z0)

]
(∆r)(∆z)÷ r0∆r∆φ∆z −→ 1

r

∂vφ
∂φ

The sum of all these terms is the divergence expressed in cylindrical coordinates.

div ~v =
1

r
∂(rvr)
∂r

+
1

r

∂vφ
∂φ

+
∂vz
∂z

(9.15)
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The corresponding expression in spherical coordinates is found in exactly the same way, prob-
lem 9.4.

div ~v =
1

r2

∂(r2vr)
∂r

+
1

r sin θ
∂(sin θvθ)

∂θ
+

1

r sin θ

∂vφ
∂φ

(9.16)

These are the three commonly occurring coordinates system, though the same simplified method
will work in any other orthogonal coordinate system. The coordinate system is orthogonal if the surfaces
made by setting the value of the respective coordinates to a constant intersect at right angles. In the
spherical example this means that a surface of constant r is a sphere. A surface of constant θ is a
half-plane starting from the z-axis. These intersect perpendicular to each other. If you set the third
coordinate, φ, to a constant you have a cone that intersects the other two at right angles. Look back
to section 8.8.

9.4 Integral Representation of Curl
The calculation of the divergence was facilitated by the fact that the equation (9.5) could be manipulated
into the form of an integral, Eq. (9.9). Is there a similar expression for the curl? Yes.

curl~v = lim
V→0

1

V

∮
d ~A × ~v (9.17)

For the divergence there was a logical and orderly development to derive Eq. (9.9) from (9.5). Is there
a similar intuitively clear path here? I don’t know of one. The best that I can do is to show that it
gives the right answer.

And what’s that surface integral doing with a × instead of a .? No mistake. Just replace the
dot product by a cross product in the definition of the integral. This time however you have to watch
the order of the factors.

~ω
θ

n̂ dA

To verify that this does give the correct answer, use a vector field that represents pure rigid body
rotation. You’re going to take the limit as ∆V → 0, so it may as well be uniform. The velocity field
for this is the same as from problem 7.5.

~v = ~ω × ~r (9.18)

To evaluate the integral use a sphere of radius R centered at the origin, making n̂ = r̂. You also need

the identity ~A× ( ~B × ~C) = ~B( ~A . ~C)− ~C( ~A .B).

d ~A× (~ω × ~r) = ~ω(d ~A .~r )− ~r(~ω . d ~A ) (9.19)

Choose a spherical coordinate system with the z-axis along ~ω.

d ~A = n̂dA = r̂ dA, and ~ω . d ~A = ω dA cos θ
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d ~A× ~v =

∮
~ωRdA− ~r ω dA cos θ

= ~ωR 4πR2 − ω
∫ π

0
R2 sin θ dθ

∫ 2π

0
dφ ẑR cos θ cos θ

= ~ωR 4πR2 − ωẑ 2πR3

∫ π

0
sin θdθ cos2 θ

= ~ωR 4πR2 − ωẑ 2πR3

∫ 1

−1
cos2 θ d cos θ = ~ωR 4πR2 − ωẑ 2πR3 . 2

3

= ~ω
8

3
πR3

Divide by the volume of the sphere and you have 2~ω as promised. In the first term on the first line of
the calculation, ~ωR is a constant over the surface so you can pull it out of the integral. In the second
term, ~r has components in the x̂, ŷ, and ẑ directions; the first two of these integrate to zero because
for every vector with a positive x̂-component there is one that has a negative component. Same for ŷ.
All that is left of ~r is ẑ R cos θ.

The Curl in Components
With the integral representation, Eq. (9.17), available for the curl, the process is much like that for
computing the divergence. Start with rectangular of course. Use the same equation, Eq. (9.10) and
the same picture that accompanied that equation. With the experience gained from computing the
divergence however, you don’t have to go through all the complications of the first calculation. Use the
simpler form that followed.

In Eq. (9.14) you have ~v . ∆A = vx∆y∆z on the right face and on the left face. This time
replace the dot with a cross (in the right order).

On the right,

∆ ~A× ~v = ∆y∆z x̂× ~v(x0 + ∆x, y0 + ∆y/2, z0 + ∆z/2) (9.20)

On the left it is
∆ ~A× ~v = ∆y∆z x̂× ~v(x0, y0 + ∆y/2, z0 + ∆z/2) (9.21)

When you subtract the second from the first and divide by the volume, ∆x∆y∆z, what is left is (in
the limit ∆x→ 0) a derivative.

x̂×~v(x0 + ∆x, y0, z0)− ~v(x0, y0, z0)

∆x
−→ x̂× ∂~v

∂x

= x̂×
(
x̂
∂vx
∂x

+ ŷ
∂vy
∂x

+ ẑ
∂vz
∂x

)
= ẑ

∂vy
∂x
− ŷ ∂vz

∂x

Similar calculations for the other four faces of the box give results that you can get simply by
changing the labels: x→ y → z → x, a cyclic permutation of the indices. The result can be expressed
most succinctly in terms of ∇.

curl v = ∇× ~v (9.22)

In the process of this calculation the normal vector x̂ was parallel on the opposite faces of the
box (except for a reversal of direction). Watch out in other coordinate systems and you’ll see that this
isn’t always true. Just draw the picture in cylindrical coordinates and this will be clear.
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9.5 The Gradient
The gradient is the closest thing to an ordinary derivative here, taking a scalar-valued function into a
vector field. The simplest geometric definition is “the derivative of a function with respect to distance
along the direction in which the function changes most rapidly,” and the direction of the gradient vector
is along that most-rapidly-changing direction. If you’re dealing with one dimension, ordinary real-valued
functions of real variables, the gradient is the ordinary derivative. Section 8.5 has some discussion and
examples of this, including its use in various coordinate systems. It is most conveniently expressed in
terms of ∇.

grad f = ∇f (9.23)

The equations (8.15), (8.27), and (8.28) show the gradient (and correspondingly ∇) in three
coordinate systems.

rectangular: ∇ = x̂
∂
∂x

+ ŷ
∂
∂y

+ ẑ
∂
∂z

cylindrical: ∇ = r̂
∂
∂r

+ φ̂
1

r
∂
∂φ

+ ẑ
∂
∂z

(9.24)

spherical: ∇ = r̂
∂
∂r

+ θ̂
1

r
∂
∂θ

+ φ̂
1

r sin θ
∂
∂φ

In all nine of these components, the denominator (e.g. r sin θ dφ) is the element of displacement along
the direction indicated.

9.6 Shorter Cut for div and curl
There is another way to compute the divergence and curl in cylindrical and rectangular coordinates. A
direct application of Eqs. (9.13), (9.22), and (9.24) gets the result quickly. The major caution is that
you have to be careful that the unit vectors are inside the derivative, so you have to differentiate them
too.

∇ .~v is the divergence of ~v, and in cylindrical coordinates

∇ .~v =

(
r̂
∂
∂r

+ φ̂
1

r
∂
∂φ

+ ẑ
∂
∂z

)
.
(
r̂ vr + φ̂vφ + ẑ vz

)
(9.25)

The unit vectors r̂, φ̂, and ẑ don’t change as you alter r or z. They do change as you alter φ. (except
for ẑ).

∂r̂
∂r

=
∂φ̂
∂r

=
∂ẑ
∂r

=
∂r̂
∂z

=
∂φ̂
∂z

=
∂ẑ
∂z

=
∂ẑ
∂φ

= 0 (9.26)

Next come ∂r̂/∂φ and ∂φ̂/∂φ. This is problem 8.20. You can do this by first showing that

r̂ = x̂ cosφ+ ŷ sinφ and φ̂ = −x̂ sinφ+ ŷ cosφ (9.27)

and differentiating with respect to φ. This gives

∂r̂/∂φ = φ̂, and ∂φ̂/∂φ = −r̂ (9.28)

Put these together and you have

∇ .~v =
∂vr
∂r

+ φ̂ . 1

r
∂
∂φ

(
r̂ vr + φ̂vφ

)
+
∂vz
∂z

=
∂vr
∂r

+ φ̂ . 1

r

(
vr
dr̂
dφ

+ φ̂
∂vφ
∂φ

)
+
∂vz
∂z

=
∂vr
∂r

+
1

r
vr +

1

r

∂vφ
∂φ

+
∂vz
∂z

(9.29)
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This agrees with equation (9.15).
Similarly you can use the results of problem 8.15 to find the derivatives of the corresponding

vectors in spherical coordinates. The non-zero values are

dr̂
dφ

= φ̂ sin θ
dθ̂
dφ

= φ̂ cos θ
dφ̂
dφ

= −r̂ sin θ − θ̂ cos θ

dr̂
dθ

= θ̂
dθ̂
dθ

= −r̂ (9.30)

The result is for spherical coordinates

∇ .~v =
1

r2

∂(r2vr)
∂r

+
1

r sin θ
∂(sin θvθ)

∂θ
+

1

r sin θ

∂vφ
∂φ

(9.31)

The expressions for the curl are, cylindrical:

∇× ~v = r̂

(
1

r
∂vz
∂φ
−
∂vφ
∂z

)
+ φ̂

(
∂vr
∂z
− ∂vz
∂r

)
+ ẑ

(
1

r

∂(rvφ)

∂r
− 1

r
∂vr
∂φ

)
(9.32)

and spherical:

∇× ~v = r̂
1

r sin θ

(
∂(sin θvφ)

∂θ
− ∂vθ
∂φ

)
+θ̂

(
1

r sin θ
∂vr
∂φ
− 1

r

∂(rvφ)

∂r

)
+ φ̂

1

r

(
∂(rvθ)
∂r

− ∂vr
∂θ

)
(9.33)

9.7 Identities for Vector Operators
Some of the common identities can be proved simply by computing them in rectangular components.
These are vectors, and if you show that one vector equals another vector it doesn’t matter that you
used a simple coordinate system to demonstrate the fact. Of course there are some people who quite
properly complain about the inelegance of such a procedure. They’re called mathematicians.

∇ .∇× ~v = 0 ∇×∇f = 0 ∇×∇× ~v = ∇
(
∇ .~v

)
−
(
∇ .∇

)
~v (9.34)

There are many other identities, but these are the big three.∮
~v . d ~A =

∫
d3r∇ .~v

∮
~v . d~r =

∫
∇× ~v . d ~A (9.35)

are the two fundamental integral relationships, going under the names of Gauss and Stokes. See chapter
13 for the proofs of these integral relations.

9.8 Applications to Gravity
The basic equations to describe the gravitational field in Newton’s theory are

∇ .~g = −4πGρ, and ∇× ~g = 0 (9.36)

In these equations, the vector field ~g is defined by placing a (very small) test mass m at a point and
measuring the gravitational force on it. This force is proportional to m itself, and the proportionality
factor is called the gravitational field ~g. The other symbol used here is ρ, and that is the volume mass
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density, dm/dV of the matter that is generating the gravitational field. G is Newton’s gravitational
constant: G = 6.67× 10−11 N.m2/kg2.

r̂
r

For the first example of solutions to these equations, take the case of a spherically symmetric
mass that is the source of a gravitational field. Assume also that its density is constant inside; the
total mass is M and it occupies a sphere of radius R. Whatever ~g is, it has only a radial component,
~g = gr r̂. Proof: Suppose it has a sideways component at some point. Rotate the whole system by
180◦ about an axis that passes through this point and through the center of the sphere. The system
doesn’t change because of this, but the sideways component of ~g would reverse. That can’t happen.

The component gr can’t depend on either θ or φ because the source doesn’t change if you rotate
it about any axis; it’s spherically symmetric.

~g = gr(r) r̂ (9.37)

Now compute the divergence and the curl of this field. Use Eqs. (9.16) and (9.33) to get

∇ . gr(r) r̂ =
1

r2

d
(
r2gr

)
dr

and ∇× gr(r) r̂ = 0

The first equation says that the divergence of ~g is proportional to ρ.

1

r2

d
(
r2gr

)
dr

= −4πGρ (9.38)

Outside the surface r = R, the mass density is zero, so this is

1

r2

d
(
r2gr

)
dr

= 0, implying r2gr = C, and gr =
C
r2

where C is some as yet undetermined constant. Now do this inside.

1

r2

d
(
r2gr

)
dr

= −4πGρ0, where ρ0 = 3M/4πR3

This is
d
(
r2gr

)
dr

= −4πGρ0 r
2, so r2gr = −4

3
πGρ0 r

3 +C ′,

or gr(r) = −4

3
πGρ0 r +

C ′

r2

There are two constants that you have to evaluate: C and C ′. The latter has to be zero, because
C ′/r2 → ∞ as r → 0, and there’s nothing in the mass distribution that will cause this. As for the
other, note that gr must be continuous at the surface of the mass. If it isn’t, then when you try to
differentiate it in Eq. (9.38) you’ll be differentiating a step function and you get an infinite derivative
there (and the mass density isn’t infinite there).

gr(R−) = −4

3
πGρ0R = gr(R+) =

C
R2
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Solve for C and you have

C = −4

3
πGρ0R

3 = −4

3
πG

3M
4πR3

R3 = −GM

Put this all together and express the density ρ0 in terms of M and R to get

gr R

gr(r) =

{
−GM/r2 (r > R)
−GMr/R3 (r < R)

(9.39)

This says that outside the spherical mass distribution you can’t tell what its radius R is. It
creates the same gravitational field as a point mass. Inside the uniform sphere, the field drops to zero
linearly toward the center. For a slight variation on how to do this calculation see problem 9.14.

Non-uniform density
The density of the Earth is not uniform; it’s bigger in the center. The gravitational field even increases
as you go down below the Earth’s surface. What does this tell you about the density function? ∇ .~g =
−4πGρ remains true, and I’ll continue to make the approximation of spherical symmetry, so this is

1

r2

d
(
r2gr

)
dr

=
dgr
dr

+
2

r
gr = −4πGρ(r) (9.40)

That gravity increases with depth (for a little while) says

dgr
dr

= −4πGρ(r)− 2

r
gr > 0

Why > 0? Remember: gr is itself negative and r is measured outward. Sort out the signs. I can solve
for the density to get

ρ(r) < − 1

2πGr
gr

At the surface, gr(R) = −GM/R2, so this is

ρ(R) <
M

2πR3
=

2

3
. 3M

4πR3
=

2

3
ρaverage

The mean density of the Earth is 5.5 gram/cm3, so this bound is 3.7 gram/cm3. Pick up a random
rock. What is its density?

9.9 Gravitational Potential
The gravitational potential is that function V for which

~g = −∇V (9.41)

That such a function even exists is not instantly obvious, but it is a consequence of the second of the
two defining equations (9.36). If you grant that, then you can get an immediate equation for V by
substituting it into the first of (9.36).

∇ .~g = −∇ .∇V = −4πGρ, or ∇2V = 4πGρ (9.42)
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This is a scalar equation instead of a vector equation, so it will often be easier to handle. Apply it to
the same example as above, the uniform spherical mass.

The Laplacian, ∇2 is the divergence of the gradient, so to express it in spherical coordinates,
combine Eqs. (9.24) and (9.31).

∇2V =
1

r2

∂
∂r

(
r2∂V
∂r

)
+

1

r2 sin θ
∂
∂θ

(
sin θ

∂V
∂θ

)
+

1

r2 sin2 θ

∂2V
∂φ2

(9.43)

Because the mass is spherical it doesn’t change no matter how you rotate it so the same thing
holds for the solution, V (r). Use this spherical coordinate representation of ∇2 and for this case the θ
and φ derivatives vanish.

1

r2

d
dr

(
r2dV
dr

)
= 4πGρ(r) (9.44)

I changed from ∂ to d because there’s now one independent variable, not several. Just as with Eq. (9.38)
I’ll divide this into two cases, inside and outside.

Outside:
1

r2

d
dr

(
r2dV
dr

)
= 0, so r2dV

dr
= C

Continue solving this and you have

dV
dr

=
C
r2
−→ V (r) = −C

r
+D (r > R) (9.45)

Inside:
1

r2

d
dr

(
r2dV
dr

)
= 4πGρ0 so r2dV

dr
= 4πGρ0

r3

3
+C ′

Continue, dividing by r2 and integrating,

V (r) = 4πGρ0
r2

6
− C

′

r
+D′ (r < R) (9.46)

There are now four arbitrary constants to examine. Start with C ′. It’s the coefficient of 1/r in the
domain where r < R. That means that it blows up as r → 0, but there’s nothing at the origin to
cause this. C ′ = 0. Notice that the same argument does not eliminate C because (9.45) applies only
for r > R.

Boundary Conditions
Now for the boundary conditions at r = R. There are a couple of ways to determine this. I find
the simplest and the most general approach is to recognize that the equations (9.42) and (9.44) must
be satisfied everywhere. That means not just outside, not just inside, but at the surface too. The
consequence of this statement is the result*

V is continuous at r = R dV/dr is continuous at r = R (9.47)

Where do these continuity conditions come from? Assume for a moment that the first one is false, that
V is discontinuous at r = R, and look at the proposition graphically. If V changes value in a very
small interval the graphs of V , of dV/dr, and of d2V/dr2 look like

* Watch out for the similar looking equations that appear in electrostatics. Only the first of these
equations holds there; the second must be modified by a dielectric constant.
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V dV/dr d2V/dr2

The second derivative on the left side of Eq. (9.44) has a double spike that does not appear on
the right side. It can’t be there, so my assumption that V is discontinuous is false and V must be
continuous.

Assume next that V is continuous but its derivative is not. The graphs of V , of dV/dr, and of
d2V/dr2 then look like

V dV/dr d2V/dr2

The second derivative on the left side of Eq. (9.44) still has a spike in it and there is no such
spike in the ρ on the right side. This is impossible, so dV/dr too must be continuous.

Back to the Problem
Of the four constants that appear in Eqs. (9.45) and (9.46), one is already known, C ′. For the rest,

V (R−) = V (R+) is 4πGρ0
R2

6
+D′ = −C

R
+D

dV
dr

(R−) =
dV
dr

(R+) is 8πGρ0
R
6

= +
C
R2

These two equations determine two of the constants.

C = 4πGρ0
R3

3
, then D −D′ = 4πGρ0

R2

6
+ 4πGρ0

R2

3
= 2πGρ0R

2

Put this together and you have

V R

V (r) =

{
2
3πGρ0r2 − 2πGρ0R2 +D (r < R)

−4
3πGρ0R3

/
r +D (r > R)

(9.48)

Did I say that the use of potentials is supposed to simplify the problems? Yes, but only the harder
problems. The negative gradient of Eq. (9.48) should be ~g. Is it? The constant D can’t be determined
and is arbitrary. You may choose it to be zero.
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Magnetic Boundary Conditions
The equations for (time independent) magnetic fields are

∇× ~B = µ0
~J and ∇ . ~B = 0 (9.49)

The vector ~J is the current density, the current per area, defined so that across a tiny area d ~A the

current that flows through the area is dI = ~J . d ~A. (This is precisely parallel to Eq. (9.1) for fluid
flow rate.) In a wire of radius R, carrying a uniform current I , the magnitude of J is I/πR2. These
equations are sort of the reverse of Eq. (9.36).

If there is a discontinuity in the current density at a surface such as the edge of a wire, will
there be some sort of corresponding discontinuity in the magnetic field? Use the same type of analysis
as followed Eq. (9.47) for the possible discontinuities in the potential function. Take the surface of
discontinuity of the current density to be the x-y plane, z = 0 and write the divergence equation

∂Bx
∂x

+
∂By
∂y

+
∂Bz
∂z

= 0

If there is a discontinuity, it will be in the z variable. Perhaps Bx or Bz is discontinuous at the x-y plane.
The divergence equation has a derivative with respect to z only on Bz. If one of the other components
changes abruptly at the surface, this equation causes no problem — nothing special happens in the x
or y direction. If Bz changes at the surface then the derivative ∂Bz/∂z has a spike. Nothing else in
the equation has a spike, so there’s no way that you can satisfy the equation. Conclusion: The normal

component of ~B is continuous at the surface.
What does the curl say?

x̂

(
∂Bz
∂y
−
∂By
∂x

)
+ ŷ

(
∂Bx
∂z
− ∂Bz

∂y

)
+ ẑ

(
∂By
∂x
− ∂Bx

∂y

)
= µ0

(
x̂Jx + ŷ Jy + ẑ Jz

)
Derivatives with respect to x or y don’t introduce a problem at the surface, all the action is again
along z. Only the terms with a ∂/∂z will raise a question. If Bx is discontinuous at the surface, then
its derivative with respect to z will have a spike in the ŷ direction that has no other term to balance
it. (Jy has a step here but not a spike.) Similarly for By. This can’t happen, so the conclusion: The

tangential component of ~B is continuous at the surface.
What if the surface isn’t a plane. Maybe it is a cylinder or a sphere. In a small enough region,

both of these look like planes. That’s why there is still* a Flat Earth Society.

9.10 Index Notation
In section 7.11 I introduced the summation convention for repeated indices. I’m now going to go over
it again and emphasize its utility in practical calculations.

When you want to work in a rectangular coordinate system, with basis vectors x̂, ŷ, and ẑ, it is
convenient to use a more orderly notation for the basis vectors instead of just a sequence of letters of
the alphabet. Instead, call them ê1, ê2, and ê3. (More indices if you have more dimensions.) I’ll keep
the assumption that these are orthogonal unit vectors so that

ê1 . ê2 = 0, ê3 . ê3 = 1, etc.

More generally, write this in the compact notation

êi . êj = δij =

{
1 (i = j)
0 (i 6= j)

(9.50)

* en.wikipedia.org/wiki/Flat Earth Society

http://en.wikipedia.org/wiki/Flat_Earth_Society
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The Kronecker delta is either one or zero depending on whether i = j or i 6= j, and this equation sums
up the properties of the basis in a single, compact notation. You can now write a vector in this basis as

~A = A1 ê1 +A2 ê2 +A3 ê3 = Ai êi

The last expression uses the summation convention that a repeated index is summed over its range.
When an index is repeated in a term, you will invariably have exactly two instances of the index; if you
have three it’s a mistake.

When you add or subtract vectors, the index notation is

~A+ ~B = ~C = Ai êi +Bi êi = (Ai +Bi)êi = Ci êi or Ai +Bi = Ci

Does it make sense to write ~A+ ~B = Ai êi +Bk êk? Yes, but it’s sort of pointless and confusing. You
can change any summed index to any label you find convenient — they’re just dummy variables.

Ai êi = A` e` = Am êm = A1 ê1 +A2 ê2 +A3 ê3

You can sometime use this freedom to help do manipulations, but in the example Ai êi +Bk êk it’s no
help at all.

Combinations such as

Ei + Fi or EkFkGi = Hi or Mk`D` = Fk

are valid. The last is simply Eq. (7.8) for a matrix times a column matrix.

Ai +Bj = Ck or EmFmGm or Ck = AijBj

have no meaning.
You can manipulate the indices for your convenience as long as you follow the rules.

Ai = BijCj is the same as Ak = BknCn or A` = B`pCp

The scalar product has a simple form in index notation:

~A . ~B = Ai êi .Bj êj = AiBj êi . êj = AiBjδij = AiBi (9.51)

The final equation comes by doing one of the two sums (say j), and only the term with j = i survives,
producing the final expression. The result shows that the sum over the repeated index is the scalar
product in disguise.

Just as the dot product of the basis vectors is the delta-symbol, the cross product provides
another important index function, the alternating symbol.

êi . êj × êk = εijk (9.52)

ê2 × ê3 ≡ ŷ × ẑ = ê1, so ε123 = ê1 . ê2 × ê3 = 1

ê2 × ê3 = −ê3 × ê2, so ε132 = −ε123 = −1

ê3 . ê1 × ê2 = ê3 . ê3 = 1, so ε312 = ε123 = 1

ê1 . ê3 × ê3 = ê1 . 0 = 0 so ε133 = 0
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If the indices are a cyclic permutation of 123, (231 or 312), the alternating symbol is 1.
If the indices are an odd permutation of 123, (132 or 321 or 213), the symbol is −1.
If any two of the indices are equal the alternating symbol is zero, and that finishes all the cases. The
last property is easy to see because if you interchange any two indices the sign changes. If the indices
are the same, the sign can’t change so it must be zero.

Use the alternating symbol to write the cross product itself.

~A× ~B = Ai êi ×Bj êj and the k-component is

êk . ~A× ~B = êk .AiBj êi × êj = εkijAiBj

You can use the summation convention to advantage in calculus too. The ∇ vector operator has
components

∇i or some people prefer ∂i

For unity of notation, use x1 = x and x2 = y and x3 = z. In this language,

∂1 ≡ ∇1 is
∂
∂x
≡ ∂
∂x1

(9.53)

Note: This notation applies to rectangular component calculations only! (êi . êj = δij .) The generalization
to curved coordinate systems will wait until chapter 12.

div~v = ∇ .~v = ∂ivi =
∂v1

∂x1
+
∂v2

∂x2
+
∂v3

∂x3
(9.54)

You should verify that ∂ixj = δij .

Similarly the curl is expressed using the alternating symbol.

curl~v = ∇× ~v becomes εijk∂jvk =
(

curl~v
)
i (9.55)

the ith components of the curl.

An example of manipulating these object: Prove that curl gradφ = 0.

curl gradφ = ∇×∇φ −→ εijk∂j∂kφ (9.56)

You can interchange the order of the differentiation as always, and the trick here is to relabel the indices
— that is a standard technique in this business.

εijk∂j∂kφ = εijk∂k∂jφ = εikj∂j∂kφ

The first equation interchanges the order of differentiation. In the second equation, I call “j” “k” and
I call “k” “j”. These are dummy indices, summed over, so this can’t affect the result, but now this
expression looks like that of Eq. (9.56) except that two (dummy) indices are reversed. The ε symbol
is antisymmetric under interchange of any of its indices, so the final expression is the negative of the
expression in Eq. (9.56). The only number equal to minus itself is zero, so the identity is proved.
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9.11 More Complicated Potentials
The gravitational field from a point mass is ~g = −Gmr̂/r2, so the potential for this point mass is
φ = −Gm/r. This satisfies

~g = −∇φ = −∇−Gm
r

= r̂
∂
∂r
Gm
r

= −Gmr̂
r2

For several point masses, the gravitational field is the vector sum of the contributions from each mass.
In the same way the gravitational potential is the (scalar) sum of the potentials contributed by each
mass. This is almost always easier to calculate than the vector sum. If the distribution is continuous,
you have an integral.

φtotal =
∑
−Gmk

rk
or −

∫
Gdm
r

~r ′

~r

x′
y′

z′

This sort of very abbreviated notation for the sums and integrals is normal once you have done a lot of
them, but when you’re just getting started it is useful to go back and forth between this terse notation
and a more verbose form. Expand the notation and you have

φtotal(~r ) = −G
∫

dm∣∣~r − ~r ′∣∣ (9.57)

This is still not very explicit, so expand it some more. Let

~r ′ = x̂x′ + ŷ y′ + ẑ z′ and ~r = x̂x+ ŷ y + ẑ z

then φ(x, y, z) = −G
∫
dx′dy′dz′ ρ(x′, y′, z′)

1√
(x− x′)2 + (y − y′)2 + (z − z′)2

where ρ is the volume mass density so that dm = ρ dV = ρ d3r′, and the limits of integration are such
that this extends over the whole volume of the mass that is the source of the potential. The primed
coordinates represent the positions of the masses, and the non-primed ones are the position of the point
where you are evaluating the potential, the field point. The combination d3r is a common notation for
a volume element in three dimensions.

For a simple example, what is the gravitational potential from a uniform thin rod? Place its
center at the origin and its length = 2L along the z-axis. The potential is

φ(~r ) = −
∫
Gdm
r

= −G
∫

λdz′√
x2 + y2 + (z − z′)2

where λ = M/2L is its linear mass density. This is an elementary integral. Let u = z′ − z, and

a =
√
x2 + y2.

φ = −Gλ
∫ L−z

−L−z

du√
a2 + u2

= −Gλ
∫
dθ = −Gλθ

∣∣∣∣u=L−z

u=−L−z
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where u = a sinh θ. Put this back into the original variables and you have

φ = −Gλ

[
sinh−1

(
L− z√
x2 + y2

)
+ sinh−1

(
L+ z√
x2 + y2

)]
(9.58)

The inverse hyperbolic function is a logarithm as in Eq. (1.4), so this can be rearranged and the terms
combined into the logarithm of a function of x, y, and z, but the sinh−1s are easier to work with so
there’s not much point. This is not too complicated a result, and it is far easier to handle than the
vector field you get if you take its gradient. It’s still necessary to analyze it in order to understand it
and to check for errors. See problem 9.48.

Exercises

1 Prove that the geometric interpretation of a cross product is as an area.

2 Start from a picture of ~C = ~A− ~B and use the definition and properties of the dot product to derive
the law of cosines. (If this takes you more than about three lines, start over, and no components, just
vectors.)

3 Start from a picture of ~C = ~A − ~B and use the definition and properties of the cross product to
derive the law of sines. (If this takes you more than a few lines, start over.)

4 Show that ~A . ~B × ~C = ~A × ~B . ~C. Do this by drawing pictures of the three vectors and find the
geometric meaning of each side of the equation, showing that they are the same (including sign).

5 (a) If the dot product of a given vector ~F with every vector results in zero, show that ~F = 0.
(b) Same for the cross product.

6 From the definition of the dot product, and in two dimensions, draw pictures to interpret ~A .( ~B+ ~C)

and from there prove the distributive law: ~A . = ~A . ~B + ~A . ~C. (Draw ~B + ~C tip-to-tail.)

7 For a sphere, from the definition of the integral, what is
∮
d ~A? What is

∮
dA?

8 What is the divergence of x̂xy + ŷ yz + ẑ zx?

9 What is the divergence of r̂ r sin θ + θ̂ r0 sin θ cosφ+ φ̂r cosφ? (spherical)

10 What is the divergence of r̂ r sinφ+ φ̂z sinφ+ ẑ zr? (cylindrical)

11 In cylindrical coordinates draw a picture of the vector field ~v = φ̂r2(2+cosφ) (for z = 0). Compute
the divergence of ~v and indicate in a second sketch what it looks like. Draw field lines for ~v.

12 What is the curl of the vector field in the preceding exercise (and indicate in a sketch what it’s like).

13 Calculate ∇ . r̂. (a) in cylindrical and (b) in spherical coordinates.

14 Compute ∂ixj .

15 Compute div curl ~v using index notation.

16 Show that εijk = 1
2(i− j)(j − k)(k − i).

17 Use index notation to derive ∇ .(f~v ) = (∇f) .~v + f∇ .~v.

18 Write Eq. (8.6) in index notation, where (x, y)→ xi and (x′, y′)→ x′j .
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Problems

9.1 Use the same geometry as that following Eq. (9.3), and take the velocity function to be ~v =
x̂v0xy/b2. Take the bottom edge of the plane to be at (x, y) = (0, 0) and calculate the flow rate.
Should the result be independent of the angle φ? Sketch the flow to understand this point. Does the
result check for any special, simple value of φ? Ans: (v0ab tanφ)/3

9.2 Repeat the preceding problem using the cylindrical surface of Eq. (9.4), but place the bottom point
of the cylinder at coordinate (x, y) = (x0, 0). Ans: (v0a/4)(2x0 + πb/4)

9.3 Use the same velocity function ~v = x̂v0xy/b2 and evaluate the flow integral outward from the
closed surface of the rectangular box, (c < x < d), (0 < y < b), (0 < z < a). The convention is that
the unit normal vector points outward from the six faces of the box. Ans: v0a(d− c)/2

9.4 Work out the details, deriving the divergence of a vector field in spherical coordinates, Eq. (9.16).

9.5 (a) For the vector field ~v = A~r, that is pointing away from the origin with a magnitude proportional
to the distance from the origin, express this in rectangular components and compute its divergence.
(b) Repeat this in cylindrical coordinates (still pointing away from the origin though).
(c) Repeat this in spherical coordinates, Eq. (9.16).

9.6 Gauss’s law for electromagnetism says
∮ ~E . d ~A = qencl/ε0. If the electric field is given to be

~E = A~r, what is the surface integral of ~E over the whole closed surface of the cube that spans the
region from the origin to (x, y, z) = (a, a, a)?
(a) What is the charge enclosed in the cube?

(b) Compute the volume integral,
∫
d3r∇ . ~E inside the same cube?

9.7 Evaluate the surface integral,
∮
~v . d ~A, of ~v = r̂Ar2 sin2 θ + θ̂Br cos θ sinφ over the surface of

the sphere centered at the origin and of radius R. Recall section 8.8.

9.8 (a) What is the area of the spherical cap on the surface of a sphere of radius R: 0 ≤ θ ≤ θ0?
(b) Does the result have the correct behavior for both small and large θ0?
(c) What are the surface integrals over this cap of the vector field ~v = r̂v0 cos θ sin2 φ? Consider both∫
~v . d ~A and

∫
~v × d ~A. Ans: v0πR2(1− cos2 θ0)/2

9.9 A rectangular area is specified parallel to the x-y plane at z = d and 0 < x < a, a < y < b. A
vector field is ~v =

(
x̂Axyz + ŷByx2 + ẑ Cx2yz2

)
Evaluate the two integrals over this surface∫

~v . d ~A, and

∫
d ~A× ~v

9.10 For the vector field ~v = Arn~r, compute the integral over the surface of a sphere of radius R
centered at the origin:

∮
~v . d ~A. (n ≥ 0)

Compute the integral over the volume of this same sphere
∫
d3r∇ .~v.

9.11 The velocity of a point in a rotating rigid body is ~v = ~ω × ~r. See problem 7.5. Compute its
divergence and curl. Do this in rectangular, cylindrical, and spherical coordinates.

9.12 Fill in the missing steps in the calculation of Eq. (9.29).
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9.13 Mimic the calculation in section 9.6 for the divergence in cylindrical coordinates, computing the
curl in cylindrical coordinates, ∇× ~v. Ans: Eq. (9.32).

9.14 Another way to get to Eq. (9.39) is to work with Eq. (9.38) directly and to write the function
ρ(r) explicitly as two cases: r < R and r > R. Multiply Eq. (9.38) by r2 and integrate it from zero
to r, being careful to handle the integral differently when the upper limit is < R and when it is > R.

r2gr(r) = −4πG
∫ r

0
dr′ r′2ρ(r′)

Note: This is not simply reproducing that calculation that I’ve already done. This is doing it a different
way.

9.15 If you have a very large (assume it’s infinite) slab of mass of thickness d the gravitational field
will be perpendicular to its plane. To be specific, say that there is a uniform mass density ρ0 between
z = ±d/2 and that ~g = gz(z) ẑ. Use Eqs. (9.36) to find gz(z).
Be precise in your reasoning when you evaluate any constants. (What happens when you rotate the
system about the x-axis?) Does your graph of the result make sense?
Ans: in part, gz = +2πGρ0d, (z < −d/2)

9.16 Use Eqs. (9.36) to find the gravitational field of a very long solid cylinder of uniform mass density
ρ0 and radius R. (Assume it’s infinitely long.) Start from the assumption that in cylindrical coordinates
the field is ~g = gr(r, φ, z) r̂, and apply both equations.
Ans: in part gr = −2πGρ0r, (0 < r < R)

9.17 The gravitational field in a spherical region r < R is stated to be ~g(r) = −r̂C/r, where C is a
constant. What mass density does this imply?
If there is no mass for r > R, what is ~g there?

9.18 In Eq. (8.23) you have an approximate expression for the gravitational field of Earth, including
the effect of the equatorial bulge. Does it satisfy Eqs. (9.36)? (r > REarth)

9.19 Compute the divergence of the velocity function in problem 9.3 and integrate this divergence over
the volume of the box specified there. Ans: (d− c)av0

9.20 The gravitational potential, equation (9.42), for the case that the mass density is zero says to
set the Laplacian Eq. (9.43) equal to zero. Assume a solution to ∇2V = 0 to be a function of the
spherical coordinates r and θ alone and that

V (r, θ) = Ar−(`+1)f(x), where x = cos θ

Show that this works provided that f satisfies a certain differential equation and show that it is the
Legendre equation of Eq. (4.18) and section 4.11.

9.21 The volume energy density, dU/dV in the electric field is ε0E2/2. The electrostatic field equations
are the same as the gravitational field equations, Eq. (9.36).

∇ . ~E = ρ/ε0, and ∇× ~E = 0

A uniformly charged ball of radius R has charge density ρ0 for r < R, Q = 4πρ0R3/3.
(a) What is the electric field everywhere due to this charge distribution?



9—Vector Calculus 1 237

(b) The total energy of this electric field is the integral over all space of the energy density. What is it?
(c) If you want to account for the mass of the electron by saying that all this energy that you just
computed is the electron’s mass via E0 = mc2, then what must the electron’s radius be? What is its
numerical value? Ans: re = 3/5

(
e2/4πε0mc2

)
= 1.69 fm

9.22 The equations relating a magnetic field, ~B, to the current producing it are, for the stationary
case,

∇× ~B = µ0
~J and ∇ . ~B = 0

Here ~J is the current density, current per area, defined so that across a tiny area d ~A the current that

flows through the area is dI = ~J . d ~A. A cylindrical wire of radius R carries a total current I distributed
uniformly across the cross section of the wire. Put the z-axis of a cylindrical coordinate system along

the central axis of the wire with positive z in the direction of the current flow. Write the function ~J
explicitly in these coordinates (for all values of r < R, r > R). Use the curl and divergence expressed in

cylindrical coordinates and assume a solution in the form ~B = φ̂Bφ(r, φ, z). Write out the divergence

and curl equations and show that you can satisfy these equations relating ~J and ~B with such a form,
solving for Bφ. Sketch a graph of the result. At a certain point in the calculation you will have to

match the boundary conditions at r = R. Recall that the tangential component of ~B (here Bφ) is
continuous at the boundary.
Ans: in part, µ0Ir/2πR2 (r < R)

9.23 A long cylinder of radius R has a uniform charge density inside it, ρ0 and it is rotating about its

long axis with angular speed ω. This provides an azimuthal current density ~J = ρ0rω φ̂ in cylindrical

coordinates. Assume the form of the magnetic field that this creates has only a z-component: ~B =
Bz(r, φ, z)ẑ and apply the equations of the preceding problem to determine this field both inside and

outside. The continuity condition at r = R is that the tangential component of ~B (here it is Bz) is
continuous there. The divergence and the curl equations will (almost) determine the rest. Ans: in part,
−ρr2ω/2 +C (r < R)

9.24 By analogy to Eqs. (9.9) and (9.17) the expression

lim
V→0

1

V

∮
φd ~A

is the gradient of the scalar function φ. Compute this in rectangular coordinates by mimicking the
derivation that led to Eq. (9.11) or (9.15), showing that it has the correct components.

9.25 (a) A fluid of possibly non-uniform mass density is in equilibrium in a possibly non-uniform
gravitational field. Pick a volume and write down the total force vector on the fluid in that volume; the
things acting on it are gravity and the surrounding fluid. Take the limit as the volume shrinks to zero,
and use the result of the preceding problem in order to get the equation for equilibrium.
(b) Now apply the result to the special case of a uniform gravitational field and a constant mass density
to find the pressure variation with height. Starting from an atmospheric pressure of 1.01× 105 N/m2,
how far must you go under water to reach double this pressure?
Ans: ∇p = −ρ~g; about 10 meters

9.26 The volume energy density, u = dU/dV , in the gravitational field is g2/8πG. [Check the units
to see if it makes sense.] Use the results found in Eq. (9.39) for the gravitational field of a spherical
mass and get the energy density. An extension of Newton’s theory of gravity is that the source of
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gravity is energy not just mass! This energy that you just computed from the gravitational field is then
the source of more gravity, and this energy density contributes as a mass density ρ = u/c2 would.
(a) Find the additional gravitational field gr(r) that this provides and add it to the previous result for
gr(r).
(b) For our sun, its mass is 2 × 1030 kg and its radius is 700, 000 km. Assume its density is constant
throughout so that you can apply the results of this problem. At the sun’s surface, what is the ratio of
this correction to the original value?
(c) What radius would the sun have to be so that this correction is equal to the original gr(R), resulting
in double gravity? Ans: (a) gcorrection

/
goriginal = GM

/
10Rc2

9.27 Continuing the ideas of the preceding problem, the energy density, u = dU/dV , in the gravita-
tional field is g2/8πG, and the source of gravity is energy not just mass. In the region of space that is
empty of matter, show that the divergence equation for gravity, (9.36), then becomes

∇ .~g = −4πGu/c2 = −g2/2c2

Assume that you have a spherically symmetric system, ~g = gr(r)r̂, and write the differential equation
for gr.
(a) Solve it and apply the boundary condition that as r → ∞, the gravitational field should go to
gr(r)→ −GM/r2. How does this solution behave as r → 0 and compare its behavior to that of the
usual gravitational field of a point mass.
(b) Can you explain why the behavior is different? Note that in this problem it is the gravitational field
itself that is the source of the gravitational field; mass as such isn’t present.
(c) A characteristic length appears in this calculation. Evaluate it for the sun. It is 1/4 the Schwarzchild
radius that appears in the theory of general relativity.
Ans: (a) gr = −GM

/[
r(r +R)

]
, where R = GM/2c2

9.28 In the preceding problem, what is the total energy in the gravitational field,
∫
udV ? How does

this (÷c2) compare to the mass M that you used in setting the value of gr as r →∞?

9.29 Verify that the solution Eq. (9.48) does satisfy the continuity conditions on V and V ′.

9.30 The r-derivatives in Eq. (9.43), spherical coordinates, can be written in a different and more
convenient form. Show that they are equivalent to

1

r
∂2(rV )

∂r2

9.31 The gravitational potential from a point mass M is −GM/r where r is the distance to the mass.
Place a single point mass at coordinates (x, y, z) = (0, 0, d) and write its potential V . Write this
expression in terms of spherical coordinates about the origin, (r, θ), and then expand it for the case
r > d in a power series in d/r, putting together the like powers of d/r. Do this through order (d/r)3.
Express the result in the language of Eq. (4.61).

Ans: −GMr −
GMd
r2
[

cos θ
]
− GMd2

r3
[

3
2 cos2 θ − 1

2

]
− GMd3

r4
[

5
2 cos3 θ − 3

2 cos θ
]

9.32 As in the preceding problem a point mass M has potential −GM/r where r is the distance to
the mass. The mass is at coordinates (x, y, z) = (0, 0, d). Write its potential V in terms of spherical
coordinates about the origin, (r, θ), but this time take r < d and expand it in a power series in r/d.
Do this through order (r/d)3.
Ans: (−GM/d)[1 + (r/d)P1(cos θ) + (r2/d2)P2(cos θ) + (r3/d3)P3(cos θ) + · · ·]
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9.33 Theorem: Given that a vector field satisfies ∇× ~v = 0 everywhere, then it follows that you can
write ~v as the gradient of a scalar function, ~v = −∇ψ. For each of the following vector fields find if
possible, and probably by trail and error if so, a function ψ that does this. First determine is the curl is
zero, because if it isn’t then your hunt for a ψ will be futile. You should try however — the hunt will
be instructive.

(a) x̂y3 + 3ŷ xy2, (c) x̂y cos(xy) + ŷ x cos(xy),

(b) x̂x2y + ŷ xy2, (d) x̂y2 sinh(2xy2) + 2ŷ xy sinh(2xy2)

9.34 A hollow sphere has inner radius a, outer radius b, and mass M , with uniform mass density in
this region.
(a) Find (and sketch) its gravitational field gr(r) everywhere.
(b) What happens in the limit that a→ b? In this limiting case, graph gr. Use gr(r) = −dV/dr and
compute and graph the potential function V (r) for this limiting case. This violates Eq. (9.47). Why?
(c) Compute the area mass density, σ = dM/dA, in this limiting case and find the relationship between
the discontinuity in dV/dr and the value of σ.

9.35 Evaluate

δijεijk, εmjkεnjk, ∂ixj , ∂ixi, εijkεijk, δijvj

and show that εijkεmnk = δimδjn − δinδjm

9.36 Verify the identities for arbitrary ~A,( ~A .∇
)
~r = ~A or Ai∂ixj = Aj

∇ .∇× ~v = 0 or ∂iεijk∂jvk = 0

∇ .
(
f ~A

)
=
(
∇f
)

. ~A+ f
(
∇ . ~A

)
or ∂i(fAi) = (∂if)Ai + f∂iAi

You can try proving all these in the standard vector notation, but use the index notation instead. It’s
a lot easier.

9.37 Use index notation to prove ∇×∇×~v = ∇(∇ .~v )−∇2~v. First, what identity you have to prove
about ε’s.

9.38 Is ∇ × ~v perpendicular to ~v ? Either prove it’s true or give an explicit example for which it is
false.

9.39 If for arbitrary Ai and arbitrary Bj it is known that aijAiBj = 0, prove then that all the aij are
zero.

9.40 Compute the divergences of
Axx̂+By2 ŷ +C ẑ in rectangular coordinates.

Ar r̂ +Bθ2 θ̂ +C φ̂ in spherical coordinates.
How do the pictures of these vector fields correspond to the results of these calculations?

9.41 Compute the divergence and the curl of

y x̂− xŷ
x2 + y2

, and of
y x̂− xŷ

(x2 + y2)2
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9.42 Translate the preceding vector fields into polar coordinates, then take their divergence and curl.
And of course draw some pictures.

9.43 As a review of ordinary vector algebra, and perhaps some practice in using index notation, translate
the triple scalar product into index notation and prove first that it is invariant under cyclic permutations
of the vectors.
(a) ~A . ~B × ~C = ~B . ~C × ~A = ~C . ~A× ~B. Then that

(b) ~A . ~B × ~C = ~A× ~B . ~C.
(c) What is the result of interchanging any pair of the vectors in the product?
(d) Show why the geometric interpretation of this product is as the volume of a parallelepiped.

9.44 What is the total flux,
∮ ~E . d ~A, out of the cube of side a with one corner at the origin?

(a) ~E = αx̂+ β ŷ + γ ẑ

(b) ~E = αxx̂+ βy ŷ + γz ẑ.

9.45 The electric potential from a single point charge q is kq/r. Two charges are on the z-axis: −q
at position z = z0 and +q at position z0 + a.
(a) Write the total potential at the point (r, θ, φ) in spherical coordinates.
(b) Assume that r � a and r � z0, and use the binomial expansion to find the series expansion for
the total potential out to terms of order 1/r3.
(c) how does the coefficient of the 1/r2 term depend on z0? The coefficient of the 1/r3 term? These
tell you the total electric dipole moment and the total quadrupole moment.
(d) What is the curl of the gradient of each of these two terms?
The polynomials of section 4.11 will appear here, with argument cos θ.

a θ

α

9.46 For two point charges q1 and q2, the electric field very far away will look like
that of a single point charge q1 + q2. Go the next step beyond this and show that
the electric field at large distances will approach a direction such that it points along
a line that passes through the “center of charge” (like the center of mass): (q1~r1 +
q2~r2)/(q1 + q2). What happens to this calculation if q2 = −q1? You will find the
results of problem 9.31 useful. Sketch various cases of course. At a certain point in the
calculation, you will probably want to pick a particular coordinate system and to place
the charges conveniently, probably one at the origin and the other on the z-axis. You
should keep terms in the expansion for the potential up through 1/r2 and then take −∇V . Unless of
course you find a better way.

9.47 Fill in the missing steps in deriving Eq. (9.58).

9.48 Analyze the behavior of Eq. (9.58). The first thing you will have to do is to derive the behavior
of sinh−1 in various domains and maybe to do some power series expansions. In every case seek an
explanation of why the result comes out as it does.
(a) If z = 0 and r =

√
x2 + y2 � L what is it and what should it be? (And no, zero won’t do.)

(b) If z = 0 and r � L what is it and what should it be?
(c) If z > L and r → 0 what is this and what should it be? Be careful with your square roots here.
(d) What is the result of (c) for z � L and for z − L� L?

9.49 Use the magnetic field equations as in problem 9.22, and assume a current density that is purely
azimuthal and dependent on r alone. That is, in cylindrical coordinates it is

~J = J0 φ̂f(r)
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Look for a solution for the magnetic field in the form ~B = ẑ Bz(r). What is the total current per
length in this case? That is, for a length ∆z how much current is going around the axis and how is
this related to Bz along r = 0?
Examine also the special case for which f(r) = 0 except in a narrow range a < r < b with b− a� b
(thin). Compare this result to what you find in introductory texts about the solenoid.

9.50 For a spherical mass distribution such as the Earth, what would the mass density function have
to be so that the gravitational field has constant strength as a function of depth? Ans: ρ ∝ 1/r.

9.51 Use index notation to derive( ~A× ~B
)

.
(~C × ~D

)
=
( ~A . ~C

)( ~B . ~D
)
−
( ~A . ~D

)( ~B . ~C
)

9.52 Show that ∇ .( ~A× ~B) = ~B .∇× ~A− ~A .∇× ~B. Use index notation to derive this.

9.53 Use index notation to compute ∇ei~k .~r. Also compute the Laplacian of the same exponential,
∇2 = div grad.

9.54 Derive the force of one charged ring on another, as shown in equation (2.35).

9.55 A point mass m is placed at a distance d > R from the center of a spherical shell of radius R
and mass M . Starting from Newton’s gravitational law for point masses, derive the force on m from
M . Place m on the z-axis and use spherical coordinates to express the piece of dM within dθ and
dφ. (This problem slowed Newton down when he first tried to solve it, as he had to stop and invent
integral calculus first.)

9.56 The volume charge density is measured near the surface of a (not quite perfect) conductor to

be ρ(x) = ρ0ex/a for x < 0. The conductor occupies the region x < 0, so the electric field in the
conductor is zero once you’re past the thin surface charge density. Find the electric field everywhere
and graph it. Assume that everything is independent of y and z (and t).



Partial Differential Equations
.

If the subject of ordinary differential equations is large, this is enormous. I am going to examine only one
corner of it, and will develop only one tool to handle it: Separation of Variables. Another major tool is
the method of characteristics and I’ll not go beyond mentioning the word. When I develop a technique
to handle the heat equation or the potential equation, don’t think that it stops there. The same set of
tools will work on the Schroedinger equation in quantum mechanics and on the wave equation in its
many incarnations.

10.1 The Heat Equation
The flow of heat in one dimension is described by the heat conduction equation

P = −κA∂T
∂x

(10.1)

where P is the power in the form of heat energy flowing toward positive x through a wall and A is the
area of the wall. κ is the wall’s thermal conductivity. Put this equation into words and it says that if a
thin slab of material has a temperature on one side different from that on the other, then heat energy
will flow through the slab. If the temperature difference is big or the wall is thin (∂T/∂x is big) then
there’s a big flow. The minus sign says that the energy flows from hot toward cold.

When more heat comes into a region than leaves it, the temperature there will rise. This is
described by the specific heat, c.

dQ = mcdT, or
dQ
dt

= mc
dT
dt

(10.2)

Again in words, the temperature rise in a chunk of material is proportional to the amount of heat added
to it and inversely proportional to its mass.

P (x, t)

x

A

P (x+ ∆x, t)

x+ ∆x

For a slab of area A, thickness ∆x, and mass density ρ, let the coordinates of the two sides be
x and x+ ∆x.

m = ρA∆x, and
dQ
dt

= P (x, t)− P (x+ ∆x, t)

The net power into this volume is the power in from one side minus the power out from the other. Put
these three equations together.

dQ
dt

= mc
dT
dt

= ρA∆x c
dT
dt

= −κA∂T (x, t)
∂x

+ κA
∂T (x+ ∆x, t)

∂x

If you let ∆x→ 0 here, all you get is 0 = 0, not very helpful. Instead divide by ∆x first and then take
the limit.

∂T
∂t

= +
κA
ρcA

(
∂T (x+ ∆x, t)

∂x
− ∂T (x, t)

∂x

)
1

∆x

242
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and in the limit this is
∂T
∂t

=
κ
cρ
∂2T
∂x2

(10.3)

I was a little cavalier with the notation in that I didn’t specify the argument of T on the left side. You
could say that it was (x + ∆x/2, t), but in the limit everything is evaluated at (x, t) anyway. I also
assumed that κ, the thermal conductivity, is independent of x. If not, then it stays inside the derivative,

∂T
∂t

=
1

cρ
∂
∂x

(
κ
∂T
∂x

)
(10.4)

In Three Dimensions
In three dimensions, this becomes

∂T
∂t

=
κ
cρ
∇2T (10.5)

Roughly speaking, the temperature in a box can change because of heat flow in any of three directions.
More precisely, the correct three dimensional equation that replaces Eq. (10.1) is

~H = −κ∇T (10.6)

where ~H is the heat flow vector. That is the power per area in the direction of the energy transport.
~H . d ~A = dP , the power going across the area d ~A. The total heat flowing into a volume is

n̂

dQ
dt

= −
∮
dP = −

∮
~H . d ~A (10.7)

where the minus sign occurs because this is the heat flow in. For a small volume ∆V , you now have
m = ρ∆V and

mc
∂T
∂t

= ρ∆V c
∂T
∂t

= −
∮
~H . d ~A

Divide by ∆V and take the limit as ∆V → 0. The right hand side is the divergence, Eq. (9.9).

ρc
∂T
∂t

= − lim
∆V→0

1

∆V

∮
~H . d ~A = −∇ . ~H = +∇ .κ∇T = +κ∇2T

The last step again assumes that the thermal conductivity, κ, is independent of position.

10.2 Separation of Variables
How do you solve these equations? I’ll start with the one-dimensional case and use the method of
separation of variables. The trick is to start by looking for a solution to the equation in the form of a
product of a function of x and a function of t. T (x, t) = f(t)g(x). I do not assume that every solution
to the equation will look like this — that’s just not true. What will happen is that I’ll be able to express
every solution as a sum of such factored forms. That this is so is a theorem that I don’t plan to prove
here. For that you should go to a purely mathematical text on PDEs.
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If you want to find out if you have a solution, plug in:

∂T
∂t

=
κ
cρ
∂2T
∂x2

is
df
dt
g =

κ
cρ
f
d2g
dx2

Denote the constant by κ/cρ = D and divide by the product fg.

1

f
df
dt

= D
1

g
d2g
dx2

(10.8)

The left side of this equation is a function of t alone, no x. The right side is a function of x alone with
no t, hence the name separation of variables. Because x and t can vary quite independently of each
other, the only way that this can happen is if the two side are constant (the same constant).

1

f
df
dt

= α and D
1

g
d2g
dx2

= α (10.9)

At this point, the constant α can be anything, even complex. For a particular specified problem there
will be boundary conditions placed on the functions, and those will constrain the α’s. If α is real and
positive then

g(x) = A sinh
√
α/Dx+B cosh

√
α/Dx and f(t) = eαt (10.10)

For negative real α, the hyperbolic functions become circular functions.

g(x) = A sin
√
−α/Dx+B cos

√
−α/Dx and f(t) = eαt (10.11)

If α = 0 then
g(x) = Ax+B, and f(t) = constant (10.12)

For imaginary α the f(t) is oscillating and the g(x) has both exponential and oscillatory behavior in
space. This can really happen in very ordinary physical situations; see section 10.3.

This analysis provides a solution to the original equation (10.3) valid for any α. A sum of such
solutions for different α’s is also a solution, for example

T (x, t) = A1e
α1t sin

√
−α1/Dx+A2e

α2t sin
√
−α2/Dx

or any other linear combination with various α’s

T (x, t) =
∑
{α′s}

fα(t)gα(x)

It is the combined product that forms a solution to the original partial differential equation, not the
separate factors. Determining the details of the sum is a job for Fourier series.

Example
A specific problem: You have a slab of material of thickness L and at a uniform temperature T0. Plunge
it into ice water at temperature T = 0 and find the temperature inside at later times. The boundary
condition here is that the surface temperature is zero, T (0, t) = T (L, t) = 0. This constrains the
separated solutions, requiring that g(0) = g(L) = 0. For this to happen you can’t use the hyperbolic



10—Partial Differential Equations 245

functions of x that occur when α > 0, you will need the circular functions of x, sines and cosines,
implying that α < 0. That is also compatible with your expectation that the temperature should
approach zero eventually, and that needs a negative exponential in time, Eq. (10.11).

g(x) = A sin kx+B cos kx, with k2 = −α/D and f(t) = e−Dk
2t

g(0) = 0 implies B = 0. g(L) = 0 implies sin kL = 0.
The sine vanishes for the values nπ where n is any integer, positive, negative, or zero. This implies
kL = nπ, or k = nπ/L. The corresponding values of α are αn = −Dn2π2/L2, and the separated
solution is

sin
(
nπx/L

)
e−n

2π2Dt/L2
(10.13)

If n = 0 this whole thing vanishes, so it’s not much of a solution. (Not so fast there! See problem 10.2.)
Notice that the sine is an odd function so when n < 0 this expression just reproduces the positive n
solution except for an overall factor of (−1), and that factor was arbitrary anyway. The negative n
solutions are redundant, so ignore them.

The general solution is a sum of separated solutions, see problem 10.3.

T (x, t) =

∞∑
1

an sin
nπx
L

e−n
2π2Dt/L2

(10.14)

The problem now is to determine the coefficients an. This is why Fourier series were invented. (Yes,
literally, the problem of heat conduction is where Fourier series started.) At time t = 0 you know the
temperature distribution is T = T0, a constant on 0 < x < L. This general sum must equal T0 at
time t = 0.

T (x, 0) =

∞∑
1

an sin
nπx
L

(0 < x < L)

Multiply by sin
(
mπx/L

)
and integrate over the domain to isolate the single term, n = m.∫ L

0
dxT0 sin

mπx
L

= am

∫ L

0
dx sin2 mπx

L

T0[1− cosmπ]
L
mπ

= am
L
2

This expression for am vanishes for even m, and when you assemble the whole series for the temperature
you have

T (x, t) =
4

π
T0

∑
m odd

1

m
sin

mπx
L

e−m
2π2Dt/L2

(10.15)

For small time, this converges, but very slowly. For large time, the convergence is very fast, often
needing only one or two terms. As the time approaches infinity, the interior temperature approaches
the surface temperature of zero. The graph shows the temperature profile at a sequence of times.

0 L

T0

x
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The curves show the temperature dropping very quickly for points near the surface (x = 0 or L). It
drops more gradually near the center but eventually goes to zero.

You can see that the boundary conditions on the temperature led to these specific boundary
conditions on the sines and cosines. This is exactly what happened in the general development of
Fourier series when the fundamental relationship, Eq. (5.15), required certain boundary conditions in
order to get the orthogonality of the solutions of the harmonic oscillator differential equation. That the
function vanishes at the boundaries was one of the possible ways to insure orthogonality.

10.3 Oscillating Temperatures
Take a very thick slab of material and assume that the temperature on one side of it is oscillating. Let
the material occupy the space 0 < x < ∞ and at the coordinate x = 0 the temperature is varying in
time as T1 cosωt. Is there any real situation in which this happens? Yes, the surface temperature of the
Earth varies periodically from summer to winter (even in Florida). What happens to the temperature
underground?

The differential equation for the temperature is still Eq. (10.3), and assume that the temperature
inside the material approaches T = 0 far away from the surface. Separation of variables is the same
as before, Eq. (10.9), but this time you know the time dependence at the surface. It’s typical in cases
involving oscillations that it is easier to work with complex exponentials than it is to work with sines
and cosines. For that reason, specify that the surface temperature is T1e−iωt instead of a cosine,
understanding that at the end of the problem you must take the real part of the result and throw away
the imaginary part. The imaginary part corresponds to solving the problem for a surface temperature
of sinωt instead of cosine. It’s easier to solve the two problems together then either one separately.
(The minus sign in the exponent of e−iωt is arbitrary; you could use a plus instead.)

The equation (10.9) says that the time dependence that I expect is

1

f
df
dt

= α =
1

e−iωt
(
− iωe−iωt

)
= −iω

The equation for the x-dependence is then

D
d2g
dx2

= αg = −iωg

This is again a simple exponential solution, say eβx. Substitute and you have

Dβ2eβx = −iωeβx, implying β = ±
√
−iω/D (10.16)

Evaluate this as
√
−i =

(
e−iπ/2

)1/2
= e−iπ/4 =

1− i√
2

Let β0 =
√
ω/2D, then the solution for the x-dependence is

g(x) = Ae(1−i)β0x +Be−(1−i)β0x (10.17)

Look at the behavior of these two terms. The first has a factor that goes as e+x and the second goes
as e−x. The temperature at large distances is supposed to approach zero, so that says that A = 0.
The solutions for the temperature is now

Be−iωte−(1−i)β0x (10.18)
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The further condition is that at x = 0 the temperature is T1e−iωt, so that tells you that B = T1.

T (x, t) = T1e
−iωte−(1−i)β0x = T1e

−β0xei(−ωt+β0x) (10.19)

When you remember that I’m solving for the real part of this solution, the final result is

ωt = 0

ωt = π/4

ωt = π/2

T

x

T1e
−β0x cos(β0x− ωt) (10.20)

This has the appearance of a temperature wave moving into the material, albeit a very strongly
damped one. In a half wavelength of this wave, β0x = π, and at that point the amplitude coming from
the exponential factor out in front is down by a factor of e−π = 0.04. That’s barely noticeable. This
is why wine cellars are cellars. Also, you can see that at a distance where β0x > π/2 the temperature
change is reversed from the value at the surface. Some distance underground, summer and winter are
reversed. This same sort of equation comes up with the study of eddy currents in electromagnetism,
so the same sort of results obtain.

10.4 Spatial Temperature Distributions
The governing equation is Eq. (10.5). For an example of a problem that falls under this heading, take a
cube that is heated on one side and cooled on the other five sides. What is the temperature distribution
within the cube? How does it vary in time?

I’ll take a simpler version of this problem to start with. First, I’ll work in two dimensions instead
of three; make it a very long rectangular shaped rod, extending in the z-direction. Second, I’ll look for
the equilibrium solution, for which the time derivative is zero. These restrictions reduce the equation
(10.5) to

∇2T =
∂2T
∂x2

+
∂2T
∂y2

= 0 (10.21)

I’ll specify the temperature T (x, y) on the surface of the rod to be zero on three faces and T0 on the
fourth. Place the coordinates so that the length of the rod is along the z-axis and the origin is in one
corner of the rectangle.

T (0, y) = 0 (0 < y < b), T (x, 0) = 0 (0 < x < a)

T (a, y) = 0 (0 < y < b), T (x, b) = T0 (0 < x < a)
(10.22)

O

0

b

y

0

T0

a

0

x

Look at this problem from several different angles, tear it apart, look at a lot of special cases, and
see what can go wrong. In the process you’ll see different techniques and especially a lot of applications
of Fourier series. This single problem will illustrate many of the methods used to understand boundary
value problems.
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Use the same method used before for heat flow in one dimension: separation of variables. Assume
a solution to be the product of a function of x and a function of y, then plug into the equation.

T (x, y) = f(x)g(y), then ∇2T =
d2f(x)

dx2
g(y) + f(x)

d2g(y)

dy2
= 0

Just as in Eq. (10.8), when you divide by fg the resulting equation is separated into a term involving
x only and one involving y only.

1

f
d2f(x)

dx2
+

1

g
d2g(y)

dy2
= 0

Because x and y can be varied independently, these must be constants adding to zero.

1

f
d2f(x)

dx2
= α, and

1

g
d2g(y)

dy2
= −α (10.23)

As before, the separation constant can be any real or complex number until you start applying boundary
conditions. You recognize that the solutions to these equations can be sines or cosines or exponentials
or hyperbolic functions or linear functions, depending on what α is.

The boundary conditions state that the surface temperature is held at zero on the surfaces x = 0
and x = a. This suggests looking for solutions that vanish there, and that in turn says you should
work with sines of x. In the other direction the surface temperature vanishes on only one side so you
don’t need sines in that case. The α = 0 case gives linear functions is x and in y, and the fact that
the temperature vanishes on x = 0 and x = a kills these terms. (It does doesn’t it?) Pick α to be a
negative real number: call it α = −k2.

d2f(x)

dx2
= −k2f =⇒ f(x) = A sinkx+B cos kx

The accompanying equation for g is now

d2g(y)

dy2
= +k2g =⇒ g(y) = C sinhky +D cosh ky

(Or exponentials if you prefer.) The combined, separated solution to ∇2T = 0 is

(A sin kx+B cos kx)(C sinhky +D cosh ky) (10.24)

The general solution will be a sum of these, summed over various values of k. This is where you have
to apply the boundary conditions to determine the allowed k’s.

left: T (0, y) = 0 = B(C sinhky +D cosh ky), so B = 0

(This holds for all y in 0 < y < b, so the second factor can’t vanish unless both C and D vanish. If
that is the case then everything vanishes.)

right: T (a, y) = 0 = A sinka(C sinhky +D coshky), so sin ka = 0

(The factor with y can’t vanish or everything vanishes. If A = 0 then everything vanishes. All that’s
left is sin ka = 0.)

bottom: T (x, 0) = 0 = A sinkxD, so D = 0
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(If A = 0 everything is zero, so it has to be D.)
You can now write a general solution that satisfies three of the four boundary conditions. Combine

the coefficients A and C into one, and since it will be different for different values of k, call it γn.

T (x, y) =
∞∑
n=1

γn sin
nπx
a

sinh
nπy
a

(10.25)

The nπ/a appears because sin ka = 0, and the limits on n omit the negative n because they are
redundant.

Now to find all the unknown constants γn, and as before that’s where Fourier techniques come
in. The fourth side, at y = b, has temperature T0 and that implies

∞∑
n=1

γn sin
nπx
a

sinh
nπb
a

= T0

On this interval 0 < x < a these sine functions are orthogonal, so you take the scalar product of both
side with the sine.∫ a

0
dx sin

mπx
a

∞∑
n=1

γn sin
nπx
a

sinh
nπb
a

=

∫ a

0
dx sin

mπx
a

T0

a
2
γm sinh

mπb
a

= T0
a
mπ

[
1− (−1)m

]
Just the odd m terms are present, m = 2`+ 1, so the result is

T (x, y) =
4

π
T0

∞∑
`=0

1

2`+ 1

sinh
(
(2`+ 1)πy/a

)
sinh

(
(2`+ 1)πb/a

) sin
(2`+ 1)πx

a
(10.26)

You’re not done.
Does this make sense? The dimensions are clearly correct, but after that it takes some work.

There’s really just one parameter that you have to play around with, and that’s the ratio b/a. If it’s
either very big or very small you may be able to check the result.

O

y

0

T0

a� b

a
x

O

0 0

a
b� a

If a � b, it looks almost like a one-dimensional problem. It is a thin slab with temperature T0

on one side and zero on the other. There’s little variation along the x-direction, so the equilibrium
equation is

∇2T = 0 =
∂2T
∂x2

+
∂2T
∂y2

≈ ∂2T
∂y2
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This simply says that the second derivative with respect to y vanishes, so the answer is the straight
line T = A +By, and with the condition that you know the temperature at y = 0 and at y = b you
easily find

T (x, y) ≈ T0y/b

Does the exact answer look like this? It doesn’t seem to, but look closer. If b � a then because
0 < y < b you also have y � a. The hyperbolic function factors in Eq. (10.26) will have very small
arguments, proportional to b/a. Recall the power series expansion of the hyperbolic sine: sinhx =
x+ · · ·. These factors become approximately

sinh
(
(2`+ 1)πy/a

)
sinh

(
(2`+ 1)πb/a

) ≈ (2`+ 1)πy/a

(2`+ 1)πb/a
=
y
b

The temperature solution is then

T (x, y) ≈ 4

π
T0

∞∑
`=0

1

2`+ 1

y
b

sin
(2`+ 1)πx

a
= T0

y
b

Where did that last equation come from? The coefficient of y/b is just the Fourier series of the constant
T0 in terms of sines on 0 < x < a.

What about the opposite extreme, for which b � a? This is the second picture just above.
Instead of being short and wide it is tall and narrow. For this case, look again at the arguments of the
hyperbolic sines. Now πb/a is large and you can approximate the hyperbolic functions by going back
to their definition.

sinhx =
ex + e−x

2
≈ 1

2
ex, for x� 1

The denominators in all the terms of Eq. (10.26) are large, ≈ eπb/a (or larger still because of the (2`+
1)). This will make all the terms in the series extremely small unless the numerators are correspondingly
large. This means that the temperature stays near zero unless y is large. That makes sense. It’s only
for y near the top end that you are near to the wall with temperature T0.

You now have the case for which b� a and y � a. This means that I can use the approximate
form of the hyperbolic function for large arguments.

sinh
(
(2`+ 1)πy/a

)
sinh

(
(2`+ 1)πb/a

) ≈ e(2`+1)πy/a

e(2`+1)πb/a
= e(2`+1)π(y−b)/a

The temperature distribution is now approximately

T (x, y) ≈ 4

π
T0

∞∑
`=0

1

2`+ 1
e−(2`+1)π(b−y)/a sin

(2`+ 1)πx
a

(10.27)

As compared to the previous approximation where a� b, you can’t as easily tell whether this is plausible
or not. You can however learn from it. See also problem 10.30.

At the very top, where y = b this reduces to the constant T0 that you’re supposed to have at
that position. Recall the Fourier series for a constant on 0 < x < a.

Move down from y = b by the distance a, so that b − y = a. That’s a distance from the top
equal to the width of the rectangle. It’s still rather close to the end, but look at the series for that
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position.

x = 0 x = a
y = b

y = b− a T (x, b− a) ≈ 4

π
T0

∞∑
`=0

1

2`+ 1
e−(2`+1)π sin

(2`+ 1)πx
a

For ` = 0, the exponential factor is e−π = 0.043, and for ` = 1 this factor is e−3π = 0.00008.
This means that measured from the T0 end, within the very short distance equal to the width, the
temperature has dropped 95% of the way down to its limiting value of zero. The temperature in the
rod is quite uniform until you are very close to the heated end.

The Heat Flow into the Box
All the preceding analysis and discussion was intended to make this problem and its solution sound
oh-so-plausible. There’s more, and it isn’t pretty.

The temperature on one of the four sides was given as different from the temperatures on the
other three sides. What will the heat flow into the region be? That is, what power must you supply to
maintain the temperature T0 on the single wall?

At the beginning of this chapter, Eq. (10.1), you have the equation for the power through an
area A, but that equation assumed that the temperature gradient ∂T/∂x is the same all over the area
A. If it isn’t, you simply turn it into a density.

∆P = −κ∆A
∂T
∂x

, and then
∆P
∆A

→ dP
dA

= −κ∂T
∂x

(10.28)

Equivalently, just use the vector form from Eq. (10.6), ~H = −κ∇T . In Eq. (10.22) the temperature is
T0 along y = b, and the power density (energy / (time . area)) flowing in the +y direction is −κ∂T/∂y,
so the power density flowing into this area has the reversed sign,

+κ∂T/∂y (10.29)

The total power flow is the integral of this over the area of the top face.

Let L be the length of this long rectangular rod, its extent in the z-direction. The element of
area along the surface at y = b is then dA = Ldx, and the power flow into this face is∫ a

0
Ldxκ

∂T
∂y

∣∣∣∣
y=b

The temperature function is the solution Eq. (10.26), so differentiate that equation with respect to y.

∫ a

0
Ldxκ

4

π
T0

∞∑
`=0

[(2`+ 1)π/a]

2`+ 1

cosh
(
(2`+ 1)πy/a

)
sinh

(
(2`+ 1)πb/a

) sin
(2`+ 1)πx

a
at y = b

=
4LκT0

a

∫ a

0
dx

∞∑
`=0

sin
(2`+ 1)πx

a
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and this sum does not converge. I’m going to push ahead anyway, temporarily pretending that I didn’t
notice this minor difficulty with the series. Just go ahead and integrate the series term by term and
hope for the best.

=
4LκT0

a

∞∑
`=0

a
π(2`+ 1)

[
− cos

(
(2`+ 1)π

)
+ 1
]

=
4LκT0

π

∞∑
`=0

2

2`+ 1
=∞

This infinite series for the total power entering the top face is infinite. The series doesn’t converge (use
the integral test).

This innocuous-seeming problem is suddenly pathological because it would take an infinite power
source to maintain this temperature difference. Why should that be? Look at the corners. You’re
trying to maintain a non-zero temperature difference (T0 − 0) between two walls that are touching.
This can’t happen, and the equations are telling you so! It means that the boundary conditions specified
in Eq. (10.22) are impossible to maintain. The temperature on the boundary at y = b can’t be constant
all the way to the edge. It must drop off to zero as it approaches x = 0 and x = a. This makes the
problem more difficult, but then reality is typically more complicated than our simple, idealized models.

Does this make the solution Eq. (10.26) valueless? No, it simply means that you can’t push it
too hard. This solution will be good until you get near the corners, where you can’t possibly maintain
the constant-temperature boundary condition. In other regions it will be a good approximation to the
physical problem.

10.5 Specified Heat Flow
In the previous examples, I specified the temperature on the boundaries and from that I determined the
temperature inside. In the particular example, the solution was not physically plausible all the way to
the edge, though the mathematics were (I hope) enlightening. Instead, I’ll reverse the process and try
to specify the size of the heat flow, computing the resulting temperature from that. This time perhaps
the results will be a better reflection of reality.

Equation (10.29) tells you the power density at the surface, and I’ll examine the case for which
this is a constant. Call it F0. (There’s not a conventional symbol, so this will do.) The plus sign occurs
because the flow is into the box.

+κ
∂T
∂y

(x, b) = F0

The other three walls have the same zero temperature conditions as Eq. (10.22). Which forms of the
separated solutions must I use now? The same ones as before or different ones?

Look again at the α = 0 solutions to Eqs. (10.23). That solution is

(A+Bx)(C +Dy)

In order to handle the fact that the temperature is zero at y = 0 and that the derivative with respect
to y is given at y = b,

(A+Bx)(C) = 0 and (A+Bx)(D) = F0/κ,

implying C = 0 = B, then AD = F0/κ =⇒ F0

κ
y (10.30)

This matches the boundary conditions at both y = 0 and y = b. All that’s left is to make everything
work at the other two faces.
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O

0

b

y

0

F0

a

0

x

−F0y/κ

O

b
y

0 a

−F0y/κ

x

If I can find a solution that equals −F0y/κ on the left and right faces then it will cancel the
+F0y/κ that Eq. (10.30) provides. But I can’t disturb the top and bottom boundary conditions. The
way to do that is to find functions that equal zero at y = 0 and whose derivative equals zero at y = b.
This is a familiar sort of condition that showed up several times in chapter five on Fourier series. It
is equivalent to saying that the top surface is insulated so that heat can’t flow through it. You then
use superposition to combine the solution with uniform heat flow and the solution with an insulated
boundary.

Instead of Eq. (10.24), use the opposite sign for α, so the solutions are of the form

(A sin ky +B cos ky)(C sinhkx+D coshkx)

I require that this equals zero at y = 0, so that says

(0 +B)(C sinhkx+D cosh kx) = 0

so B = 0. Now require that the derivative equals zero at y = b, so

Ak cos kb = 0, or kb = (n+ 1
2)π for n = 0, 1, 2 . . .

The value of the temperature is the same on the left that it is on the right, so

C sinhk0 +D cosh k0 = C sinhka+D coshka =⇒ C = D(1− cosh ka)/ sinhka (10.31)

This is starting to get messy, so it’s time to look around and see if I’ve missed anything that
could simplify the calculation. There’s no guarantee that there is any simpler way, but it is always worth
looking. The fact that the system is the same on the left as on the right means that the temperature
will be symmetric about the central axis of the box, about x = a/2. That it is even about this point
implies that the hyperbolic functions of x should be even about x = a/2. You can do this simply by
using a cosh about that point.

A sinky
(
D cosh k(x− a

2 )
)

Put these together and you have a sum

∞∑
n=0

an sin

(
(n+ 1

2)πy

b

)
cosh

(
(n+ 1

2)π(x− a
2 )

b

)
(10.32)

Each of these terms satisfies Laplace’s equation, satisfies the boundary conditions at y = 0 and y = b,
and is even about the centerline x = a/2. It is now a problem in Fourier series to match the conditions
at x = 0. They’re then automatically satisfied at x = a.

∞∑
n=0

an sin

(
(n+ 1

2)πy

b

)
cosh

(
(n+ 1

2)πa

2b

)
= −F0

y
κ

(10.33)
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The sines are orthogonal by the theorem Eq. (5.15), so you can pick out the component an by the
orthogonality of these basis functions.

un = sin

(
(n+ 1

2)πy

b

)
, then

〈
um, left side

〉
=
〈
um, right side

〉
or, am

〈
um, um

〉
cosh

(
(m+ 1

2)πa

2b

)
= −F0

κ

〈
um, y

〉
Write this out; do the integrals, add the linear term, and you have

T (x, y) = F0
y
κ
−8F0b
κπ2

∞∑
n=0

(−1)n

(2n+ 1)2
× (10.34)

sin

(
(n+ 1

2)πy

b

)
cosh

(
(n+ 1

2)π(x− a
2 )

b

)
sech

(
(n+ 1

2)πa

2b

)

Now analyze this to see if it makes sense. I’ll look at the same cases as the last time: b � a
and a� b. The simpler case, where the box is short and wide, has b� a. This makes the arguments
of the cosh and sech large, with an a/b in them. For large argument you can approximate the cosh by

coshx ≈ ex/2, x� 1

Now examine a typical term in the sum (10.34), and I have to be a little more specific and choose x on
the left or right of a/2. The reason for that is the preceding equation requires x large and positive. I’ll
take x on the right, as it makes no difference. The hyperbolic functions in (10.34) are approximately

exp
(
(n+ 1

2)π(x− a
2 )
/
b
)

exp
(
(n+ 1

2)πa
/

2b
) = e((2n+1)π(x−a)/2b)

As long as x is not near the end, that is, not near x = a, the quantity in the exponential is large and
negative for all n. The exponential in turn makes this extremely small so that the entire sum becomes
negligible. The temperature distribution is then the single term

T (x, y) ≈ F0
y
κ

It’s essentially a one dimensional problem, with the heat flow only along the −y direction.
In the reverse case for which the box is tall and thin, a � b, the arguments of the hyperbolic

functions are small. This invites a power series expansion, but that approach doesn’t work. The analysis
of this case is quite tricky, and I finally concluded that it’s not worth the trouble to write it up. It leads
to a rather complicated integral.

10.6 Electrostatics
The equation for the electrostatic potential in a vacuum is exactly the same as Eq. (10.21) for the

temperature in static equilibrium, ∇2V = 0, with the electric field ~E = −∇V . The same equation
applies to the gravitational potential, Eq. (9.42).

Perhaps you’ve looked into a microwave oven. You can see inside it, but the microwaves aren’t
supposed to get out. How can this be? Light is just another form of electromagnetic radiation, so why
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does one EM wave get through while the other one doesn’t? I won’t solve the whole electromagnetic
radiation problem here, but I’ll look at the static analog to get some general idea of what’s happening.

−L 0 L 2L x

z

y V0

Arrange a set of conducting strips in the x-y plane and with insulation between them so that
they don’t quite touch each other. Now apply voltage V0 on every other one so that the potentials are
alternately zero and V0. This sets the potential in the z = 0 plane to be independent of y and

z = 0 : V (x, y) =

{
V0 (0 < x < L)
0 (L < x < 2L)

V (x+ 2L, y) = V (x, y), all x, y (10.35)

What is then the potential above the plane, z > 0? Above the plane V satisfies Laplace’s equation,

∇2V =
∂2V
∂x2

+
∂2V
∂y2

+
∂2V
∂z2

= 0 (10.36)

The potential is independent of y in the plane, so it will be independent of y everywhere. Separate
variables in the remaining coordinates.

V (x, z) = f(x)g(z) =⇒ d2f
dx2

g + f
d2g
dz2

= 0 =⇒ 1

f
d2f
dx2

+
1

g
d2g
dz2

= 0

This is separated as a function of x plus a function of y, so the terms are constants.

1

f
d2f
dx2

= −α2,
1

g
d2g
dz2

= +α2 (10.37)

I’ve chosen the separation constant in this form because the boundary condition is periodic in x, and
that implies that I’ll want oscillating functions there, not exponentials.

f(x) = eiαx and f(x+ 2L) = f(x)

=⇒ e2Liα = 1, or 2Lα = 2nπ, n = 0, ±1, ±2, . . .

The separated solutions are then

f(x)g(z) = enπix/L
(
Aenπz/L +Be−nπz/L

)
(10.38)

The solution for z > 0 is therefore the sum

V (x, z) =

∞∑
n=−∞

enπix/L
(
Ane

nπz/L +Bne
−nπz/L) (10.39)

The coefficients An and Bn are to be determined by Fourier techniques. First however, look at the
z-behavior. As you move away from the plane toward positive z, the potential should not increase
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without bound. Terms such as eπz/L however increase with z. This means that the coefficients of the
terms that increase exponentially in z cannot be there.

An = 0 for n > 0, and Bn = 0 for n < 0

V (x, z) = A0 +B0 +
∞∑
n=1

enπix/LBne
−nπz/L +

−1∑
n=−∞

enπix/LAne
nπz/L (10.40)

The combined constant A0 + B0 is really one constant; you can call it C0 if you like. Now use the
usual Fourier techniques given that you know the potential at z = 0.

V (x, 0) = C0 +
∞∑
n=1

Bne
nπix/L +

−1∑
n=−∞

Ane
nπix/L

The scalar product of emπix/L with this equation is

〈
emπix/L, V (x, 0)

〉
=

 2LC0 (m = 0)
2LBm (m > 0)
2LAm (m < 0)

(10.41)

Now evaluate the integral on the left side. First, m 6= 0:〈
emπix/L, V (x, 0)

〉
=

∫ L

−L
dx e−mπix/L

{
0 (−L < x < 0)
V0 (0 < x < L)

= V0

∫ L

0
dx e−mπix/L = V0

L
−mπi

e−mπix/L
∣∣∣L
0

= V0
L
−mπi

[
(−1)m − 1

]
Then evaluate it separately for m = 0, and you have

〈
1, V (x, 0)

〉
= V0L.

Now assemble the result. Before plunging in, look at what will happen.
The m = 0 term sits by itself.
For the other terms, only odd m have non-zero values.

V (x, z) =
1

2
V0 + V0

∞∑
m=1

1

−2mπi

[
(−1)m − 1

]
emπix/Le−mπz/L

+V0

−1∑
m=−∞

1

−2mπi

[
(−1)m − 1

]
emπix/Le+mπz/L

(10.42)

To put this into a real form that is easier to interpret, change variables, letting m = −n in the second
sum and m = n in the first, finally changing the sum so that it is over just the odd terms.

V (x, z) =
1

2
V0 + V0

∞∑
n=1

1

−2nπi

[
(−1)n − 1

]
enπix/Le−nπz/L

+V0

∞∑
1

1

+2nπi

[
(−1)n − 1

]
e−nπix/Le−nπz/L

=
1

2
V0 + V0

∞∑
n=1

[
(−1)n − 1

] 1

−nπ
sin(nπx/L)e−nπz/L

=
1

2
V0 +

2

π
V0

∞∑
`=0

1

2`+ 1
sin
(
(2`+ 1)πx/L

)
e−(2`+1)πz/L

(10.43)
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Having done all the work to get to the answer, what can I learn from it?
What does it look like?
Are there any properties of the solution that are unexpected?
Should I have anticipated the form of the result?
Is there an easier way to get to the result?

To see what it looks like, examine some values of z, the distance above the surface. If z = L,
the coefficient for successive terms is

` = 0 :
2

π
e−π = 0.028 ` = 1 :

2

3π
e−3π = 1.7× 10−5 (10.44)

The constant term is the average potential, and the ` = 0 term adds only a modest ripple, about 5% of
the constant average value. If you move up to z = 2L the first factor is 0.0012 and that’s a little more
than 0.2% ripple. The sharp jumps from +V0 to zero and back disappear rapidly. That the oscillations
vanish so quickly with distance is perhaps not what you would guess until you have analyzed such a
problem.

←V (x, 0)

←V (x,L/2)

The graph shows the potential function at the surface, z = 0, as it oscillates between V0 and
zero. It then shows successive graphs of Eq. (10.43) at z = L/2, then at z = L, then at z = 1.5L.
The ripple is barely visible at the that last distance. The radiation through the screen of a microwave
oven is filtered in much the same way because the wavelength of the radiation is large compared to the
size of the holes in the screen.

When you write the form of the series for the potential, Eq. (10.40), you can see this coming if
you look for it. The oscillating terms in x are accompanied by exponential terms in z, and the rapid
damping with distance is already apparent: e−nπz/L. You don’t have to solve for a single coefficient
to see that the oscillations vanish very rapidly with distance.

The original potential on the surface was neither even nor odd, but except for the constant
average value, it is an odd function.

z = 0 : V (x, y) =
1

2
V0 +

{
+V0/2 (0 < x < L)
−V0/2 (L < x < 2L)

V (x+ 2L, y) = V (x, y) (10.45)

Solve the potential problem for the constant V0/2 and you have a constant. Solve it for the remaining
odd function on the boundary and you should expect an odd function for V (x, z). If you make these
observations before solving the problem you can save yourself some algebra, as it will lead you to the
form of the solution faster.

The potential is periodic on the x-y plane, so periodic boundary conditions are the appropriate
ones. You can express these in more than one way, taking as a basis for the expansion either complex
exponentials or sines and cosines.

enπix/L, n = 0, ±1, . . .

or the combination cos(nπx/L), n = 0, 1, . . . sin(nπx/L), n = 1, 2, . . .
(10.46)

For a random problem with no special symmetry the exponential choice typically leads to easier integrals.
In this case the boundary condition has some symmetry that you can take advantage of: it’s almost
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odd. The constant term in Eq. (10.30) is the n = 0 element of the cosine set, and that’s necessarily
orthogonal to all the sines. For the rest, you do the expansion{

+V0/2 (0 < x < L)
−V0/2 (L < x < 2L)

=
∞∑
1

an sin(nπx/L)

The odd term in the boundary condition (10.45) is necessarily a sum of sines, with no cosines. The
cosines are orthogonal to an odd function. See problem 10.11.

More Electrostatic Examples
Specify the electric potential in the x-y plane to be an array, periodic in both the x and the y-directions.
V (x, y, z = 0) is V0 on the rectangle (0 < x < a, 0 < y < b) as well as in the darkened boxes in the
picture; it is zero in the white boxes. What is the potential for z > 0?

z

a
b

x

y

The equation is still Eq. (10.36), but now you have to do the separation of variables along all
three coordinates, V (x, y, z) = f(x)g(y)h(z). Substitute into the Laplace equation and divide by
fgh.

1

f
d2f
dx2

+
1

g
d2g
dy2

+
1

h
d2h
dz2

= 0

These terms are functions of the single variables x, y, and z respectively, so the only way this can work
is if they are separately constant.

1

f
d2f
dx2

= −k2
1,

1

g
d2g
dy2

= −k2
2,

1

h
d2h
dz2

= k2
1 + k2

2 = k2
3

I made the choice of the signs for these constants because the boundary function is periodic in x and
in y, so I expect sines and cosines along those directions. The separated solution is

(A sink1x+B cos k1x)(C sin k2y +D cos k2y)(Eek3z + Fe−k3z) (10.47)

What about the case for separation constants of zero? Yes, that’s needed too; the average value of
the potential on the surface is V0/2, so just as with the example leading to Eq. (10.43) this will have
a constant term of that value. The periodicity in x is 2a and in y it is 2b, so this determines

k1 = nπ/a, k2 = mπ/b then k3 =

√
n2π2

a2
+
m2π2

b2
, n, m = 1, 2, . . .

where n and m are independent integers. Use the experience that led to Eq. (10.45) to write V on the
surface as a sum of the constant V0/2 and a function that is odd in both x and in y. As there, the
odd function in x will be represented by a sum of sines in x, and the same statement will hold for the
y coordinate. This leads to the form of the sum

V (x, y, z) =
1

2
V0 +

∞∑
n=1

∞∑
m=1

αnm sin
(nπx
a

)
sin
(mπy

b

)
e−knmz
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where knm is the k3 of the preceding equation. What happened to the other term in z, the one with
the positive exponent? Did I say that I’m looking for solutions in the domain z > 0?

At z = 0 this must match the boundary conditions stated, and as before, the orthogonality of the
sines on the two domains allows you to determine the coefficients. You simply have to do two integrals
instead of one. See problem 10.19.

V (x, y, z > 0) =
1

2
V0 +

8V0

π2

∞∑
odd n

∞∑
oddm

1

nm
sin
(nπx
a

)
sin
(mπy

b

)
e−knmz (10.48)

10.7 Cylindrical Coordinates
Rectangular coordinates are not always the right choice. Cylindrical, spherical, and other choices are
often needed. For cylindrical coordinates, the gradient and divergence are, from Eqs. (9.24) and (9.15)

∇V = r̂
∂V
∂r

+ φ̂
1

r
∂V
∂φ

+ ẑ
∂V
∂z

and ∇ .~v =
1

r
∂(rvr)
∂r

+
1

r

∂vφ
∂φ

+
∂vz
∂z

Combine these to get the Laplacian in cylindrical coordinates.

∇ .∇V = ∇2V =
1

r
∂
∂r

(
r
∂V
∂r

)
+

1

r2

∂2V
∂φ2

+
∂2V
∂z2

(10.49)

For electrostatics, the equation remains ∇2V = 0, and you can approach it the same way as before,
using separation of variables. I’ll start with the special case for which everything is independent of z.
Assume a solution of the form V = f(r)g(φ), then

∇2V = g
1

r
∂
∂r

(
r
∂f
∂r

)
+ f

1

r2

∂2g
∂φ2

= 0

Multiply this by r2 and divide by f(r)g(φ) to get

r
f
∂
∂r

(
r
∂f
∂r

)
+

1

g
∂2g
∂φ2

= 0

This is separated. The first terms depends on r alone, and the second term on φ alone. For this to
hold the terms must be constants.

r
f
d
dr

(
r
df
dr

)
= α and

1

g
d2g
dφ2

= −α (10.50)

The second equation, in φ, is familiar. If α is positive this is a harmonic oscillator, and that is the most
common way this solution is applied. I’ll then look at the case for α ≥ 0, for which the substitution
α = n2 makes sense.

α = 0 :
d2g
dφ2

= 0 =⇒ g(φ) = A+Bφ

r
d
dr

(
r
df
dr

)
= 0 =⇒ f(r) = C +D ln r
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α = n2 > 0
d2g
dφ2

= −n2g =⇒ g(φ) = A cosnφ+B sinnφ

r2d
2f
dr2

+ r
df
dr
− n2f = 0 =⇒ f(r) = Crn +Dr−n

There’s not yet a restriction that n is an integer, though that’s often the case. Verifying the last
solution for f is easy.

A general solution that is the sum of all these terms is

V (r, φ) = (C0 +D0 ln r)(A0 +B0φ) +
∑
n

(Cnr
n +Dnr

−n)(An cosnφ+Bn sinnφ) (10.51)

Some of these terms should be familiar:
C0A0 is just a constant potential.
D0A0 ln r is the potential of a uniform line charge; d ln r/dr = 1/r, and that is the way that the
electric field drops off with distance from the axis.
C1A1r cosφ is the potential of a uniform field (as is the r sinφ term). Write this in the form
C1A1r cosφ = C1A1x, and the gradient of this is C1A1 x̂. The sine gives ŷ.
See problem 10.24.

Example

A conducting wire, radius R, is placed in a uniform electric field ~E0, and perpendicular to it. Put the
wire along the z-axis and call the positive x-axis the direction that the field points. That’s φ = 0.
In the absence of the wire, the potential for the uniform field is V = −E0x = −E0r cosφ, because
−∇V = E0 x̂. The total solution will be in the form of Eq. (10.51).

Now turn the general form of the solution into a particular one for this problem. The entire range
of φ from 0 to 2π appears here; you can go all the way around the origin and come back to where you
started. The potential is a function, meaning that it’s single valued, and that eliminates B0φ. It also
implies that all the n are integers. The applied field has a potential that is even in φ. That means that
you should expect the solution to be even in φ too. Does it really? You also have to note that the
physical system and its attendant boundary conditions are even in φ — it’s a cylinder. Then too, the
first few times that you do this sort of problem you should see what happens to the odd terms; what
makes them vanish? I won’t eliminate the sinφ terms from the start, but I’ll calculate them and show
that they do vanish.

V (r, φ) = (C0 +D0 ln r)B0 +

∞∑
n=1

(Cnr
n +Dnr

−n)(An cosnφ+Bn sinnφ)

Carrying along all these products of (still unknown) factors such as DnAn is awkward. It makes it look
neater and it is easier to follow if I combine and rename some of them.

V (r, φ) = C0 +D0 ln r +
∞∑
n=1

(Cnr
n +Dnr

−n) cosnφ+
∞∑
n=1

(C ′nr
n +D′nr

−n) sinnφ (10.52)

As r →∞, the potential looks like −E0r cosφ. That implies that Cn = 0 for n > 1, and that C ′n = 0
for all n, and that C1 = −E0.

Now use the boundary conditions on the cylinder. It is a conductor, so in this static case the
potential is a constant all through it, in particular on the surface. I may as well take that constant to
be zero, though it doesn’t really matter.

V (R,φ) = 0 = C0 +D0 lnR+

∞∑
n=1

(CnR
n +DnR

−n) cosnφ+

∞∑
n=1

(C ′nR
n +D′nR

−n) sinnφ
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Multiply by sinmφ and integrate over φ. The trigonometric functions are orthogonal, so all that
survives is

0 = (C ′mR
m +D′mR

−m)π all m ≥ 1

That gets rid of all the rest of the sine terms as promised: D′m = 0 for all m because C ′m = 0 for all
m. Now repeat for cosmφ.

0 = C0 +D0 lnR (m = 0) and 0 = (CmR
m +DmR

−m)π (m > 0)

All of the Cm = 0 for m > 1, so this says that the same applies to Dm. The m = 1 equation
determines D1 in terms of C1 and then E0.

D1 = −C1R
2 = +E0R

2

Only the C0 and D0 terms are left, and that requires another boundary condition. When specifying
the problem initially, I didn’t say whether or not there is any charge on the wire. In such a case you
could naturally assume that it is zero, but you have to say so explicitly because that affects the final
result. Make it zero. That kills the ln r term. The reason for that goes back to the interpretation of
this term. Its negative gradient is the electric field, and that would be −1/r, the field of a uniform line
charge. If I assume there isn’t one, then D0 = 0 and so the same for C0. Put this all together and

V (r, φ) = −E0r cosφ+E0
R2

r
cosφ (10.53)

The electric field that this presents is, from Eq. (9.24)

~E = −∇V = E0

(
r̂ cosφ− φ̂ sinφ

)
−E0R

2

(
−r̂ 1

r2
cosφ− φ̂ 1

r2
sinφ

)
= E0 x̂+E0

R2

r2

(
r̂ cosφ+ φ̂ sinφ

)
As a check to see what this looks like, what is the electric field at the surface of the cylinder?

~E(R,φ) = E0

(
r̂ cosφ− φ̂ sinφ

)
−E0R

2

(
−r̂ 1

R2
cosφ− φ̂ 1

R2
sinφ

)
= 2E0 r̂ cosφ

It’s perpendicular to the surface, as it should be. At the left and right, φ = 0, π, it is twice as large as
the uniform field alone would be at those points.
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Problems

10.1 The specific heat of a particular type of stainless steel (CF8M) is 500 J/kg.K. Its thermal
conductivity is 16.2 W/m.K and its density is 7750 kg/m3. A slab of this steel 1.00 cm thick is at
a temperature 100◦C and it is placed into ice water. Assume the simplest boundary condition that its
surface temperature stays at zero, and find the internal temperature at later times. When is the 2nd

term in the series, Eq. (10.15), only 5% of the 1st? Sketch the temperature distribution then, indicating
the scale correctly.

10.2 In Eq. (10.13) I eliminated the n = 0 solution by a fallacious argument. What is α in this case?
This gives one more term in the sum, Eq. (10.14). Show that with the boundary conditions stated, this
extra term is zero anyway (this time).

10.3 In Eq. (10.14) you have the sum of many terms. Does it still satisfy the original differential
equation, Eq. (10.3)?

10.4 In the example Eq. (10.15) the final temperature was zero. What if the final temperature is T1?
Or what if I use the Kelvin scale, so that the final temperature is 273◦? Add the appropriate extra term,
making sure that you still have a solution to the original differential equation and that the boundary
conditions are satisfied.

10.5 In the example Eq. (10.15) the final temperature was zero on both sides. What if it’s zero on
just the side at x = 0 while the side at x = L stays at T0? What is the solution now?
Ans: T0x/L+ (2T0/π)

∑∞
1 (1/n) sin(nπx/L)e−n

2π2Dt/L2

10.6 You have a slab of material of thickness L and at a uniform temperature T0. The side at x = L is
insulated so that heat can’t flow in or out of that surface. By Eq. (10.1), this tells you that ∂T/∂x = 0
at that surface. Plunge the other side into ice water at temperature T = 0 and find the temperature
inside at later time. The boundary condition on the x = 0 surface is the same as in the example in the
text, T (0, t) = 0. (a) Separate variables and find the appropriate separated solutions for these boundary
conditions. Are the separated solutions orthogonal? Use the techniques of Eq. (5.15). (b) When the
lowest order term has dropped to where its contribution to the temperature at x = L is T0/2, how big
is the next term in the series? Sketch the temperature distribution in the slab at that time.
Ans: (4T0/π)

∑∞
0 ( 1

2n+1) sin
[
(n+ 1

2)πx/L
]
e−(n+1/2)2π2Dt/L2

, −9.43× 10−5T0

10.7 In the analysis leading to Eq. (10.26) the temperature at y = b was set to T0. If instead, you
have the temperature at x = a set to T0 with all the other sides at zero, write down the answer for
the temperature within the rod. Now use the fact that Eq. (10.21) is linear to write down the solution
if both the sides at y = b and x = a are set to T0.

10.8 In leading up to Eq. (10.25) I didn’t examine the third possibility for the separation constant,
that it’s zero. Do so.

10.9 Look at the boundary condition of Eq. (10.22) again. Another way to solve this problem is to use
the solution for which the separation constant is zero, and to use it to satisfy the conditions at y = 0
and y = b. You will then have one term in the separated solution that is T0y/b, and that means that
in Eq. (10.23) you will have to choose the separation variable to be positive instead of negative. Why?
Because now all the rest of the terms in the sum over separated solutions must vanish at y = 0 and
y = b. You’ve already satisfied the boundary conditions on those surfaces by using the T0y/b term.
Now you have to satisfy the boundary conditions on x = 0 and x = a because the total temperature
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there must be zero. That in turn means that the sum over all the rest of the separated terms must add
to −T0y/b at x = 0 and x = a. When you analyze this solution in the same spirit as the analysis of
Eq. (10.26), compare the convergence properties of that solution to your new one. In particular, look
at a� b and a� b to see which version converges better in each case.
Ans: T0y/b+ (2T0/π)

∑∞
1

[
(−1)n/n

]
sin(nπy/b) cosh

(
nπ(x− a/2)/b

)/
cosh(nπa/2b)

10.10 Finish the re-analysis of the electrostatic boundary value problem Eq. (10.45) starting from
Eq. (10.46). This will get the potential for z 6= 0 with perhaps less work than before.

10.11 Examine the solution Eq. (10.42) at z = 0 in the light of problem 5.11.

10.12 A thick slab of material is alternately heated and cooled at its surface so the its surface tem-
perature oscillates as

T (0, t) =

{
T1 (0 < t < t0)
−T1 (t0 < t < 2t0)

T (0, t+ 2t0) = T (0, t)

That is, the period of the oscillation is 2t0. Find the temperature inside the material, for x > 0. How
does this behavior differ from the solution in Eq. (10.20)?

Ans: 4T1
π

∑∞
k=0

(
1/(2k + 1)

)
e−βkx sin

(
(2k + 1)ωt− βkx)

)
; ω = π/t0

10.13 Fill in the missing steps in finding the solution, Eq. (10.34).

10.14 A variation on the problem of the alternating potential strips in section 10.6. Place a grounded
conducting sheet parallel to the x-y plane at a height z = d above it. The potential there is then
V (x, y, z = d) = 0. Solve for the potential in the gap between z = 0 and z = d. A suggestion: you
may find it easier to turn the coordinate system over so that the grounded sheet is at z = 0 and the
alternating strips are at z = d. This switch of coordinates is in no way essential, but it is a bit easier.
Also, I want to point out that you will need to consider the case for which the separation constant in
Eq. (10.37) is zero.

10.15 Starting from Eq. (10.52) and repeat the example there, but assume that the conducting wire
is in an external electric field E0 ŷ instead of E0 x̂. Repeat the calculation for the potential and for the
electric field, filling in the details of the missing steps.

10.16 A very long conducting cylindrical shell of radius R is split in two along lines parallel to its axis.
The two halves are wired to a circuit that places one half at potential V0 and the other half at potential
−V0. (a) What is the potential everywhere inside the cylinder? Use the results of section 10.7 and
assume a solution of the form

V (r, φ) =
∞∑
0

rn
(
an cosnφ+ bn sinnφ

)
V0

−V0

Match the boundary condition that

V (R,φ) =

{
V0 (0 < φ < π)
−V0 (π < φ < 2π)
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I picked the axis for φ = 0 pointing toward the split between the cylinders. No particular reason, but
you have to make a choice. I make the approximation that the cylinder is infinitely long so that z
dependence doesn’t enter. Also, the two halves of the cylinder almost touch so I’m neglecting the
distance between them.
(b) What is the electric field, −∇V on the central axis? Is this answer more or less what you would
estimate before solving the problem? Ans: (b) E = 4V0/πR.

10.17 Solve the preceding problem outside the cylinder. The integer n can be either positive or
negative, and this time you’ll need the negative values. (And why must n be an integer?)
Ans: (4V0/π)

∑
n odd(1/n)(R/r)n sinnφ

10.18 In the split cylinder of problem 10.16, insert a coaxial wire of radius R1 < R. It is at zero
potential. Now what is the potential in the domain R1 < r < R? You will need both the positive and
negative n values,

∑
(Anrn +Bnr−n) sinnφ

Ans: (4V0/π)
∑
m odd sinmφ[−R−m1 rm +Rm1 r

−m]
/
m[R−mRm1 −R

−m
1 Rm]

10.19 Fill in the missing steps in deriving Eq. (10.48).

10.20 Analyze how rapidly the solution Eq. (10.48) approaches a constant as z increases from zero.
Compare Eq. (10.44).

10.21 A broad class of second order linear homogeneous differential equations can, with some manip-
ulation, be put into the form (Sturm-Liouville)

(p(x)u′ )′ + q(x)u = λw(x)u

Assume that the functions p, q, and w are real, and use manipulations much like those that led to
the identity Eq. (5.15). Derive the analogous identity for this new differential equation. When you use
separation of variables on equations involving the Laplacian you will commonly come to an ordinary
differential equation of exactly this form. The precise details will depend on the coordinate system you
are using as well as other aspects of the PDE.

10.22 Carry on from Eq. (10.31) and deduce the separated solution that satisfies these boundary
condition. Show that it is equivalent to Eq. (10.32).

10.23 The Laplacian in cylindrical coordinates is Eq. (10.49). Separate variables for the equation
∇2V = 0 and you will see that the equations in z and φ are familiar. The equation in the r variable
is less so, but you’ve seen it (almost) in Eqs. (4.18) and (4.22). Make a change of variables in the
r-differential equation, r = kr′, and turn it into exactly the form described there.

10.24 In the preceding problem suppose that there’s no z-dependence. Look at the case where the
separation constant is zero for both the r and φ functions, finally assembling the product of the two
for another solution of the whole equation.
These results provide four different solutions, a constant, a function of r alone, a function of φ alone,
and a function of both. In each of these cases, assume that these functions are potentials V and that
~E = −∇V is the electric field from each potential. Sketch equipotentials for each case, then sketch
the corresponding vector fields that they produce (a lot of arrows).
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10.25 Do problem 8.23 and now solve it, finding all solutions to the wave equation.
Ans: f(x− vt) + g(x+ vt)

10.26 Use the results of problem 10.24 to find the potential in the corner between two very
large metal plates set at right angles. One at potential zero, the other at potential V0.
Compute the electric field, −∇V and draw the results. Ans: −2V0 φ̂/πr

10.27 A thin metal sheet has a straight edge for one of its boundaries. Another thin metal sheet is
cut the same way. The two straight boundaries are placed in the same plane and almost, but not quite
touching. Now apply a potential difference between them, putting one at a voltage V0 and the other at
−V0. In the region of space near to the almost touching boundary, what is the electric potential? From
that, compute and draw the electric field.

10.28 A slab of heat conducting material lies between coordinates x = −L and x = +L, which are
at temperatures T1 and T2 respectively. In the steady state (∂T/∂t ≡ 0), what is the temperature
distribution inside? Now express the result in cylindrical coordinates around the z-axis and show how
it matches the sum of cylindrical coordinate solutions of ∇2T = 0 from problem 10.15. What if the
surfaces of the slab had been specified at y = −L and y = +L instead?

10.29 The result of problem 10.16 has a series of terms that look like (xn/n) sinnφ (odd n). You
can use complex exponentials, do a little rearranging and factoring, and sum this series. Along the way
you will have to figure out what the sum z + z3/3 + z5/5 + · · · is. Refer to section 2.7. Finally of
course, the answer is real, and if you look hard you may find a simple interpretation for the result. Be
sure you’ve done problem 10.24 before trying this last step. Ans: 2V0(θ1 + θ2)/π. You still have to
decipher what θ1 and θ2 are.

10.30 Sum the series Eq. (10.27) to get a closed-form analytic expression for the temperature distri-
bution. You will find the techniques of section 5.7 useful, but there are still a lot of steps. Recall also
ln(r eiθ) = ln r + iθ. Ans: (2T0/π) tan−1

[
sin(πx/a)

/
sinh

(
π(b− y)/a

)]
10.31 A generalization of the problem specified in Eq. (10.22). Now the four sides have temperatures
given respectively to be the constants T1, T2, T3, T4. Note: with a little bit of foresight, you won’t
have to work very hard at all to solve this.

10.32 Use the electrostatic equations from problem 9.21 and assume that the electric charge density is
given by ρ = ρ0a/r, where this is in cylindrical coordinates. (a) What cylindrically symmetric electric

field comes from this charge distribution? (b) From ~E = −∇V what potential function V do you get?

10.33 Repeat the preceding problem, but now interpret r as referring to spherical coordinates. What
is ∇2V ?

10.34 The Laplacian in spherical coordinates is Eq. (9.43). The electrostatic potential equation is
∇2V = 0 just as before, but now take the special case of azimuthal symmetry so that the potential
function is independent of φ. Apply the method of separation of variables to find solutions of the form
f(r)g(θ). You will get two ordinary differential equations for f and g. The second of these equations
is much simpler if you make the change of independent variable x = cos θ. Use the chain rule a couple
of times to do so, showing that the two differential equations are

(1− x2)
d2g
dx2
− 2x

dg
dx

+Cg = 0 and r2d
2f
dr2

+ 2r
df
dr
−Cf = 0
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10.35 For the preceding equations show that there are solutions of the form f(r) = Arn, and recall
the analysis in section 4.11 for the g solutions. What values of the separation constant C will allow
solutions that are finite as x → ±1 (θ → 0, π)? What are the corresponding functions of r? Don’t
forget that there are two solutions to the second order differential equation for f — two roots to a
quadratic equation.

10.36 Write out the separated solutions to the preceding problem (the ones that are are finite as θ
approaches 0 or π) for the two smallest allowed values of the separation constant C: 0 and 2. In each
of the four cases, interpret and sketch the potential and its corresponding electric field, −∇V . How do
you sketch a potential? Draw equipotentials.

10.37 From the preceding problem you can have a potential, a solution of Laplace’s equation, in the
form

(
Ar+B/r2

)
cos θ. Show that by an appropriate choice of A and B, this has an electric field that

for large distances from the origin looks like E0 ẑ, and that on the sphere r = R the total potential is
zero — a grounded, conducting sphere. What does the total electric field look like for r > R; sketch
some field lines. Start by asking what the electric field is as r → R.

10.38 Similar to problem 10.16, but the potential on the cylinder is

V (R,φ) =

{
V0 (0 < φ < π/2 and π < φ < 3π/2)
−V0 (π/2 < φ < π and 3π/2 < φ < 2π)

Draw the electric field in the region near r = 0.

10.39 What is the area charge density on the surface of the cylinder where the potential is given by
Eq. (10.53)?



Numerical Analysis
.

You could say that some of the equations that you encounter in describing physical systems can’t be
solved in terms of familiar functions and that they require numerical calculations to solve. It would be
misleading to say this however, because the reality is quite the opposite. Most of the equations that
describe the real world are sufficiently complex that your only hope of solving them is to use numerical
methods. The simple equations that you find in introductory texts are there because they can be solved
in terms of elementary calculations. When you start to add reality, you quickly reach a point at which
no amount of clever analytical ability will get you a solution. That becomes the subject of this chapter.
In all of the examples that I present I’m just showing you a taste of the subject, but I hope that you
will see the essential ideas of how to extend the concepts.

11.1 Interpolation
Given equally spaced tabulated data, the problem is to find a value between the tabulated points, and
to estimate the error in doing so. As a first example, to find a value midway between given points use
a linear interpolation:

f(x0 + h/2) ≈ 1

2

[
f(x0) + f(x0 + h)

]
This gives no hint of the error. To compute an error estimate, it is convenient to transform the variables
so that this equation reads

f(0) ≈ 1

2

[
f(k) + f(−k)

]
,

where the interval between data points is now 2k. Use a power series expansion of f to find an estimate
of the error.

f(k) = f(0) + kf ′(0) +
1

2
k2f ′′(0) + · · ·

f(−k) = f(0)− kf ′(0) +
1

2
k2f ′′(0) + · · ·

Then
1

2

[
f(k) + f(−k)

]
≈ f(0) +

[1
2
k2f ′′(0)

]
, (11.1)

where the last term is your error estimate:

Error = Estimate − Exact = +k2f ′′(0)/2 = +h2f ′′(0)/8

And the relative error is (Estimate − Exact)/Exact.
As an example, interpolate the function f(x) = 2x between 0 and 1. Here h = 1.

21/2 ≈ 1

2

[
20 + 21

]
= 1.5

The error term is
error ≈ (ln 2)22x/8 for x = .5

= (.693)2(1.5)/8 = .090,

and of course the true error is 1.5− 1.414 = .086
You can write a more general interpolation method for an arbitrary point between x0 and x0 +h.

The solution is a simple extension of the above result.

267
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The line passing through the two points of the graph is

y − f0 = (x− x0)(f1 − f0)/h,

x0 x1

f0 = f(x0), f1 = f(x0 + h).

At the point x = x0 + ph you have

y = f0 + (ph)(f1 − f0)/h = f0(1− p) + f1p

As before, this approach doesn’t suggest the error, but again, the Taylor series allows you to work it
out to be

[
h2p(1− p)f ′′(x0 + ph)/2

]
.

The use of only two points to do an interpolation ignores the data available in the rest of the
table. By using more points, you can greatly improve the accuracy. The simplest example of this
method is the 4-point interpolation to find the function halfway between the data points. Again, the
independent variable has an increment h = 2k, so the problem can be stated as one of finding the
value of f(0) given f(±k) and f(±3k).

−3k −k 0 k 3k

f(k) = f(0) + kf ′(0) +
1

2
k2f ′′(0) +

1

6
k3f ′′′(0) + · · · (11.2)

I want to isolate f(0) from this, so take

f(k) + f(−k) = 2f(0) + k2f ′′(0) +
1

12
k4f ′′′′(0) + · · ·

f(3k) + f(−3k) = 2f(0) + 9k2f ′′(0) +
81

12
k4f ′′′′(0) + · · ·

The biggest term after the f(0) is in k2f ′′(0), so I’ll eliminate this.[
f(3k) + f(−3k)

]
− 9
[
f(k)− f(−k)

]
≈ −16f(0) +

[
81

12
− 9

12

]
k4f ′′′′(0)

f(0) ≈ 1

16

[
− f(−3k) + 9f(−k) + 9f(k)− f(3k)

]
−
[
− 3

8
k4f ′′′′(0)

]
. (11.3)

The error estimate is then −3h4f ′′′′(0)/128.
To apply this, take the same example as before, f(x) = 2x at x = .5

21/2 ≈ 1

16

[
−2−1 + 9 . 20 + 9 . 21 − 22

]
=

45

32
= 1.40625,

and the error is 1.40625− 1.41421 = −.008, a tenfold improvement over the previous interpolation de-
spite the fact that the function changes markedly in this interval and you shouldn’t expect interpolation
to work very well here.
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11.2 Solving equations
Example: sinx− x/2 = 0

From the first graph, the equation clearly has three real solutions, but finding them is the problem.
The first method for solving f(x) = 0 is Newton’s method. The basic idea is that over a small enough
region, everything is more or less linear. This isn’t true of course, so don’t be surprised that this method
doesn’t always work. But then, nothing always works.

x1

x0

A general picture of a function with a root is the second graph. In that case, observe that if x0

is a first approximation to the root of f , the straight line tangent to the curve can be used to calculate
an improved approximation. The equation of this line is

y − f(x0) = f ′(x0)(x− x0)

The root of this line is defined by y = 0, with solution

x = x0 − f(x0)/f ′(x0)

Call this solution x1. You can use this in an iterative procedure to find

x2 = x1 − f(x1)/f ′(x1), (11.4)

and in turn x3 is defined in terms of x2 etc.
Example: Solve sinx− x/2 = 0. From the graph, a plausible guess for a root is x0 = 2.

x1 = x0 − (sinx0 − x0/2)/(cosx0 − 1/2)

= 1.900995594 f(x1) = −.00452

x2 = x1 − (sinx1 − x1/2)/(cosx1 − 1/2)

= 1.895511645 f(x2) = −.000014

x3 = x2 − (sinx2 − x2/2)/(cosx2 − 1/2)

= 1.895494267 f(x3) = −1.4× 10−10

Such iterative procedures are ideal for use on a computer, but use them with caution, as a simple
example shows:

f(x) = x1/3.

Instead of the root x = 0, the iterations in this first graph carry the supposed solution infinitely far
away. This happens here because the higher derivatives neglected in the straight line approximation are
large near the root.
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A milder form of non-convergence can occur if at the root the curvature changes sign and is
large, as in the second graph. This can lead to a limit cycle where the iteration simply oscillates from
one side of the root to the other without going anywhere. As I said earlier this doesn’t always work.

A non-graphical derivation of this method starts from a Taylor series: If z0 is an approximate
root and z0 + ε is a presumed exact root, then

f(z0 + ε) = 0 = f(z0) + εf ′(z0) + · · ·

Neglecting higher terms then,

ε = −f(z0)/f ′(z0), and z1 = z0 + ε = z0 − f(z0)/f ′(z0), (11.5)

as before. Here z appears instead of x to remind you that this method is just as valid for complex
functions as for real ones (and has as many pitfalls).

There is a simple variation on this method that can be used to speed convergence where it is
poor or to bring about convergence where the technique would otherwise break down.

x1 = x0 −wf(x0)/f ′(x0) (11.6)

W is a factor that can be chosen greater than one to increase the correction or less than one to decrease
it. Which one to do is more an art than a science (1.5 and 0.5 are common choices). You can easily

verify that any choice of w between 0 and 2/3 will cause convergence for the solution of x1/3 = 0. You
can also try this method on the solution of f(x) = x2 = 0. A straight-forward iteration will certainly
converge, but with painful slowness. The choice of w > 1 improves this considerably.

When Newton’s method works well, it will typically double the number of significant figures at
each iteration.

A drawback to this method is that it requires knowledge of f ′(x), and that may not be simple.
An alternate approach that avoids this starts from the picture in which a secant through the curve is
used in place of a tangent at a point.

Given f(x1) and f(x2), construct a straight line

y − f(x2) =

[
f(x2)− f(x1)

x2 − x1

]
(x− x2)

x1 x2

This has its root at y = 0, or

x = x2 − f(x2)
x2 − x1

f(x2)− f(x1)
(11.7)

This root is taken as x3 and the method is iterated, substituting x2 and x3 for x1 and x2. As with
Newton’s method, when it works, it works very well, but you must look out for the same type of
non-convergence problems. This is called the secant method.

11.3 Differentiation
Given tabular or experimental data, how can you compute its derivative?

Approximating the tangent by a secant, a good estimate for the derivative of f at the midpoint
of the (x1, x2) interval is

[
f(x2)− f(x1)

]
/(x2 − x1)
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As usual, the geometric approach doesn’t indicate the size of the error, so it’s back to Taylor’s series.
Given data at points x = 0, ±h, ±2h, . . . . I want the derivative f ′(0).

f(h) = f(0) + hf ′(0) +
1

2
h2f ′′(0) +

1

6
h3f ′′′(0) + · · ·

f(−h) = f(0)− hf ′(0) +
1

2
h2f ′′(0)− 1

6
h3f ′′′(0) + · · ·

In order to isolate the term in f ′(0), it’s necessary to eliminate the larger term f(0), so subtract:

f(h)− f(−h) = 2hf ′(0) +
1

3
h3f ′′′(0) + · · · ,

giving
1

2h

[
f(h)− f(−h)

]
≈ f ′(0) +

[1

6
h2f ′′′(0)

] (11.8)

and the last term, in brackets, estimates the error in the straight line approximation.
The most obvious point about this error term is that it varies as h2, and so indicates by how

much the error should decrease as you decrease the size of the interval. (How to estimate the factor
f ′′′(0) I’ll come to presently.) This method evaluates the derivative at one of the data points; you
can make it more accurate if you evaluate it between the points, so that the distance from where the
derivative is being taken to where the data is available is smaller. As before, let h = 2k, then

1

2k

[
f(k)− f(−k)

]
= f ′(0) +

1

6
k2f ′′′(0) + · · · ,

or, in terms of h with a shifted origin,

1

h

[
f(h)− f(0)

]
≈ f ′(h/2) +

1

24
h2f ′′′

(h
2

)
, (11.9)

and the error is only 1/4 as big.
As with interpolation methods, you can gain accuracy by going to higher order in the Taylor

series,

f(h)− f(−h) = 2hf ′(0) +
1

3
h3f ′′′(0) +

1

60
h5fv(0) + · · ·

f(2h)− f(−2h) = 4hf ′(0) +
8

3
h3f ′′′(0) +

32

60
h5fv(0) + · · ·

To eliminate the largest source of error, the h3 term, multiply the first equation by 8 and subtract the
second.

8
[
f(h)− f(−h)

]
−
[
f(2h)− f(−2h)

]
= 12hf ′(0)− 24

60
h5fv(0) + · · · ,

or

f ′(0) ≈ 1

12h

[
f(−2h)− 8f(−h) + 8f(h)− f(2h)

]
−
[
− 1

30
h4fv(0)

]
(11.10)

with an error term of order h4.
As an example of this method, let f(x) = sinx and evaluate the derivative at x = 0.2 by the

2-point formula and the 4-point formula with h=0.1:

2-point:
1

0.2
[0.2955202− 0.0998334] = 0.9784340

4-point:
1

1.2
[0.0− 8× 0.0998334 + 8× 0.2955202− 0.3894183]

= 0.9800633

cos 0.2 = 0.9800666
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Again, you have a more accurate formula by evaluating the derivative between the data points:
h = 2k

f(k)− f(−k) = 2kf ′(0) +
1

3
k3f ′′′(0) +

1

60
k5fv(0)

f(3k)− f(−3k) = 6kf ′(0) +
27

3
k3f ′′′(0) +

243

60
k5fv(0)

27
[
f(k)− f(−k)

]
−
[
f(3k)− f(−3k)

]
= 48kf ′(0)− 216

60
k5fv(0)

Changing k to h/2 and translating the origin gives

1

24h

[
f(−h)− 27f(0) + 27f(h)− f(2h)

]
= f ′(h/2)− 3

640
h4fv(h/2), (11.11)

and the coefficient of the error term is much smaller.
The previous example of the derivative of sinx at x = 0.2 with h = 0.1 gives, using this formula:

1

2.4
[0.0499792− 27× 0.1494381 + 27× 0.2474040− 0.3428978] = 0.9800661,

and the error is less by a factor of about 7.
You can find higher derivatives the same way.

f(h) = f(0) + hf ′(0) +
1

2
h2f ′′(0) +

1

6
h3f ′′′(0) +

1

24
h4f ′′′′(0)

f(h) + f(−h) = 2f(0) + h2f ′′(0) +
1

12
h4f ′′′′(0) + · · ·

f ′′(0) =
f(−h)− 2f(0) + f(h)

h2
− 1

12
h2f ′′′′(0) + · · · (11.12)

Notice that the numerical approximation for f ′′(0) is even in h because the second derivative is un-
changed if x is changed to −x.

You can get any of these expressions for higher derivatives recursively, though finding the error
estimates requires the series method. The above expression for f ′′(0) can be viewed as a combination
of first derivative formulas:

f ′′(0) ≈
[
f ′(h/2)− f ′(−h/2)

]
/h

≈ 1

h

[
f(h)− f(0)

h
− f(0)− f(−h)

h

]
=
[
f(h)− 2f(0) + f(−h)

]
/h2 (11.13)

Similarly, the third and higher derivatives can be computed. The numbers that appear in these numerical
derivatives are simply the binomial coefficients, Eq. (2.18).

11.4 Integration
The basic definition of an integral is the limit of a sum as the intervals approach zero.

ξ1 ξ2 ξ3 ξ4 ξ5

∑
f(ξi)(xi+1 − xi) (xi ≤ ξi ≤ xi+1), (11.14)
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This is more fully explained in section 1.6, and it is the basis for the various methods of numerical
evaluations of integrals.

The simplest choices to evaluate the integral of f(x) over the domain x0 to x0 +h would be to
take the position of ξ at one of the endpoints or maybe in the middle (here h is small).∫ x0+h

x0
f(x) dx ≈f(x0)h (a)

or f(x0 + h)h (b)

or f(x0 + h/2)h (midpoint rule) (c)

or
[
f(x0) + f(x0 + h)

]
h/2 (trapezoidal rule) (d)

(11.15)

The last expression is the average of the first two.
I can now compare the errors in all of these approximations. Set x0 = 0.∫ h

0
dx f(x) =

∫ h

0
dx
[
f(0) + xf ′(0) +

1

2
x2f ′′(0) +

1

6
x3f ′′′(0) + · · ·

]
= hf(0) +

1

2
h2f ′(0) +

1

6
h3f ′′(0) +

1

24
h4f ′′′(0) + · · ·

This immediately gives the error in formula (a):

error (a) = hf(0)−
∫ h

0
dx f(x) ≈ −1

2
h2f ′(0). (11.16)

The error for expression (b) requires another expansion,

error (b) = hf(h)−
∫ h

0
dx f(x)

= h
[
f(0) + hf ′(0) + · · ·

]
−
[
hf(0) +

1

2
h2f ′(0) + · · ·

]
≈ 1

2
h2f ′(0) (11.17)

Since this is the opposite sign from the previous error, it is immediately clear that the error in (d) will
be less, because (d) is the average of (a) and (b).

error (d) =
[
f(0) + f(0) + hf ′(0) +

1

2
h2f ′′(0) + · · ·

]h
2

−
[
hf(0) +

1

2
h2f ′(0) +

1

6
h3f ′′(0) + · · ·

]
≈
(

1

4
− 1

6

)
h3f ′′(0) =

1

12
h3f ′′(0) (11.18)

Similarly, the error in (c) is

error (c) = h
[
f(0) +

1

2
hf ′(0) +

1

8
h2f ′′(0) + · · ·

]
−
[
hf(0) +

1

2
h2f ′(0) +

1

6
h2f ′′(0) + · · ·

]
≈ − 1

24
h3f ′′(0) (11.19)
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The errors in the (c) and (d) formulas are both therefore the order of h3.
Notice that just as the errors in formulas (a) and (b) canceled to highest order when you averaged

them, the same thing can happen between formulas (c) and (d). Here however you need a weighted
average, with twice as much of (c) as of (d). [1/12− 2/24 = 0]

1

3
(d) +

2

3
(c) =

[
f(x0) + f(x0 + h)

]h
6

+ f
(
x0 + h/2

)4

6
h (11.20)

This is known as Simpson’s rule.

Simpson’s Rule
Before applying this last result, I’ll go back and derive it in a more systematic way, putting it into the
form you’ll see most often.

Integrate Taylor’s expansion over a symmetric domain to simplify the algebra:∫ h

−h
dx f(x) = 2hf(0) +

2

6
h3f ′′(0) +

2

120
h5f ′′′′(0) + · · · (11.21)

I’ll try to approximate this by a three point formula αf (−h) + βf (0) + γf (h) where α, β, and γ, are
unknown. Because of the symmetry of the problem, you can anticipate that α = γ, but let that go for
now and it will come out of the algebra.

αf (−h) + βf (0) + γf (h) =

α
[
f(0)− hf ′(0) +

1

2
h2f ′′(0)− 1

6
h3f ′′′(0) +

1

24
h4f ′′′′(0) + · · ·

]
+βf (0)

+γ
[
f(0) + hf ′(0) +

1

2
h2f ′′(0) +

1

6
h3f ′′′(0) +

1

24
h4f ′′′′(0) + · · ·

]
You now determine the three constants by requiring that the two series for the same integral

agree to as high an order as is possible for any f.

2h = α+ β + γ

0 = −αh+ γh
1

3
h3 =

1

2
(α+ γ)h2

=⇒ α = γ = h/3, β = 4h/3

and so,

∫ h

−h
dx f(x) ≈ h

3

[
f(−h) + 4f(0) + f(h)

]
. (11.22)

The error term (the “truncation error’’) is

h
3

[
f(−h)+4f(0)+f(−h)

]
−
∫ h

−h
dx f(x) ≈ 1

12
. 1

3
h5f ′′′′(0)− 1

60
h5f ′′′′(0) =

1

90
h5f ′′′′(0) (11.23)

Simpson’s rule is exact up through cubics, because the fourth and higher derivatives vanish in
that case. It’s worth noting that there is also an elementary derivation of Simpson’s rule: Given three
points, there is a unique quadratic in x that passes through all of them. Take the three points to be(
−h, f(−h)

)
,
(
0, f(0)

)
, and

(
h, f(h)

)
, then integrate the resulting polynomial. Express your answer

for the integral in terms of the values of f at the three points, and you get the above Simpson’s rule.
This has the drawback that it gives no estimate of the error.
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To apply Simpson’s rule, it is necessary to divide the region of integration into an even number
of pieces and apply the above formula to each pair.∫ b

a
dx f(x) ≈ h

3

[
f(x0) + 4f(x1) + f(x2)

]
+
h
3

[
f(x2) + 4f(x3) + f(x4)

]
+ · · ·

+
h
3

[
f(xN−2) + 4f(xN−1) + f(xN )

]
=
h
3

[
f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + · · ·+ 4f(xN−1) + f(xN )

]
(11.24)

Example: ∫ 1

0

4

1 + x2
dx = 4 tan−1 x

∣∣∣∣1
0

= π

Divide the interval 0 to 1 into four pieces, then∫ 1

0

4

1 + x2
dx ≈ 4

12

[
1 + 4

1

1 + (1/4)2
+ 2

1

1 + (1/2)2
+ 4

1

1 + (3/4)2
+

1

1 + 1

]
= 3.1415686

as compared to π = 3.1415927 . . ..
When the function to be integrated is smooth, this gives very accurate results.

Integration
If the integrand is known at all points of the interval and not just at discrete locations as for tabulated
or experimental data, there is more freedom that you can use to gain higher accuracy even if you use
only a two point formula: ∫ h

−h
f(x) dx ≈ α

[
f(β) + f(−β)

]
I could try picking two arbitrary points, not symmetrically placed in the interval, but the previous
experience with Simpson’s rule indicates that the result will come out as indicated. (Though it’s easy
to check what happens if you pick two general points in the interval.)

2hf(0) +
1

3
h3f ′′(0) +

1

60
h5f ′′′′(0) + · · · = α

[
2f(0) + β2f ′′(0) +

1

12
β4f ′′′′(0) + · · ·

]
To make this an equality through the low orders implies

2h = 2α

α = h

1

3
h3 = αβ2

β = h/
√

3

(11.25)

with an error term
1

12
. 1

9
h5f ′′′′(0)− 1

60
h5f ′′′′(0) = − 1

135
h5f ′′′′(0),

and ∫ h

−h
f(x) dx ≈ h

[
f
(
h
/√

3
)

+ f
(
−h
/√

3
)]
−
[
− 1

135
h5f ′′′′(0)

]
(11.26)

With just two points, this expression yields an accuracy equal to the three point Simpson formula.
Notice that the two points found in this way are roots of a certain quadratic(

x− 1√
3

)(
x+

1√
3

)
= x2 − 1/3,
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which is proportional to
3

2
x2 − 1

2
= P2(x), (11.27)

the Legendre polynomial of second order. Recall section 4.11.
This approach to integration, called Gaussian integration, or Gaussian quadrature, can be ex-

tended to more points, as for example∫ h

−h
f(x) dx ≈ αf (−β) + γf (0) + αf (β)

The same expansion procedure leads to the result

h
9

[
5f

(
−h
√

3

5

)
+ 8f(0) + f

(
h

√
3

5

)]
, (11.28)

with an error proportional to h7f (6)(0). The polynomial with roots 0,±
√

3/5 is

5

2
x3 − 3

2
x = P3(x), (11.29)

the third order Legendre polynomial.

For an integral
∫ b
a f(x) dx, let x = [(a+b)/2]+z[(b−a)/2]. Then for the domain −1 < z < 1,

x covers the whole integration interval.∫ b

a
f(x) dx =

b− a
2

∫ 1

−1
dz f (x)

When you use an integration scheme such as Gauss’s, it is in the form of a weighted sum over points.
The weights and the points are defined by equations such as (11.26) or (11.28).∫ 1

−1
dz f (z) →

∑
k

wkf(zk) (11.30)

or

∫ b

a
f(x) dx =

b− a
2

∑
k

wkf(xk), xk = [(a+ b)/2] + zk[(b− a)/2]

Many other properties of Gaussian integration are discussed in the two books by C. Lanczos,
“Linear Differential Operators,’’ “Applied Analysis,’’ both available in Dover reprints. The general
expressions for the integration points as roots of Legendre polynomials and expressions for the coeffi-
cients are there. The important technical distinction he points out between the Gaussian method and
generalizations of Simpson’s rule involving more points is in the divergences for large numbers of points.
Gauss’s method does not suffer from this defect. In practice, there is rarely any problem with using
the ordinary Simpson rule as indicated above, though it will require more points than the more elegant
Gauss’s method. When problems do arise with either of these methods, they often occur because the
function is ill-behaved, and the high derivatives are very large. In this case it can be more accurate
to use a method with a lower order derivative for the truncation error. In an extreme case such a
integrating a non-differentiable function, the apparently worst method,Eq. (11.15)(a), can be the best.
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11.5 Differential Equations
To solve the first order differential equation

y′ = f(x, y) y(x0) = y0, (11.31)

the simplest algorithm is Euler’s method. The initial conditions are y(x0) = y0, and y′(x0) = f(x0, y0),
and a straight line extrapolation is

y(x0 + h) = y0 + hf(x0, y0). (11.32)

You can now iterate this procedure using this newly found value of y as a new starting condition to go
from x0 + h to x0 + 2h.

Runge-Kutta
Euler’s method is not very accurate. For an improvement, change from a straight line extrapolation
to a parabolic one. Take x0 = 0 to keep the algebra down, and try a solution near 0 in the form
y(x) = α+ βx+ γx2; evaluate α, β, and γ so that the differential equation is satisfied near x = 0,

y′ = β + 2γx = f(x,α+ βx+ γx2).

Recall the Taylor series expansion for a function of two variables, section 2.5:

f(x, y) = f(x0, y0) + (x− x0)D1f(x0, y0)+(y − y0)D2f(x0, y0) +
1

2
(x− x0)2D1D1f(x0, y0)

+
1

2
(y − y0)2D2D2f(x0, y0) + (x− x0)(y − y0)D1D2f(x0, y0) + · · · (11.33)

=⇒ β + 2γx = f(0, α) + xD1f(0, α) + (βx+ γx2)D2f(0, α) + · · · . (11.34)

The initial condition is at x = 0, y = y0, so α = y0. Equate coefficients of powers of x as high as is
possible (here through x1).

β = f(0, α) 2γ = D1f(0, α) + βD2f(0, α).

(If you set γ = 0, this is Euler’s method.)

y(h) = y0 + hf(0, y0) +
h2

2

[
D1f(0, y0) + f(0, y0)D2f(0, y0)

]
. (11.35)

The next problem is to evaluate these derivatives. If you can easily do them analytically, you can
choose to do that. Otherwise, since they appear in a term that is multiplied by h2, it is enough to use
the simplest approximation for the numerical derivative,

D1f(0, y0) =
[
f(h, y0)− f(0, y0)

]
/h (11.36)

You cannot expect to use the same interval, h, for the y variable — it might not even have the same
dimensions,

D2f(0, y0) =
[
f(j, y0 + k)− f(j, y0)

]
/k. (11.37)

where j and k are the order of h. Note that because this term appears in an expression multiplied by
h2, it doesn’t matter what j is. You can choose it for convenience. Possible values for these are

(1) j = 0 k = hf(0, y0)

(2) j = 0 k = hf(h, y0)

(3) j = h k = hf(0, y0)

(4) j = h k = hf(h, y0).
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The third of these choices for example gives

y = y0 + hf(0, y0) +
h2

2

[
1

h

[
f(h, y0)− f(0, y0)

]
+ f(0, y0)

f(h, y0 + k)− f(h, y0)

hf(0, y0)

]
= y0 +

h
2
f(0, y0) +

h
2
f
(
h, y0 + hf(0, y0)

)
(11.38)

This procedure, a second order Runge-Kutta method, is a moderately accurate method for advancing
from one point to the next in the solution of a differential equation. It requires evaluating the function
twice for each step of the iteration.
Example: y′ = 1 + y2 y(0) = 0. Let h=0.1

x y(11.32) y(11.38) y(11.41) tan x
0. 0. 0. 0. 0.
0.1 0.10 0.10050 0.10025 0.10053
0.2 0.20100 0.20304 0.20252 0.20271
0.3 0.30504 0.30981 0.30900 0.30934
0.4 0.41435 0.42341 0.42224 0.42279
0.5 0.53151 0.54702 0.54539 0.54630 (11.39)

The fractional error at x = 0.5 with the second order method of equation (11.38) is 0.13% and with
Euler it is −2.7% (first column). The method in Eq. (11.41) has error −0.17%. The fourth order
version of Eq. (11.42) has an error −3.3× 10−7, more places than are shown in the table.

The equation (11.38) is essentially a trapezoidal integration, like Eq. (11.15) (d). You would like
to evaluate the function y at x = h by

y(h) = y0 +

∫ h

0
dx f

(
x, y(x)

)
(11.40)

A trapezoidal integration would be

y(h) ≈ y0 +
h
2

[
f
(
0, y(0)

)
+ f

(
h, y(h)

)]
BUT, you don’t know the y(h) that you need to evaluate the last term, so you estimate it by using the
approximate result that you would have gotten from the simple Euler method, Eq. (11.32). The result
is exactly equation (11.38).

If you can interpret this Runge-Kutta method as just an application of trapezoidal integration,
why not use one of the other integration methods, such as the midpoint rule, Eq. (11.15) (c)? This
says that you would estimate the integral in Eq. (11.40) by estimating the value of f at the midpoint
0 < x < h.

y(h) ≈ y0 + hf
(
h
2 , y(h2 )

)
≈ y0 + hf

(h
2
, y0 +

h
2
f
(
0, y0

))
(11.41)

This is the same order of accuracy as the preceding method, and it takes the same number of function
evaluations as that one (two).

A commonly used version of this is the fourth order Runge-Kutta method:

y = y0 +
1

6

[
k1 + 2k2 + 2k3 + k4

]
(11.42)
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k1 = hf
(
0, y0

)
k3 = hf

(
h/2, y0 + k2/2

) k2 = hf
(
h/2, y0 + k1/2

)
k4 = hf

(
h, y0 + k3

)
.

You can look up a fancier version of this called the Runge-Kutta-Fehlberg method. It’s one of the
better techniques around.

Higher Order Equations
How can you use either the Euler or the Runge-Kutta method to solve a second order differential
equation? Answer: Turn it into a pair of first order equations.

y′′ = f(x, y, y′) −→ y′ = v, and v′ = f(x, y, v) (11.43)

The Euler method, Eq. (11.32) becomes

y(x0 + h) = y(x0) + hv(x0), and v(x0 + h) = v(x0) + hf
(
x0, y(x0), v(x0)

)
The construction for Runge-Kutta is essentially the same.

Adams Methods
The Runge-Kutta algorithm has the advantage that it is self-starting; it requires only the initial condition
to go on to the next step. It has the disadvantage that it is inefficient. In going from one step to the
next, it ignores all the information available from any previous steps. The opposite approach leads to
the Adams methods, though these are not as commonly used any more. I’m going to develop a little
of the subject mostly to show that the methods that I’ve used so far can lead to disaster if you’re not
careful.

Shift the origin to be the point at which you want the new value of y. Assume that you already
know y at −h, −2h, . . . , −Nh. Because of the differential equation y′ = f(x, y), you also know y′

at these points.

Assume

y(0) =
N∑
1

αky(−kh) +
N∑
1

βky
′(−kh) (11.44)

With 2N parameters, you can get this accurate to order h2N−1,

y(−kh) =

∞∑
0

(−kh)n
y(n)(0)

n!

Substitute this into the equation for y(0):

y(0) =
N∑
k=1

αk

∞∑
n=0

(−kh)n
y(n)(0)

n!
+ h

N∑
k=1

βk

∞∑
n=0

(−kh)n
y(n+1)(0)

n!

This should be an identity to as high an order as possible. The coefficient of h0 gives

1 =
N∑
k=1

αk (11.45)
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The next orders are

0 =
∑
k

αk(−kh) + h
∑
k

βk

0 =
∑
k

1

2
αk(−kh)2 + h

∑
k

βk(−kh)

... (11.46)

N = 1 is Euler’s method again.
N = 2 gives

α1 + α2 = 1

α1 + 4α2 = 2(β1 + 2β2)

α1 + 2α2 = β1 + β2

α1 + 8α2 = 3(β1 + 4β2)

The solution of these equations is

α1 = −4 α2 = +5 β1 = +4 β2 = +2

y(0) = −4y(−h) + 5y(−2h) + h
[
4y′(−h) + 2y′(−2h)

]
(11.47)

To start this algorithm off, you need two pieces of information: the values of y at −h and at −2h.
This is in contrast to Runge-Kutta, which needs only one point.

Example: Solve y′ = y y(0) = 1 (h = 0.1)
I could use Runge-Kutta to start and then switch to Adams as soon as possible. For the purpose of
this example, I’ll just take the exact value of y at x = 0.1.

e.1 = 1.105170918

y(.2) = −4y(.1) + 5y(0) + .1
[
4f
(
.1, y(.1)

)
+ 2f

(
0, y(0)

)]
= −4y(.1) + 5y(0) + .4y(.1) + .2y(0)

= −3.6y(.1) + 5.2y(0)

= 1.221384695

The exact value is e.2 = 1.221402758; the first error is in the underlined term. Continuing the calculation
to higher values of x,

x y
.3 1.3499038
.4 1.491547
.5 1.648931
.6 1.81988
.7 2.0228
.8 2.1812
.9 2.666

1.0 1.74
1.1 7.59
1.2 −18.26
1.3 105.22 0. .5 1.

Everything is going very smoothly for a while, though the error is creeping up. At around x = 1,
the numerical solution goes into wild oscillation and is completely unstable. The reason for this is in
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the coefficients −4 and +5 of y(−h) and y(−2h). Small errors are magnified by these large factors.
(The coefficients of y′ are not any trouble because of the factor h in front.)

Instability
You can compute the growth of this error explicitly in this simple example. The equation (11.47)
together with y′ = y is

y(0) = −3.6y(−h) + 5.2y(−2h),

or in terms of an index notation
yn = −3.6yn−1 + 5.2yn−2

This is a linear, constant coefficient, difference equation, and the method for solving it is essentially
the same as for a linear differential equation — assume an exponential form yn = kn.

kn = −3.6kn−1 + 5.2kn−2

k2 + 3.6k − 5.2 = 0

k = 1.11 and − 4.71

Just as with the differential equation, the general solution is a linear combination of these two functions
of n:

yn = A(1.11)n +B(−4.71)n,

where A and B are determined by two conditions, typically specifying y1 and y2. If B = 0, then yn
is proportional to 1.11n and it is the well behaved exponential solution that you expect. If, however,
there is even a little bit of B present (perhaps because of roundoff errors), that term will eventually
dominate and cause the large oscillations. If B is as small as 10−6, then when n = 9 the unwanted
term is greater than 1.

When I worked out the coefficients in Eq. (11.47) the manipulations didn’t look all that different
from those leading to numerical derivatives or integrals, but the result was useless. This is a warning.
You’re in treacherous territory here; tread cautiously.

Are Adams-type methods useless? No, but you have to modify the development in order to get
a stable algorithm. The difficulty in assuming the form

y(0) =

N∑
1

αky(−kh) +

N∑
1

βky
′(−kh)

is that the coefficients αk are too large. To cure this, you can give up some of the 2N degrees of
freedom that the method started with, and pick the αk a priori to avoid instability. There are two
common ways to do this, consistent with the constraint that must be kept on the α’s,

N∑
k=1

αk = 1

One way is to pick all the αk to equal 1/N . Another way is to pick α1 = 1 and all the others = 0,
and both of these methods are numerically stable. The book by Lanczos in the bibliography goes into
these techniques, and there are tabulations of these and other methods in Abramowitz and Stegun.

Backwards Iteration
Before leaving the subject, there is one more kind of instability that you can encounter. If you try to
solve y′′ = +y with y(0) = 1 and y′(0) = −1, the solution is e−x. If you use any stable numerical
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algorithm to solve this problem, it will soon deviate arbitrarily far from the desired one. The reason is
that the general solution of this equation is y = Aex + Be−x. Any numerical method will, through
rounding errors, generate a little bit of the undesired solution, e+x. Eventually, this must overwhelm
the correct solution. No algorithm, no matter how stable, can get around this.

There is a clever trick that sometimes works in cases like this: backwards iteration. Instead of
going from zero up, start at some large value of x and iterate downward. In this direction it is the
desired solution, e−x, that is unstable, and the e+x is damped out. Pick an arbitrary value, say x = 10,
and assign an arbitrary value to y(10), say 0. Next, pick an arbitrary value for y′(10), say 1. Use these
as initial conditions (terminal conditions?) and solve the differential equation moving left; necessarily
the dominant term will be the unstable one, e−x, and independent of the choice of initial conditions,
it will be the solution. At the end it is only necessary to multiply all the terms by a scale factor to
reduce the value at x = 0 to the desired one; automatically, the value of y′(0) will be correct. What
you are really doing by this method is to replace the initial value problem by a two point boundary value
problem. You require that the function approach zero for large x.

11.6 Fitting of Data
If you have a set of data in the form of independent and dependent variables {xi, yi} (i = 1, . . . ,N),
and you have proposed a model that this data is to be represented by a linear combination of some set
of functions, fµ(x)

y =

M∑
µ=1

αµfµ(x), (11.48)

what values of αµ will represent the observations in the best way? There are several answers to this
question depending on the meaning of the word “best.’’ The most commonly used one, largely because
of its simplicity, is Gauss’s method of least squares.

Here there are N data and there are M functions that I will use to fit the data. You have to
pick the functions for yourself. You can choose them because they are the implications of a theoretical
calculation; you can choose them because they are simple; you can choose them because your daily
horoscope suggested them. The sum of functions,

∑
αµfµ, now depends on only the M parameters

αµ. The f s are fixed. The difference between this sum and the data points yi is what you want to be
as small as possible. You can’t use the differences themselves because they will as likely be negative as
positive. The least squares method uses the sum of the squares of the differences between your sum of
functions and the data. This criterion for best fit is that the sum

N∑
i=1

yi − M∑
µ=1

αµfµ(xi)

2

= Nσ2 (11.49)

be a minimum. The mean square deviation of the theory from the experiment is to be least. This
quantity σ2 is called the variance.

Some observations to make here: N ≥ M , for otherwise there are more free parameters than
data to fit them, and almost any theory with enough parameters can be forced to fit any data. Also,
the functions fµ must be linearly independent; if not, then you can throw away some and not alter the
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result — the solution is not unique. A further point: there is no requirement that all of the xi are
different; you may have repeated the measurements at some points.

Minimizing this is now a problem in ordinary calculus with M variables.

∂
∂αν

N∑
i=1

yi − M∑
µ=1

αµfµ(xi)

2

= −2
∑
i

[
yi −

∑
µ

αµfµ(xi)

]
fν(xi) = 0

rearrange:
∑
µ

[∑
i

fν(xi)fµ(xi)

]
αµ =

∑
i

yifν(xi) (11.50)

These linear equations are easily expressed in terms of matrices.

Ca = b,

where

Cνµ =

N∑
i=1

fν(xi)fµ(xi) (11.51)

a is the column matrix with components αµ and b has components
∑
i yifν(xi).

The solution for a is

a = C−1b. (11.52)

If C turned out singular, so this inversion is impossible, the functions fµ were not independent.

Example: Fit to a straight line

f1(x) = 1 f2(x) = x

Then Ca = b is (
N

∑
xi∑

xi
∑
x2
i

)(
α1

α2

)
=

( ∑
yi∑
yixi

)
The inverse is (

α1

α2

)
=

1[
N
∑
x2
i −

(∑
xi
)2] ( ∑

x2
i −

∑
xi

−
∑
xi N

)( ∑
yi∑
xiyi

)
(11.53)

and the best fit line is

y = α1 + α2x

11.7 Euclidean Fit
In fitting data to a combination of functions, the least squares method used Eq. (11.49) as a measure
of how far the proposed function is from the data. If you’re fitting data to a straight line (or plane if
you have more variables) there’s another way to picture the distance. Instead of measuring the distance
from a point to the curve vertically using only y, measure it as the perpendicular distance to the line.
Why should this be any better? It’s not, but it does have different uses, and a primary one is data
compression.



11—Numerical Analysis 284

y

x

Do this in two dimensions, fitting the given data to a straight line, and to describe the line I’ll
use vector notation, where the line is ~u + α~v and the parameter α varies over the reals. First I need
to answer the simple question: what is the distance from a point to a line? The perpendicular distance
from ~w to this line requires that

d2 =
(
~w − ~u− α~v

)2
be a minimum. Differentiate this with respect to α and you have

(~w − ~u− α~v
)

.
(
− ~v

)
= 0 implying αv2 =

(
~w − ~u

)
.~v

For this value of α what is d2?

d2 =
(
~w − ~u

)2
+ α2v2 − 2α~v .

(
~w − ~u

)
=
(
~w − ~u

)2 − 1

v2

[
(~w − ~u ) .~v

]2 (11.54)

Is this plausible? (1) It’s independent of the size of ~v, depending on its direction only. (2) It depends
on only the difference vector between ~w and ~u, not on any other aspect of the vectors. (3) If I add any
multiple of ~v to ~u, the result is unchanged. See problem 11.37. Also, can you find an easier way to get
the result? Perhaps one that simply requires some geometric insight?

The data that I’m trying to fit will be described by a set of vectors ~wi, and the sum of the
distances squared to the line is

D2 =

N∑
1

(
~wi − ~u

)2 − N∑
1

1

v2

[
(~wi − ~u ) .~v

]2
Now to minimize this among all ~u and ~v I’ll first take advantage of some of the observations from the
preceding paragraph. Because the magnitude of ~v does not matter, I’ll make it a unit vector.

D2 =
∑(

~wi − ~u
)2 −∑[

(~wi − ~u ) . v̂
]2

(11.55)

Now to figure out ~u: Note that I expect the best fit line to go somewhere through the middle of the
set of data points, so move the origin to the “center of mass” of the points.

~wmean =
∑

~wi/N and let ~w ′i = ~wi − ~wmean and ~u ′ = ~u− ~wmean

then the sum
∑
~w ′i = 0 and

D2 =
∑

w′2i +Nu′2 −
∑

(~w ′i . v̂)2 −N(~u ′ . v̂)2 (11.56)

This depends on four variables, u′x, u′y, vx and vy. If I have to do derivatives with respect to all of them,
so be it, but maybe some geometric insight will simplify the calculation. I can still add any multiple of v̂
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to ~u without changing this expression. That means that for a given ~v the derivative of D2 as ~u ′ changes
in that particular direction is zero. It’s only as ~u ′ changes perpendicular to the direction of ~v that D2

changes. The second and fourth term involve u′2 − (~u ′ . v̂ )2 = u′2(1− cos2 θ) = u′2 sin2 θ, where this
angle θ is the angle between ~u ′ and ~v. This is the perpendicular distance to the line (squared). Call it
u′⊥ = u′ sin θ.

D2 =
∑

w′2i −
∑

(~w ′i . v̂)2 +Nu′2 −N(~u ′ . v̂)2 =
∑

w′2i −
∑

(~w ′i . v̂)2 +Nu′2⊥

The minimum of this obviously occurs for ~u′⊥ = 0. Also, because the component of ~u′ along the
direction of ~v is arbitrary, I may as well take it to be zero. That makes ~u′ = 0. Remember now that
this is for the shifted ~w ′ data. For the original ~wi data, ~u is shifted to ~u = ~wmean.

D2 =
∑

w′2i −
∑

(~w ′i . v̂)2 (11.57)

I’m not done. What is the direction of v̂? That is, I have to find the minimum of D2 subject to
the constraint that |v̂| = 1. Use Lagrange multipliers (section 8.12).

Minimize D2 =
∑

w′2i −
∑

(~w ′i .~v )2 subject to φ = v2
x + v2

y − 1 = 0

The independent variables are vx and vy, and the problem becomes

∇
(
D2 + λφ

)
= 0, with φ = 0

Differentiate with respect to the independent variables and you have linear equations for vx and vy,

− ∂
∂vx

∑(
w′xivx +w′yivy

)2
+ λ2vx = 0 or

−
∑

2
(
w′xivx +w′yivy

)
wxi + λ2vx = 0

−
∑

2
(
w′xivx +w′yivy

)
wyi + λ2vy = 0

(11.58)

Correlation, Principal Components
The correlation matrix of this data is

(C) =
1

N

( ∑
w′2xi

∑
wxiw

′
yi∑

w′yiw
′
xi

∑
w′2yi

)
The equations (11.58) are (

Cxx Cxy
Cyx Cyy

)(
vx
vy

)
= λ′

(
vx
vy

)
(11.59)

where λ′ = λ/N . This is a traditional eigenvector equation, and there is a non-zero solution only if the
determinant of the coefficients equals zero. Which eigenvalue to pick? There are two of them, and one
will give the best fit while the other gives the worst fit. Just because the first derivative is zero doesn’t
mean you have a minimum of D2; it could be a maximum or a saddle. Here the answer is that you
pick the largest eigenvalue. You can see why this is plausible by looking at the special case for which
all the data lie along the x-axis, then Cxx > 0 and all the other components of the matrix = 0. The
eigenvalues are Cxx and zero, and the corresponding eigenvectors are x̂ and ŷ respectively. Clearly the
best fit corresponds to the former, and the best fit line is the x-axis. The general form of the best fit
line is (now using the original coordinate system for the data)

αv̂ +
1

N

∑
~wi = αv̂ + ~wmean
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and this v̂ is the eigenvector having the largest eigenvalue. More generally, look at Eq. (11.57) and you
see that the lone negative term is biggest if the ~w s are in the same direction (or opposite) as v̂.

x

y

This establishes the best fit to the line in the Euclidean sense. What good is it? It leads into
the subject of Principal Component Analysis and of Data Reduction. The basic idea of this scheme is
that if this fit is a good one, and the original points lie fairly close to the line that I’ve found, I can
replace the original data with the points on this line. The nine points in this figure require 9× 2 = 18
coordinates to describe their positions. The nine points that approximate the data, but that lie on the
line and are closest to the original points require 9× 1 = 9 coordinates along this line. Of course you
have some overhead in the data storage because you need to know the line. That takes three more
data (~u and the angle of v̂), so the total data storage is 12 numbers. See problem 11.38

This doesn’t look like much of a saving, but if you have 106 points you go from 2 000 000
numbers to 1 000 003 numbers, and that starts to be significant. Remember too that this is a two
dimensional problem, with two numbers for each point. With more coordinates you will sometimes
achieve far greater savings. You can easily establish the equation to solve for the values of α for each
point, problem 11.38. The result is

αi =
(
~wi − ~u

)
. v̂

11.8 Differentiating noisy data
Differentiation involves dividing a small number by another small number. Any errors in the numerator
will be magnified by this process, and if you have to differentiate experimental data this will always
present a difficulty. If it is data from the output of a Monte Carlo calculation the same problem will
arise.

Here is a method for differentiation that minimizes the sensitivity of the result to the errors in
the input. Assume equally spaced data where each value of the dependent variable f(x) is a random
variable with mean

〈
f(x)

〉
and variance σ2. Follow the procedure for differentiating smooth data and

expand in a power series. Let h = 2k and obtain the derivative between data points.

f(k) = f(0) + kf ′(0) +
1

2
k2f ′′(0) +

1

6
k3f ′′′(0) + · · ·

f(k)− f(−k) = 2kf ′(0) +
1

3
k3f ′′′(0) + · · ·

f(3k)− f(−3k) = 6kf ′(0) +
27

3
k3f ′′′(0) + · · ·

I’ll seek a formula of the form

f ′(0) = α
[
f(k)− f(−k)

]
+ β

[
f(3k)− f(−3k)

]
(11.60)

I am assuming that the variance of f at each point is the same, σ2, and that the fluctuations in f at
different points are uncorrelated. The last statement is, for random variables f1 and f2,〈(

f1 −
〈
f1

〉)(
f2 −

〈
f2

〉)〉
= 0 which expands to

〈
f1f2

〉
=
〈
f1

〉〈
f2

〉
(11.61)
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Insert the preceding series expansions into Eq. (11.60) and match the coefficients of f ′(0). This
gives an equation for α and β:

2kα+ 6kβ = 1 (11.62)

One way to obtain another equation for α and β is to require that the k3f ′′′(0) term vanish; this leads
back to the old formulas for differentiation, Eq. (11.11). Instead, require that the variance of f ′(0) be
a minimum.〈(

f ′(0)−
〈
f ′(0)

〉)2〉
=
〈[
α
(
f(k)−

〈
f(k)

〉)
+ α

(
f(−k)−

〈
f(−k)

〉)
+ · · ·

]2〉
= 2σ2α2 + 2σ2β2 (11.63)

This comes from the fact that the correlation between say f(k) and f(−3k) vanishes, and that all the
individual variances are σ2. That is,〈(

f(k)−
〈
f(k)

〉)(
f(−k)−

〈
f(−k)

〉)〉
= 0

along with all the other cross terms. Problem: minimize 2σ2(α2 + β2) subject to the constraint
2kα+ 6kβ = 1. It’s hardly necessary to resort to Lagrange multipliers for this problem.

Eliminate α:

d
dβ

[(
1

2k
− 3β

)2

+ β2

]
= 0 =⇒ −6

(
1

2k
− 3β

)
+ 2β = 0

=⇒ β = 3/20k, α = 1/20k

f ′(.5h) ≈ −3f(−h)− f(0) + f(h) + 3f(2h)

10h
, (11.64)

and the variance is 2σ2(α2 + β2) = σ2/5h2. In contrast, the formula for the variance in the standard
four point differentiation formula Eq. (11.10), where the truncation error is least, is 65σ2/72h2, which
is 4.5 times larger.

When the data is noisy, and most data is, this expression will give much better results for this
derivative. Can you do even better? Of course. You can for example go to higher order and both
decrease the truncation error and minimize the statistical error. See problem 11.22.

11.9 Partial Differential Equations
I’ll illustrate the ideas involved here and the difficulties that occur in even the simplest example of a
PDE, a first order constant coefficient equation in one space dimension

∂u/∂t+ c ∂u/∂x = ut + cux = 0, (11.65)

where the subscript denotes differentiation with respect to the respective variables. This is a very simple
sort of wave equation. Given the initial condition that at t = 0, u(0, x) = f(x), you can easily check
that the solution is

u(t, x) = f(x− ct) (11.66)

The simplest scheme to carry data forward in time from the initial values is a generalization of
Euler’s method for ordinary differential equations

u(t+ ∆t, x) = u(t, x) + ut(t, x)∆t

= u(t, x)− ux(t, x)c∆t

= u(t, x)− c∆t
2∆x

[
u(t, x+ ∆x)− u(t, x−∆x)

]
, (11.67)
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Here, to evaluate the derivative, I used the two point differentiation formula.

In this equation, the value of u at point (∆t, 4∆x) depends on the values at (0, 3∆x), (0, 4∆x),
and (0, 5∆x). This diagram shows the scheme as a picture, with the horizontal axis being x and the
vertical axis t. You march the values of u at the grid points forward in time (or backward) by a set of
simple equations.

The difficulties in this method are the usual errors, and more importantly, the instabilities that
can occur. The errors due to the approximations involved can be classified in this case by how they
manifest themselves on wavelike solutions. They can lead to dispersion or dissipation.

Analyze the dispersion first. Take as initial data u(t, x) = A cos kx (or if you prefer, eikx). The
exact solution will be A cos(kx−ωt) where ω = ck. Now analyze the effect of the numerical scheme.
If ∆x is very small, using the discrete values of ∆x in the iteration give an approximate equation

ut = − c
2∆x

[
u(t, x+ ∆x)− u(t, x−∆x)

]
A power series expansion in ∆x gives, for the first two non-vanishing terms

ut = −c
[
ux +

1

6
(∆x)2uxxx

]
(11.68)

So, though I started off solving one equation, the numerical method more nearly represents quite a
different equation. Try a solution of the form A cos(kx− ωt) in this equation and you get

ω = c

[
k − 1

6
(∆x)2k3

]
, (11.69)

and you have dispersion of the wave. The velocity of the wave, ω/k, depends on k and so it depends
on its wavelength or frequency.

The problem of instabilities is more conveniently analyzed by the use of an initial condition
u(0, x) = eikx, then Eq. (11.67) is

u(∆t, x) = eikx − c∆t
2∆x

[
eik(x+∆x) − eik(x−∆x)

]
= eikx

[
1− ic∆t

∆x
sin k∆x

]
. (11.70)

The n-fold iteration of this, therefore involves just the nth power of the bracketed expression; that’s
why the exponential form is easier to use in this case. If k∆x is small, the first term in the expansion
of the sine says that this is approximately

eikx
[
1− ikc∆t

]n
,

and with small ∆t and n = t/∆t a large number, this is

eikx
[
1− ikct

n

]n
≈ eik(x−ct)



11—Numerical Analysis 289

Looking more closely though, the object in brackets in Eq. (11.70) has magnitude

r =

[
1 +

c2(∆t)2

(∆x)2
sin2 k∆x

]1/2

> 1 (11.71)

so the magnitude of the solution grows exponentially. This instability can be pictured as a kind of
negative dissipation. This growth is reduced by requiring kc∆t� 1.

Given a finite fixed time interval, is it possible to get there with arbitrary accuracy by making ∆t
small enough? With n steps = t/∆t, rn is

r =

[
1 +

c2(∆t)2

(∆x)2
sin2 k∆x

]t/2∆t

= [1 + α]β

=
[
[1 + α]1/α

]αβ
≈ eαβ

= exp

[
c2t∆t

2(∆x)2
sin2 k∆x

]
,

so by shrinking ∆t sufficiently, this is arbitrarily close to one.
There are several methods to avoid some of these difficulties. One is the Lax-Friedrichs method:

u(t+ ∆t, x) =
1

2

[
u(t, x+ ∆x) + u(t, x−∆x)

]
− c∆t

2∆x

[
u(t, x+ ∆x)− u(t, x−∆x)

]
(11.72)

By appropriate choice of ∆t and ∆x, this will have r ≤ 1, causing a dissipation of the wave. Another
scheme is the Lax-Wendroff method.

u(t+ ∆t, x) = u(t, x)− c∆t
2∆x

[
u(t, x+ ∆x)− u(t, x−∆x)

]
+
c2(∆t)2

2(∆x)2

[
u(t, x+ ∆x)− 2u(t, x) + u(t, x−∆x)

]
(11.73)

This keeps one more term in the power series expansion.

Exercises

1 Use the four-point interpolation formula Eq. (11.3) to estimate e3/4 from the values of ex at 0, 1/2,
1, 3/2. From the known value of the number, compute the relative error.

2 Find a root of the equation cosx = x. Start with a graph of course.

3 Find the values of α and of x for which ex = αx has a single root.

4 Find the roots of ex = αx when α is twice the value found in the preceding exercise. (and where is
your graph?)

5 Use (a) midpoint formula and (b) Simpson’s rule, with two intervals in each case, to evaluate

4
∫ 1

0 dx 1/(1 + x2).

6 Use Newton’s method to solve the equation sinx = 0, starting with the initial guess x0 = 3.
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Problems

11.1 Show that a two point extrapolation formula is

f(0) ≈ 2f(−h)− f(−2h) + h2f ′′(0).

11.2 Show that a three point extrapolation formula is

f(0) ≈ 3f(−h)− 3f(−2h) + f(−3h) + h3f ′′′(0).

11.3 Solve x2−a = 0 by Newton’s method, showing graphically that in this case, no matter what the
initial guess is (positive or negative), the sequence will always converge. Draw graphs. Find

√
2. (This

is the basis for the library square root algorithm on some computers.)

11.4 Find all real roots of e−x = sinx to ±10−4. Ans: 0.588533, π − 0.045166, 2π + 0.00187 . . .

11.5 The first root r1 of e−ax = sinx is a function of the variable a > 0. Find dr1/da at a = 1 by
two means. (a) First find r1 for some values of a near 1 and use a four-point differentiation formula.
(b) Second, use analytical techniques on the equation to solve for dr1/da and evaluate the derivative
in terms of the known value of the root from the previous problem.

11.6 Evaluate erf(1) = 2√
π

∫ 1
0 dt e

−t2 Ans: 0.842736 (more exact: 0.842700792949715)

11.7 The principal value of an integral is (a < x0 < b)

P

∫ b

a

f(x)

x− x0
dx = lim

ε→0

[∫ x0−ε

a

f(x)

x− x0
dx+

∫ b

x0+ε

f(x)

x− x0
dx

]
.

(a) Show that an equal spaced integration scheme to evaluate such an integral is (using points 0,±h)

P

∫ +h

−h

f(x)

x
dx = f(h)− f(−h)− 2

9
h3f ′′′(0).

(b) Also, an integration scheme of the Gaussian type is

√
3
[
f(h

/√
3)− f(−h

/√
3)
]

+
h5

675
fv(0).

11.8 Devise a two point Gaussian integration with errors for the class of integrals∫ +∞

−∞
dx e−x

2
f(x).

Find what standard polynomial has roots at the points where f is to be evaluated.
Ans: 1

2

√
π
[
f(−1/

√
2) + f(1/

√
2)
]

11.9 Same as the preceding problem, but make it a three point method.
Ans:

√
π
[

1
6f
(
− 1

2

√
6
)

+ 2
3f(0) + 1

6f
(

+ 1
2

√
6
)]
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11.10 Find one and two point Gauss methods for∫ ∞
0

dx e−xf(x).

(a) Solve the one point method completely.
(b) For the two point case, the two points are roots of the equation 1 − 2x + 1

2x
2 = 0. Use that as

given to find the weights. Look up Laguerre polynomials.

11.11 In numerical differentiation it is possible to choose the interval too small. Every computation is
done to a finite precision. (a) Do the simplest numerical differentiation of some specific function and
take smaller and smaller intervals. What happens when the interval gets very small? (b) To analyze
the reason for this behavior, assume that every number in the two point differentiation formula is kept
to a fixed number of significant figures (perhaps 7 or 8). How does the error vary with the interval?
What interval gives the most accurate answer? Compare this theoretical answer with the experimental
value found in the first part of the problem.

11.12 Just as in the preceding problem, the same phenomenon caused by roundoff errors occurs in
integration. For any of the integration schemes discussed here, analyze the dependence on the number
of significant figures kept and determine the most accurate interval. (Surprise?)

11.13 Compute the solution of y′ = 1 + y2 and check the numbers in the table where that example
was given, Eq. (11.39).

11.14 If in the least square fit to a linear combination of functions, the result is constrained to pass
through one point, so that

∑
αµfµ(x0) = K is a requirement on the α’s, show that the result becomes

a = C−1
[
b+ λf0

]
,

where f0 is the vector fµ(x0) and λ satisfies

λ
〈
f0, C

−1f0

〉
= K −

〈
f0, C

−1b
〉
.

11.15 Find the variances in the formulas Eq. (11.8) and (11.10) for f ′, assuming noisy data.
Ans: σ2/2h2, 65σ2/72h2

11.16 Derive Eqs. (11.61), (11.62), and (11.63).

11.17 The Van der Pol equation arises in (among other places) nonlinear circuits and leads to self-
exciting oscillations as in multi-vibrators

d2x
dt2
− ε(1− x2)

dx
dt

+ x = 0.

Take ε = .3 and solve subject to any non-zero initial conditions. Solve over many periods to demonstrate
the development of the oscillations.

11.18 Find a formula for the numerical third derivative. Cf. Eq. (2.18)

11.19 The equation resulting from the secant method, Eq. (11.7), can be simplified by placing every-
thing over a common denominator,

(
f(x2)− f(x1)

)
. Explain why this is a bad thing to do, how it can

lead to inaccuracies.
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11.20 Rederive the first Gauss integration formula Eq. (11.25) without assuming the symmetry of the
result ∫ +h

−h
f(x) dx ≈ αf (β) + γf (δ).

11.21 Derive the coefficients for the stable two-point Adams method.

11.22 By putting in one more parameter in the differentiation algorithm for noisy data, it is possible
both to minimize the variance in f ′ and to eliminate the error terms in h2f ′′′. Find such a 6-point
formula for the derivatives halfway between data points OR one for the derivatives at the data points
(with errors and variance).
Ans: f ′(0) =

[
58
(
f(h)− f(−h)

)
+ 67

(
f(2h)− f(−2h)

)
− 22

(
f(3h)− f(−3h)

)]/(
252h

)
11.23 In the same spirit as the method for differentiating noisy data, how do you interpolate noisy
data? That is, use some extra points to stabilize the interpolation against random variations in the
data. To be specific, do a midpoint interpolation for equally spaced points. Compare the variance here
to that in Eq. (11.3). Ans: f(0) ≈ [f(−3k) + f(−k) + f(k) + f(3k)]/4, σ2 is 4.8 times smaller

11.24 Find the dispersion resulting from the use of a four point formula for ux in the numerical solution
of the PDE ut + cux = 0.

11.25 Find the exact dispersion resulting from the equation

ut = −c
[
u(t, x+ ∆x)− u(t, x−∆x)

]
/2∆x.

That is, don’t do the series expansion on ∆x.

11.26 Compute the dispersion and the dissipation in the Lax-Friedrichs and in the Lax-Wendroff meth-
ods.

11.27 In the simple iteration method of Eq. (11.71), if the grid points are denoted x = m∆x, t = n∆t,
where n and m are integers (−∞ < n,m < +∞), the result is a linear, constant-coefficient, partial
difference equation. Solve subject to the initial condition

u(0,m) = eikm∆x.

11.28 Lobatto integration is like Gaussian integration, except that you require the end-points of the
interval to be included in the sum. The interior points are left free. Three point Lobatto is the same
as Simpson; find the four point Lobatto formula. The points found are roots of P ′n−1.

11.29 From the equation y′ = f(x, y), one derives y′′ = fx + ffy. Derive a two point Adams type
formula using the first and second derivatives, with error of order h5 as for the standard four-point
expression. This is useful when the analytic derivatives are easy. The form is

y(0) = y(−h) + β1y
′(−h) + β2y

′(−2h) + γ1y
′′(−h) + γ2y

′′(−2h)

Ans: β1 = −h/2, β2 = 3h/2, γ1 = 17h2/12, γ2 = 7h2/12

11.30 Using the same idea as in the previous problem, find a differential equation solver in the spirit
of the original Euler method, (11.32), but doing a parabolic extrapolation instead of a linear one. That
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is, start from (x0, y0) and fit the initial data to y = α + β(x − x0) + γ(x − x0)2 in order to take a
step. Ans: y(h) = y0 + hf(0, y0) +

(
h2/2

)[
fx(0, y0) + fy(0, y0)f(0, y0)

]
11.31 Show that the root finding algorithm of Eq. (11.7) is valid for analytic functions of a complex
variable with complex roots.

11.32 In the Runge-Kutta method, pick one of the other choices to estimate D2f(0, y0) in Eq. (11.37).
How many function evaluations will it require at each step?

11.33 Sometimes you want an integral where the data is known outside the domain of integration.

Find an integration scheme for
∫ h

0 f(x) dx in terms of f(h), f(0), and f(−h). Ans: [−f(−h) +
8f(0) + 5f(h)]h/12, error ∝ h4

11.34 When you must subtract two quantities that are almost the same size, you can find yourself
trying to carry ridiculously many significant figures in intermediate steps. If a and b are very close and
you want to evaluate

√
a−
√
b, devise an algorithm that does not necessitate carrying square roots out

to many more places than you want in the final answer. Write a = b+ ε.
Ans: ε/2

√
b, error: ε2/8b3/2

11.35 Repeat the preceding problem but in a more symmetric fashion. Write a = x+ ε and b = x− ε.
Compare the sizes of the truncation errors. Ans: ε/

√
x, −ε3/8x5/2

11.36 The value of π was found in the notes by integrating 4/(1+x2) from zero to one using Simpson’s
rule and five points. Do the same calculation using Gaussian integration and two points. Ans: 3.14754
(Three points give 3.14107)

11.37 (a) Derive Eq. (11.54).
(b) Explain why the plausibility arguments that follow it actually say something.

11.38 After you’ve done the Euclidean fit of data to a straight line and you want to do the data
reduction described after Eq. (11.59), you have to find the coordinate along the line of the best fit to
each point. This is essentially the problem: Given the line (~u and v̂) and a point (~w), the new reduced
coordinate is the α in ~u+ αv̂ so that this point is closest to ~w. What is it? You can do this the hard
way, with a lot of calculus and algebra, or you can draw a picture and write the answer down.

11.39 Data is given as (xi, yi) = {(1, 1), (2, 2), (3, 2)}. Compute the Euclidean best fit line. Also
find the coordinates, αi, along this line and representing the reduced data set.
Ans: ~u = (2, 5/3) v̂ = (0.88167, 0.47186) α1 = −1.1962 α2 = 0.1573 α3 = 1.0390
The approximate points are (0.945, 1.102), (2.139, 1.741), (2.916, 2.157)
[It may not warrant this many significant figures, but it should make it easier to check your work.]

11.40 In the paragraph immediately following Eq. (11.23) there’s mention of an alternate way to derive
Simpson’s rule. Carry it out, though you already know the answer.

11.41 (a) Derive the formula for the second derivative in terms of function values at three equally
spaced points. (b) Use five points to get the second derivative, but using the extra data to minimize
the sensitivity to noise in the data. Ans: (a)

[
f(−h) − 2f(0) + f(h)

]
/h2 (b)

[
− 2f(0) −

(
f(h) +

f(−h)
)

+ 2
(
f(2h) +f(−2h)

)]
/7h2. The ratio of the standard deviation for (b) is smaller than for (a)

by a factor 211/2 = 4.6
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.

You can’t walk across a room without using a tensor (the pressure tensor). You can’t align the wheels
on your car without using a tensor (the inertia tensor). You definitely can’t understand Einstein’s theory
of gravity without using tensors (many of them).

This subject is often presented in the same language in which it was invented in the 1890’s,
expressing it in terms of transformations of coordinates and saturating it with such formidable-looking
combinations as ∂xi/∂x̄j . This is really a sideshow to the subject, one that I will steer around, though
a connection to this aspect appears in section 12.8.

Some of this material overlaps that of chapter 7, but I will extend it in a different direction. The
first examples will then be familiar.

12.1 Examples
A tensor is a particular type of function. Before presenting the definition, some examples will clarify
what I mean. Start with a rotating rigid body, and compute its angular momentum. Pick an origin
and assume that the body is made up of N point masses mi at positions described by the vectors
~ri (i = 1, 2, . . . ,N). The angular velocity vector is ~ω. For each mass the angular momentum is
~ri × ~pi = ~ri × (mi~vi). The velocity ~vi is given by ~ω × ~ri and so the angular momentum of the ith

particle is mi~ri × (~ω × ~ri). The total angular momentum is therefore

m1

m2

m3

~ω

~L =

N∑
i=1

mi~ri × (~ω × ~ri). (12.1)

The angular momentum, ~L, will depend on the distribution of mass within the body and upon the
angular velocity. Write this as

~L = I(~ω ),

where the function I is called the tensor of inertia.
For a second example, take a system consisting of a mass suspended by six springs. At equilibrium

the springs are perpendicular to each other. If now a (small) force ~F is applied to the mass it will undergo

a displacement ~d. Clearly, if ~F is along the direction of any of the springs then the displacement ~d will

be in the same direction as ~F . Suppose however that ~F is halfway between the k1 and k2 springs, and
further that the spring k2 was taken from a railroad locomotive while k1 is a watch spring. Obviously

in this case ~d will be mostly in the x direction (k1) and is not aligned with ~F . In any case there is a

relation between ~d and ~F ,
~d = f

(~F ). (12.2)

The function f is a tensor.
In both of these examples, the functions involved were vector valued functions of vector variables.

They have the further property that they are linear functions, i.e. if α and β are real numbers,

I(α~ω1 + β~ω2) = αI(~ω1) + βI(~ω2), f
(
α~F1 + β ~F2

)
= αf

(~F1

)
+ βf

(~F2

)
294
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These two properties are the first definition of a tensor. (A generalization will come later.)

There’s a point here that will probably cause some confusion. Notice that in the equation ~L = I(~ω),
the tensor is the function I . I didn’t refer to “the function I(~ω)” as you commonly see. The reason

is that I(~ω), which equals ~L, is a vector, not a tensor. It is the output of the function I after the
independent variable ~ω has been fed into it. For an analogy, retreat to the case of a real valued function
of a real variable. In common language, you would look at the equation y = f(x) and say that f(x)
is a function, but it’s better to say that f is a function, and that f(x) is the single number obtained
by feeding the number x to f in order to obtain the number f(x). In this language, f is regarded as
containing a vast amount of information, all the relations between x and y. f(x) however is just a
single number. Think of f as the whole graph of the function and f(x) as telling you one point on
the graph. This apparently trivial distinction will often make no difference, but there are a number of
cases (particularly here) where a misunderstanding of this point will cause confusion.

Definition of “Function”
This is a situation in which a very abstract definition of an idea will allow you to understand some fairly
concrete applications far more easily.

Let X and Y denote sets (possibly the same set) and x and y are elements of these
sets (x ∈ X, y ∈ Y). Form a new set F consisting of some collection of ordered
pairs of elements, one from X and one from Y. That is, a typical element of the set
F is (x1, y1) where x1 ∈ X and y1 ∈ Y. Such a set is called a “relation” between
X and Y.

If X is the set of real numbers and Y is the set of complex numbers, examples of relations are
the sets

F1 = {(1.0, 7.3− 2.1i), (−π, e+ i
√

2.), (3.2 googol, 0.+ 0.i), (1.0, e− iπ)}
F2 = {(x, z)

∣∣ z2 = 1− x2 and − 2 < x < 1}
There are four elements in the first of these relations and an infinite number in the second. A relation
is not necessarily a function, as you need one more restriction. To define a function, you need it to be
single-valued. That is the requirement that if (x, y1) ∈ F and (x, y2) ∈ F then y1 = y2. The ordinary
notation for a function is y = F (x), and in the language of sets we say (x, y) ∈ F. The set F is the
function. You can picture it as a graph, containing all the information about the function; it is by
definition single-valued. You can check that F1 above is a function and F2 is not.

x2 + y2 = R2 y =
√
x2 + y2

For the real numbers x and y, x2 + y2 = R2 defines a relation between X and Y, but y =√
R2 − x2 is a function. In the former case for each x in the interval −R < x < R you have two y’s,
±
√
R2 − x2. In the latter case there is only one y for each x. The domain of a function is the set of

elements x such that there is a y with (x, y) ∈ F. The range is the set of y such that there is an x with
(x, y) ∈ F. For example, −R ≤ x ≤ R is the domain of y =

√
R2 − x2 and 0 ≤ y ≤ R is its range.

Equation (12.1) defines a function I . The set X is the set of angular velocity vectors, and the set
Y is the set of angular momentum vectors. For each of the former you have exactly one of the latter.
The function is the set of all the pairs of input and output variables, so you can see why I don’t want

to call I(~ω ) a function — it’s a vector, ~L.
Another physical example of a tensor is the polarizability tensor relating the electric dipole moment

density vector ~P of matter to an applied electric field vector ~E:

~P = α( ~E )
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For the vacuum this is zero. More generally, for an isotropic linear medium, this function is nothing
more than multiplication by a scalar,

~P = α~E

In a crystal however the two fields ~P and ~E are not in the same direction, though the relation between
them is still linear for small fields. This is analogous to the case above with a particle attached to a set
of springs. The electric field polarizes the crystal more easily in some directions than in others.

The stress-strain relation in a crystal is a more complex situation that can also be described in
terms of tensors. When a stress is applied, the crystal will distort slightly and this relation of strain to
stress is, for small stress, a linear one. You will be able to use the notion of a tensor to describe what
happens. In order to do this however it will be necessary to expand the notion of “tensor” to include a
larger class of functions. This generalization will require some preliminary mathematics.

Functional
Terminology: A functional is a real (scalar) valued function of one or more vector variables. In particular,
a linear functional is a function of one vector variable satisfying the linearity requirement.

f(α~v1 + β~v2) = αf (~v1) + βf (~v2). (12.3)

A simple example of such a functional is

f(~v ) = ~A .~v, (12.4)

where ~A is a fixed vector. In fact, because of the existence of a scalar product, all linear functionals are
of this form, a result that is embodied in the following theorem, the representation theorem for linear
functionals in finite dimensions.

Let f be a linear functional: that is, f is a scalar valued function of one vector
variable and is linear in that variable, f(~v ) is a real number and

f(α~v1 + β~v2) = αf (~v1) + βf (~v2) then (12.5)

there is a unique vector, ~A, such that f(~v ) = ~A .~v for all ~v.

Now obviously the function defined by ~A .~v, where ~A is a fixed vector, is a linear. The burden
of this theorem is that all linear functionals are of precisely this form.

There are various approaches to proving this. The simplest is to write the vectors in components
and to compute with those. There is also a more purely geometric method that avoids using components.
The latter may be more satisfying, but it’s harder. I’ll pick the easy way.

To show that f(~v ) can always be written as ~A .~v, I have to construct the vector ~A. If this is
to work it has to work for all vectors ~v, and that means that it has to work for every particular vector
such as x̂, ŷ, and ẑ. It must be that

f(x̂) = ~A . x̂ and f(ŷ) = ~A . ŷ and f(ẑ) = ~A . ẑ

The right side of these equations are just the three components of the vector ~A, so if this theorem is
to be true the only way possible is that its components have the values

Ax = f(x̂) and Ay = f(ŷ) and Az = f(ẑ) (12.6)

Now to find if the vectors with these components does the job.

f(~v ) = f(vx x̂+ vy ŷ + vz ẑ) = vxf(x̂) + vyf(ŷ) + vzf(ẑ)
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This is simply the property of linearity, Eq. (12.3). Now use the proposed values of the components

from the preceding equation and this is exactly what’s needed: Axvx +Ayvy +Azvz = ~A .~v.

Multilinear Functionals
Functionals can be generalized to more than one variable. A bilinear functional is a scalar valued
function of two vector variables, linear in each

T (~v1, ~v2) = a scalar

T (α~v1 + β~v2, ~v3) = αT (~v1, ~v3) + βT (~v2, ~v3)

T (~v1, α~v2 + β~v3) = αT (~v1, ~v2) + βT (~v1, ~v3)

(12.7)

Similarly for multilinear functionals, with as many arguments as you want.
Now apply the representation theorem for functionals to the subject of tensors. Start with a

bilinear functional so that 0
2T (~v1,~v2) is a scalar. This function of two variables can be looked on as a

function of one variable by holding the other one temporarily fixed. Say ~v2 is held fixed, then 0
2T (~v1,~v2)

defines a linear functional on the variable ~v1. Apply the representation theorem now and the result is

0
2T (~v1,~v2) = ~v1 . ~A

The vector ~A however will depend (linearly) on the choice of ~v2. It defines a new function that I’ll call
1
1T

~A = 1
1T (~v2) (12.8)

This defines a tensor 1
1T , a linear, vector-valued function of a vector. That is, starting from a

bilinear functional you can construct a linear vector-valued function. The reverse of this statement is
easy to see because if you start with 1

1T (~u ) you can define a new function of two variables 0
2T (~w,~u) =

~w . 1
1T (~u ), and this is a bilinear functional, the same one you started with in fact.

With this close association between the two concepts it is natural to extend the definition of
a tensor to include bilinear functionals. To be precise, I used a different name for the vector-valued
function of one vector variable (1

1T ) and for the scalar-valued function of two vector variables (0
2T ).

This is overly fussy, and it’s common practice to use the same symbol (T ) for both, with the hope that
the context will make clear which one you actually mean. In fact it is so fussy that I will stop doing it.
The rank of the tensor in either case is the sum of the number of vectors involved, two (= 1+1 = 0+2)
in this case.

The next extension of the definition follows naturally from the previous reformulation. A tensor
of nth rank is an n-linear functional, or any one of the several types of functions that can be constructed
from it by the preceding argument. The meaning and significance of the last statement should become
clear a little later. In order to clarify the meaning of this terminology, some physical examples are in
order. The tensor of inertia was mentioned before:

~L = I
(
~ω
)
.

The dielectric tensor related ~D and ~E:
~D = ε

( ~E )
The conductivity tensor relates current to the electric field:

~ = σ
( ~E )

In general this is not just a scalar factor, and for the a.c. case σ is a function of frequency.
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∆ ~A
∆~F

cut

The stress tensor in matter is defined as follows: If a body has forces on it
(compression or twisting or the like) or even internal defects arising from its formation,
one part of the body will exert a force on another part. This can be made precise
by the following device: Imagine making a cut in the material, then because of the
internal forces, the two parts will tend to move with respect to each other. Apply

enough force to prevent this motion. Call it ∆~F . Typically for small cuts ∆~F will be
proportional to the area of the cut. The area vector is perpendicular to the cut and of magnitude equal

to the area. For small areas you have differential relation d~F = S
(
d ~A
)
. This function S is called the

stress tensor or pressure tensor. If you did problem 8.11 you saw a two dimensional special case of this,
though in that case it was isotropic, leading to a scalar for the stress (also called the tension).

There is another second rank tensor called the strain tensor. I described it qualitatively in section
9.2 and I’ll simply add here that it is a second rank tensor. When you apply stress to a solid body it
will develop strain. This defines a function with a second rank tensor as input and a second rank tensor
as output. It is the elasticity tensor and it has rank four.

So far, all the physically defined tensors except elasticity have been vector-valued functions of
vector variables, and I haven’t used the n-linear functional idea directly. However there is a very simple
example of such a tensor:

work = ~F . ~d

This is a scalar valued function of the two vectors ~F and ~d. This is of course true for the scalar product

of any two vectors ~a and ~b

g
(
~a,~b

)
= ~a .~b (12.9)

g is a bilinear functional called the metric tensor. There are many other physically defined tensors that
you will encounter later. In addition I would like to emphasize that although the examples given here
will be in three dimensions, the formalism developed will be applicable to any number of dimensions.

12.2 Components
Up to this point, all that I’ve done is to make some rather general statements about tensors and I’ve
given no techniques for computing with them. That’s the next step. I’ll eventually develop the complete
apparatus for computation in an arbitrary basis, but for the moment it’s a little simpler to start out
with the more common orthonormal basis vectors, and even there I’ll stay with rectangular coordinates
for a while. (Recall that an orthonormal basis is an independent set of orthogonal unit vectors, such as
x̂, ŷ, ẑ.) Some of this material was developed in chapter seven, but I’ll duplicate some of it. Start off
by examining a second rank tensor, viewed as a vector valued function

~u = T (~v )

The vector ~v can be written in terms of the three basis vectors line x̂, ŷ, ẑ. Or, as I shall denote them
ê1, ê2, ê3 where

|ê1| = |ê2| = |ê3| = 1, and ê1 . ê2 = 0 etc. (12.10)

In terms of these independent vectors, ~v has components v1, v2, v3:

~v = v1 ê1 + v2 ê2 + v3 ê3 (12.11)

The vector ~u = T (~v ) can also be expanded in the same way:

~u = u1 ê1 + u2 ê2 + u3 ê3 (12.12)
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Look at T (~v ) more closely in terms of the components

T (~v ) = T (v1 ê1 + v2 ê2 + v3 ê3)

= v1 T (ê1) + v2 T (ê2) + v3 T (ê3)

(by linearity). Each of the three objects T (ê1), T (ê2), T
(
ê3

)
is a vector, which means that you can

expand each one in terms of the original unit vectors

T (ê1) = T11 ê1 + T21 ê2 + T31 ê3

T (ê2) = T12 ê1 + T22 ê2 + T32 ê3

T (ê3) = T13 ê1 + T23 ê2 + T33 ê3

or more compactly, T (êi) =
∑
j

Tji êj (12.13)

The numbers Tij (i, j = 1, 2, 3) are called the components of the tensor in the given basis. These
numbers will depend on the basis chosen, just as do the numbers vi, the components of the vector ~v.
The ordering of the indices has been chosen for later convenience, with the sum on the first index of
the Tji. This equation is the fundamental equation from which everything else is derived. (It will be
modified when non-orthonormal bases are introduced later.)

Now, take these expressions for T (êi) and plug them back into the equation ~u = T (~v ):

u1 ê1 + u2 ê2 + u3 ê3 = T (~v ) = v1

[
T11 ê1 + T21 ê2 + T31 ê3

]
+v2

[
T12 ê1 + T22 ê2 + T32 ê3

]
+v3

[
T13 ê1 + T23 ê2 + T33 ê3

]
=

[
T11v1 + T12v2 + T13v3

]
ê1

+
[
T21v1 + T22v2 + T23v3

]
ê2

+
[
T31v1 + T32v2 + T33v3

]
ê3

Comparing the coefficients of the unit vectors, you get the relations among the components

u1 = T11v1 + T12v2 + T13v3

u2 = T21v1 + T22v2 + T23v3

u3 = T31v1 + T32v2 + T33v3

(12.14)

More compactly:

ui =
3∑
j=1

Tijvj or

u1

u2

u3

 =

T11 T12 T13

T21 T22 T23

T31 T32 T33

 v1

v2

v3

 (12.15)

At this point it is convenient to use the summation convention (first* version). This convention
says that if a given term contains a repeated index, then a summation over all the possible values of
that index is understood. With this convention, the previous equation is

ui = Tijvj . (12.16)

Notice how the previous choice of indices has led to the conventional result, with the first index denoting
the row and the second the column of a matrix.

* See section 12.5 for the later modification and generalization.



12—Tensors 300

Now to take an example and tear it apart. Define a tensor by the equations

T (x̂) = x̂+ ŷ, T (ŷ) = ŷ, (12.17)

where x̂ and ŷ are given orthogonal unit vectors. These two expressions, combined with linearity, suffice
to determine the effect of the tensor on all linear combinations of x̂ and ŷ. (This is a two dimensional
problem.)

To compute the components of the tensor pick a set of basis vectors. The obvious ones in this
instance are

ê1 = x̂, and ê2 = ŷ

By comparison with Eq. (12.13), you can read off the components of T .

T11 = 1 T21 = 1

T12 = 0 T22 = 1.

Write these in the form of a matrix as in Eq. (12.15)

(
Trow, column

)
=

(
T11 T12

T21 T22

)
=

(
1 0
1 1

)
and writing the vector components in the same way, the components of the vectors x̂ and ŷ are
respectively (

1
0

)
and

(
0
1

)
The original equations (12.17), that defined the tensor become the components(

1 0
1 1

)(
1
0

)
=

(
1
1

)
and

(
1 0
1 1

)(
0
1

)
=

(
0
1

)

12.3 Relations between Tensors
Go back to the fundamental representation theorem for linear functionals and see what it looks like in
component form. Evaluate f(~v ), where ~v = vi êi. (The linear functional has one vector argument and
a scalar output.)

f(~v ) = f(vi êi) = vi f(êi) (12.18)

Denote the set of numbers f(êi) (i = 1, 2, 3) by Ai = f(êi), in which case,

f(~v ) = Aivi = A1v1 +A2v2 +A3v3

Now it is clear that the vector ~A of the theorem is just

~A = A1 ê1 +A2 ê2 +A3 ê3 (12.19)

Again, examine the problem of starting from a bilinear functional and splitting off one of the two
arguments in order to obtain a vector valued function of a vector. I want to say

T (~u, ~v ) = ~u .T (~v )
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for all vectors ~u and ~v. You should see that using the same symbol, T , for both functions doesn’t
cause any trouble. Given the bilinear functional, what is the explicit form for T (~v )? The answer is
most readily found by a bit of trial and error until you reach the following result:

T (~v ) = êi T (êi, ~v ) (12.20)

(Remember the summation convention.) To verify this relation, multiply by an arbitrary vector, ~u =
uj êj :

~u .T (~v ) = (uj êj) . êi T (êi, ~v )

which is, by the orthonormality of the ê’s,

uj δji T (êi, ~v ) = ui T (êi, ~v ) = T (~u, ~v )

This says that the above expression is in fact the correct one. Notice also the similarity between this

construction and the one in equation (12.19) for ~A.
Now take T (~v ) from Eq. (12.20) and express ~v in terms of its components

~v = vj êj , then T (~v ) = êi T (êi, vj êj) = êi T (êi, êj)vj

The i component of this expression is

T (êi, êj)vj = Tijvj

a result already obtained in Eq. (12.16).
There’s a curiosity involved here; why should the left hand entry in T ( , ) be singled out to

construct
êi T (êi,~v )?

Why not use the right hand one instead? Answer: No reason at all. It’s easy enough to find out what
happens when you do this. Examine

êi T (~v, êi) ≡ T̃ (~v ) (12.21)

Put ~v = vj êj , and you get
êi T (vj êj , êi) = êi T (êj , êi)vj

The ith component of which is
Tjivj

If you write this as a square matrix times a column matrix, the only difference between this result
and that of Eq. (12.16) is that the matrix is transposed. This vector valued function T̃ is called the
transpose of the tensor T . The nomenclature comes from the fact that in the matrix representation,
the matrix of one equals the transpose of the other’s matrix.

By an extension of the language, this applies to the other form of the tensor, T :

T̃ (~u, ~v ) = T (~v, ~u ) (12.22)

Symmetries
Two of the common and important classifications of matrices, symmetric and antisymmetric, have their
reflections in tensors. A symmetric tensor is one that equals its transpose and an antisymmetric tensor
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is one that is the negative of its transpose. It is easiest to see the significance of this when the tensor
is written in the bilinear functional form:

Tij = T (êi, êj)

This matrix will equal its transpose if and only if

T (~u, ~v ) = T (~v, ~u )

for all ~u and ~v. Similarly, if for all ~u and ~v

T (~u, ~v ) = −T (~v, ~u )

then T = −T̃ . Notice that it doesn’t matter whether I speak of T as a scalar-valued function of two
variables or as a vector-valued function of one; the symmetry properties are the same.

From these definitions, it is possible to take an arbitrary tensor and break it up into its symmetric
part and its antisymmetric part:

T =
1

2

(
T + T̃

)
+

1

2

(
T − T̃

)
= TS + TA (12.23)

TS(~u, ~v ) =
1

2

[
T (~u, ~v ) + T (~v, ~u )

]
TA(~u, ~v ) =

1

2

[
T (~u, ~v )− T (~v, ~u )

]
Many of the common tensors such as the tensor of inertia and the dielectric tensor are symmetric.

The magnetic field tensor in contrast, is antisymmetric. The basis of this symmetry in the case of the

dielectric tensor is in the relation for the energy density in an electric field,
∫ ~E . d ~D.* Apply an electric

field in the x direction, then follow it by adding a field in the y direction; undo the field in the x
direction and then undo the field in the y direction. The condition that the energy density returns to
zero is the condition that the dielectric tensor is symmetric.

All of the above discussions concerning the symmetry properties of tensors were phrased in terms
of second rank tensors. The extensions to tensors of higher rank are quite easy. For example in the
case of a third rank tensor viewed as a 3-linear functional, it would be called completely symmetric if

T (~u, ~v, ~w ) = T (~v, ~u, ~w ) = T (~u, ~w, ~v ) = etc.

for all permutations of ~u, ~v, ~w, and for all values of these vectors. Similarly, if any interchange of two
arguments changed the value by a sign,

T (~u, ~v, ~w ) = −T (~v, ~u, ~w ) = +T (~v, ~w, ~u ) = etc.

then the T is completely antisymmetric. It is possible to have a mixed symmetry, where there is for
example symmetry on interchange of the arguments in the first and second place and antisymmetry
between the second and third.

* This can be proved by considering the energy in a plane parallel plate capacitor, which is, by

definition of potential,
∫
V dq. The Potential difference V is the magnitude of the ~E field times the

distance between the capacitor plates. [V = Ed.] ( ~E is perpendicular to the plates by ∇× ~E = 0.)

The normal component of ~D related to q by ∇ . ~D = ρ. [A ~D . n̂ = q.] Combining these, and dividing

by the volume gives the energy density as
∫ ~E . d ~D.
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Alternating Tensor
A curious (and very useful) result about antisymmetric tensors is that in three dimensions there is, up
to a factor, exactly one totally antisymmetric third rank tensor; it is called the “alternating tensor.”
So, if you take any two such tensors, Λ and Λ′, then one must be a multiple of the other. (The same
holds true for the nth rank totally antisymmetric tensor in n dimensions.)

Proof: Consider the function Λ − αΛ′ where α is a scalar. Pick any three independent vectors
~v10, ~v20, ~v30 as long as Λ′ on this set is non-zero. Let

α =
Λ(~v10, ~v20, ~v30)

Λ′(~v10, ~v20, ~v30)
(12.24)

(If Λ′ gives zero for every set of ~v s then it’s a trivial tensor, zero.) This choice of α guarantees that
Λ − αΛ′ will vanish for at least one set of values of the arguments. Now take a general set of three
vectors ~v1, ~v2, and ~v3 and ask for the effect of Λ− αΛ′ on them. ~v1, ~v2, and ~v3 can be expressed as
linear combinations of the original ~v10, ~v20, and ~v30. Do so. Substitute into Λ−αΛ′, use linearity and
notice that all possible terms give zero.

The above argument is unchanged in a higher number of dimensions. It is also easy to see that
you cannot have a totally antisymmetric tensor of rank n+ 1 in n dimensions. In this case, one of the
n+ 1 variables would have to be a linear combination of the other n. Use linearity, and note that when
any two variables equal each other, antisymmetry forces the result to be zero. These observations imply
that the function must vanish identically. See also problem 12.17. If this sounds familiar, look back at
section 7.7.

12.4 Birefringence
It’s time to stop and present a serious calculation using tensors, one that leads to an interesting and
not at all obvious result. This development assumes that you’ve studied Maxwell’s electromagnetic
field equations and are comfortable with vector calculus. If not then you will find this section obscure,
maybe best left for another day. The particular problem that I will examine is how light passes through
a transparent material, especially a crystal that has different electrical properties in different directions.
The common and best known example of such a crystal is Iceland spar, a form of calcite (CaCO3).

∇× ~E = −∂
~B
∂t

∇× ~B = µ0
~j + µ0ε0

∂ ~E
∂t

~j =
∂ ~P
∂t

~P = α
( ~E ) (12.25)

~E and ~B are the electric and magnetic fields. ~P is the polarization of the medium, the electric dipole
moment density. α is the polarizability tensor, relating the amount of distortion of the charges in the

matter to the applied electric field. The current density ~j appears because a time-varying electric field
will cause a time-varying movement of the charges in the surrounding medium — that’s a current.

Take the curl of the first equation and the time derivative of the second.

∇×∇× ~E = − ∂
∂t
∇× ~B ∇× ∂

~B
∂t

= µ0
∂~j
∂t

+ µ0ε0
∂2 ~E
∂t2

The two expressions involving ~B are the same, so eliminate ~B.

∇×∇× ~E = −µ0
∂~j
∂t
− µ0ε0

∂2 ~E
∂t2

= −µ0
∂2α

( ~E )
∂t2

− µ0ε0
∂2 ~E
∂t2

I make the assumption that α is time independent, so this is

∇×∇× ~E = ∇
(
∇ . ~E

)
−∇2 ~E = −µ0α

(
∂2 ~E
∂t2

)
− µ0ε0

∂2 ~E
∂t2
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I am seeking a wave solution for the field, so assume a solution ~E
(
~r, t
)

= ~E0ei
~k .~r−ωt. Each ∇ brings

down a factor of i~k and each time derivative a factor −iω, so the equation is

−~k
(~k . ~E0

)
+ k2 ~E0 = µ0ω

2α
( ~E0

)
+ µ0ε0ω

2 ~E0 (12.26)

This is a linear equation for the vector ~E0.
A special case first: A vacuum, so there is no medium and α ≡ 0. The equation is(

k2 − µ0ε0ω
2
) ~E0 − ~k

(~k . ~E0

)
= 0 (12.27)

Pick a basis so that ẑ is along ~k, then(
k2 − µ0ε0ω

2
) ~E0 − ẑ k2 ẑ . ~E0 = 0 or in matrix notation,(k2 − µ0ε0ω

2
) 1 0 0

0 1 0
0 0 1

− k2

 0 0 0
0 0 0
0 0 1

E0x

E0y

E0z


This is a set of linear homogeneous equations for the components of the electric field. One solution

for ~E is identically zero, and this solution is unique unless the determinant of the coefficients vanishes.
That is (

k2 − µ0ε0ω
2
)2(− µ0ε0ω

2
)

= 0

This is a cubic equation for ω2. One root is zero, the other two are ω2 = k2/µ0ε0. The eigenvector
corresponding to the zero root has components the column matrix ( 0 0 1 ), or E0x = 0 and E0y = 0
with the z-component arbitrary. The field for this solution is

~E = E0ze
ikz ẑ, then ∇ . ~E = ρ/ε0 = ikE0ze

ikz

This is a static charge density, not a wave, so look to the other solutions. They are

E0z = 0, with E0x, E0y arbitrary and ~k . ~E0 = ∇ . ~E = 0

~E =
(
E0x x̂+E0y ŷ

)
eikz−iωt and ω2/k2 = 1/µ0ε0 = c2

This is a plane, transversely polarized, electromagnetic wave moving in the z-direction at velocity
ω/k = 1/

√
µ0ε0.

Now return to the case in which α 6= 0. If the polarizability is a multiple of the identity, so that

the dipole moment density is always along the direction of ~E, all this does is to add a constant to ε0 in
Eq. (12.26). ε0 → ε0 + α = ε, and the speed of the wave changes from c = 1/

√
µ0ε0 to v = 1/

√
µ0ε

The more complicated case occurs when α is more than just multiplication by a scalar. If the
medium is a crystal in which the charges can be polarized more easily in some directions than in others,
α is a tensor. It is a symmetric tensor, though I won’t prove that here. The proof involves looking at
energy dissipation (rather, lack of it) as the electric field is varied. To compute I will pick a basis, and
choose it so that the components of α form a diagonal matrix in this basis.

Pick ~e1 = x̂, ~e2 = ŷ, ~e3 = ẑ so that (α) =

α11 0 0
0 α22 0
0 0 α33
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The combination that really appears in Eq. (12.26) is ε0 + α. The first term is a scalar, a multiple of
the identity, so the matrix for this is

(ε) = ε0

 1 0 0
0 1 0
0 0 1

+ (α) =

 ε11 0 0
0 ε22 0
0 0 ε33

 (12.28)

I’m setting this up assuming that the crystal has three different directions with three different polariz-
abilities. When I get down to the details of the calculation I will take two of them equal — that’s the

case for calcite. The direction of propagation of the wave is ~k, and Eq. (12.26) is

k2

 1 0 0
0 1 0
0 0 1

− µ0ω
2

 ε11 0 0
0 ε22 0
0 0 ε33

−
 k1k1 k1k2 k1k3

k2k1 k2k2 k2k3

k3k1 k3k2 k3k3

E0x

E0y

E0z

 = 0 (12.29)

In order to have a non-zero solution for the electric field, the determinant of this total 3 × 3
matrix must be zero. This is starting to get too messy, so I’ll now make the simplifying assumption that
two of the three directions in the crystal have identical properties: ε11 = ε22. This makes the system

cylindrically symmetric about the z-axis and I can then take the direction of the vector ~k to be in the
x-z plane for convenience.

~k = k
(
~e1 sinα+ ~e3 cosα

)
The matrix of coefficients in Eq. (12.29) is now

k2

 1 0 0
0 1 0
0 0 1

− µ0ω
2

 ε11 0 0
0 ε11 0
0 0 ε33

− k2

 sin2 α 0 sinα cosα
0 0 0

sinα cosα 0 cos2 α


=

 k2 cos2 α− µ0ω2ε11 0 −k2 sinα cosα
0 k2 − µ0ω2ε11 0

−k2 sinα cosα 0 k2 sin2 α− µ0ω2ε33

 (12.30)

The determinant of this matrix is(
k2−µ0ω

2ε11

)[(
k2 cos2 α− µ0ω

2ε11

)(
k2 sin2 α− µ0ω

2ε33

)
−
(
− k2 sinα cosα

)2]
=
(
k2 − µ0ω

2ε11

)[
− µ0ω

2k2
(
ε11 sin2 α+ ε33 cos2 α

)
+ µ2

0ω
4ε11ε33

]
= 0 (12.31)

This has a factor µ0ω2 = 0, and the corresponding eigenvector is ~k itself. In column matrix notation
that is ( sinα 0 cosα ). It is another of those static solutions that aren’t very interesting. For the
rest, there are factors

k2 − µ0ω
2ε11 = 0 and k2

(
ε11 sin2 α+ ε33 cos2 α

)
− µ0ω

2ε11ε33 = 0

The first of these roots, ω2/k2 = 1/µ0ε11, has an eigenvector ~e2 = ŷ, or ( 0 1 0 ). Then ~E =

E0 ŷeikz−ωt and this is a normal sort of transverse wave that you commonly find in ordinary non-
crystalline materials. The electric vector is perpendicular to the direction of propagation. The energy

flow (the Poynting vector) is along the direction of ~k, perpendicular to the wavefronts. It’s called the
“ordinary ray,” and at a surface it obeys Snell’s law. The reason it is ordinary is that the electric vector

in this case is along one of the principal axes of the crystal. The polarization is along ~E just as it is in
air or glass, so it behaves the same way as in those cases.
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The second root has E0y = 0, and an eigenvector computed as

(
k2 cos2 α− µ0ω

2ε11

)
E0x −

(
k2 sinα cosα

)
E0z = 0(

k2 cos2 α− k2
(
ε11 sin2 α+ ε33 cos2 α

)
/ε33

)
E0x −

(
k2 sinα cosα

)
E0z = 0

ε11 sinαE0x + ε33 cosαE0z = 0

If the two ε’s are equal, this says that ~E is perpendicular to ~k. If they aren’t equal then ~k . ~E 6= 0 and

you can write this equation for the direction of ~E as

E0x = E0 cosβ, E0z = − sinβ, then

ε11 sinα cosβ − ε33 cosα sinβ = 0

and so tanβ =
ε11

ε33
tanα

x

z
~k

~E

α
β

In calcite, the ratio ε11/ε33 = 1.056, making β a little bigger than α.

The magnetic field is in the ~k× ~E direction, and the energy flow of the light is along the Poynting

vector, in the direction ~E × ~B. In this picture, that puts ~B along the ŷ-direction (into the page), and

then the energy of the light moves in the direction perpendicular to ~E and ~B. That is not along ~k. This

means that the propagation of the wave is not along the perpendicular to the wave fronts. Instead the

wave skitters off at an angle to the front. The “extraordinary ray.” Snell’s law says that the wavefronts

bend at a surface according to a simple trigonometric relation, and they still do, but the energy flow of

the light does not follow the direction normal to the wavefronts. The light ray does not obey Snell’s

law

ordinary ray extraordinary ray

~k ~S
~k ~S

In calcite as it naturally grows, the face of the crystal is not parallel to any of the x-y or x-z or

y-z planes. When a light ray enters the crystal perpendicular to the surface, the wave fronts are in the

plane of the surface and what happens then depends on polarization. For the light polarized along one

of the principle axes of the crystal (the y-axis in this sketch) the light behaves normally and the energy

goes in an unbroken straight line. For the other polarization, the electric field has components along

two different axes of the crystal and the energy flows in an unexpected direction — disobeying Snell’s

law. The normal to the wave front is in the direction of the vector ~k, and the direction of energy flow

(the Poynting vector) is indicated by the vector ~S.
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x

z

x

z~k
~S

~k
~S

surface→

y is în

~E along ŷ ~E to the right coming in

Simulation of a pattern of x’s seen through Calcite. See also Wikipedia: birefringence.

12.5 Non-Orthogonal Bases
The next topic is the introduction of more general computational techniques. These will lift the
restriction on the type of basis that can be used for computing components of various tensors. Until
now, the basis vectors have formed an orthonormal set

|êi| = 1, êi . êj = 0 if i 6= j

Consider instead a more general set of vectors ~ei. These must be independent. That is, in three
dimensions they are not coplanar. Other than this there is no restriction. Since by assumption the
vectors ~ei span the space you can write

~v = vi êi.

with the numbers vi being as before the components of the vector ~v.

NOTE: Here is a change in notation. Before, every index
was a subscript. (It could as easily have been a super-
script.) Now, be sure to make a careful distinction between
sub- and superscripts. They will have different meanings.

Reciprocal Basis
Immediately, when you do the basic scalar product you find complications. If ~u = uj~ej , then

~u .~v = (uj~ej) .(vi~ei) = ujvi~ej .~ei.

But since the ~ei aren’t orthonormal, this is a much more complicated result than the usual scalar
product such as

uxvy + uyvy + uzvz.

You can’t assume that ~e1 .~e2 = 0 any more. In order to obtain a result that looks as simple as this
familiar form, introduce an auxiliary basis: the reciprocal basis. (This trick will not really simplify the
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answer; it will be the same as ever. It will however be in a neater form and hence easier to manipulate.)
The reciprocal basis is defined by the equation

~ei .~e j = δji =

{
1 if i = j
0 if i 6= j

(12.32)

The ~e j ’s are vectors. The index is written as a superscript to distinguish it from the original basis, ~ej .

~e 1

~e1

~e2

~e 2

To elaborate on the meaning of this equation, ~e 1 is perpendicular to the plane defined by ~e2

and ~e3 and is therefore more or less in the direction of ~e1. Its magnitude is adjusted so that the scalar
product

~e 1 .~e1 = 1.

The “direct basis” and “reciprocal basis” are used in solid state physics and especially in describing
X-ray diffraction in crystallography. In that instance, the direct basis is the fundamental lattice of the
crystal and the reciprocal basis would be defined from it. The reciprocal basis is used to describe the
wave number vectors of scattered X-rays.

The basis reciprocal to the reciprocal basis is the direct basis.
Now to use these things: Expand the vector ~u in terms of the direct basis and ~v in terms of the

reciprocal basis.

~u = ui~ei and ~v = vj~e
j . Then ~u .~v = (ui~ei) .(vj~e

j)

= uivjδ
j
i

= uivi = u1v1 + u2v2 + u3v3.

Notation: The superscript on the components (ui) will refer to the components in the direct basis (~ei);
the subscripts (vj) will come from the reciprocal basis (~e j). You could also have expanded ~u in terms
of the reciprocal basis and ~v in the direct basis, then

~u .~v = uiv
i = uivi (12.33)

Summation Convention
At this point, modify the previously established summation convention: Like indices in a given term are
to be summed when one is a subscript and one is a superscript. Furthermore the notation is designed
so that this is the only kind of sum that should occur. If you find a term such as uivi then this means
that you made a mistake.

The scalar product now has a simple form in terms of components (at the cost of introducing
an auxiliary basis set). Now for further applications to vectors and tensors.

Terminology: The components of a vector in the direct basis are called the contravariant compo-
nents of the vector: vi. The components in the reciprocal basis are called* the covariant components:
vi.

* These terms are of more historical than mathematical interest.
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Examine the component form of the basic representation theorem for linear functionals, as in
Eqs. (12.18) and (12.19).

f(~v ) = ~A .~v for all ~v.

Claim: ~A = ~e if(~ei) = ~eif(~e i) (12.34)

The proof of this is as before: write ~v in terms of components and compute the scalar product ~A .~v.

~v = vi~ei. Then ~A .~v =
(
~e jf(~ej)

)
.
(
vi~ei

)
= vif(~ej)δ

j
i

= vif(~ei) = f(vi~ei) = f(~v ).

Analogous results hold for the expression of ~A in terms of the direct basis.

You can see how the notation forced you into considering this expression for ~A. The summation
convention requires one upper index and one lower index, so there is practically no other form that you

could even consider in order to represent ~A.
The same sort of computations will hold for tensors. Start off with one of second rank. Just as

there were covariant and contravariant components of a vector, there will be covariant and contravariant
components of a tensor. T (~u, ~v ) is a scalar. Express ~u and ~v in contravariant component form:

~u = ui~ei and ~v = vj~ej . Then T (~u, ~v ) = T (ui~ei, v
j~ej)

= uivj T (~ei, ~ej)

= uivj Tij (12.35)

The numbers Tij are called the covariant components of the tensor T .
Similarly, write ~u and ~v in terms of covariant components:

~u = ui~e
i and ~v = vj~e

j . Then T (~u, ~v ) = T (ui~e
i, vj~e

j)

= uivj T (~e i, ~e j)

= uivj T
ij (12.36)

And T ij are the contravariant components of T . It is also possible to have mixed components:

T (~u, ~v ) = T (ui~e
i, vj~ej)

= uiv
j T (~e i, ~ej)

= uiv
j T ij

As before, from the bilinear functional, a linear vector valued function can be formed such that

T (~u,~v ) = ~u .T (~v ) and T (~v ) = ~e iT (~ei,~v )

= ~eiT (~e i,~v )

For the proof of the last two lines, simply write ~u in terms of its contravariant or covariant components
respectively.

All previous statements concerning the symmetry properties of tensors are unchanged because
they were made in a way independent of basis, though it’s easy to see that the symmetry properties
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of the tensor are reflected in the symmetry of the covariant or the contravariant components (but not
usually in the mixed components).

Metric Tensor
Take as an example the metric tensor:

g(~u,~v ) = ~u .~v. (12.37)

The linear function found by pulling off the ~u from this is the identity operator.

g(~v ) = ~v

This tensor is symmetric, so this must be reflected in its covariant and contravariant components. Take
as a basis the vectors

~e 1

~e1

~e2

~e 2

Let |~e2| = 1 and |~e1| = 2; the angle between them being 45◦. A little geometry shows that

|~e 1| = 1√
2

and |~e 2| =
√

2

Assume this problem is two dimensional in order to simplify things.
Compute the covariant components:

g11 = g(~e1,~e1) = 4

g12 = g(~e1,~e2) =
√

2

g21 = g(~e2,~e1) =
√

2

g22 = g(~e2,~e2) = 1

(
grc
)

=

(
4
√

2√
2 1

)

Similarly
g11 = g(~e 1,~e 1) = 1/2

g12 = g(~e 1,~e 2) = −1/
√

2

g21 = g(~e 2,~e 1) = −1/
√

2

g22 = g(~e 2,~e 2) = 2

(
grc
)

=

(
1/2 −1/

√
2

−1/
√

2 2

)

The mixed components are

g1
1 = g(~e 1,~e1) = 1

g1
2 = g(~e 1,~e2) = 0

g2
1 = g(~e 2,~e1) = 0

g2
2 = g(~e 2,~e2) = 1

(
grc
)

=
(
δrc
)

=

(
1 0
0 1

)
(12.38)

I used r and c for the indices to remind you that these are the row and column variables. Multiply
the first two matrices together and you obtain the third one — the unit matrix. The matrix

(
gij
)

is

therefore the inverse of the matrix
(
gij
)
. This last result is not general, but is due to the special nature

of the tensor g.
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12.6 Manifolds and Fields
Until now, all definitions and computations were done in one vector space. This is the same state
of affairs as when you once learned vector algebra; the only things to do then were addition, scalar
products, and cross products. Eventually however vector calculus came up and you learned about vector
fields and gradients and the like. You have now set up enough apparatus to make the corresponding
step here. First I would like to clarify just what is meant by a vector field, because there is sure to be
confusion on this point no matter how clearly you think you understand the concept. Take a typical

vector field such as the electrostatic field ~E. ~E will be some function of position (presumably satisfying
Maxwell’s equations) as indicated at the six different points.

~E1
~E2

~E3

~E4
~E5

~E6

Does it make any sense to take the vector ~E3 and add it to the vector ~E5? These are after
all, vectors; can’t you always add one vector to another vector? Suppose there is also a magnetic field

present, say with vectors ~B1, ~B2 etc. , at the same points. Take the magnetic vector at the point #3
and add it to the electric vector there. The reasoning would be exactly the same as the previous case;
these are vectors, therefore they can be added. The second case is clearly nonsense, as should be the
first. The electric vector is defined as the force per charge at a point. If you take two vectors at two
different points, then the forces are on two different objects, so the sum of the forces is not a force on
anything — it isn’t even defined.

You can’t add an electric vector at one point to an electric vector at
another point. These two vectors occupy different vector spaces. At a single
point in space there are many possible vectors; at this one point, the set of
all possible electric vectors forms a vector space because they can be added to
each other and multiplied by scalars while remaining at the same point. By the
same reasoning the magnetic vectors at a point form a vector space. Also the
velocity vectors. You could not add a velocity vector to an electric field vector
even at the same point however. These too are in different vector spaces. You can picture all these
vector spaces as attached to the points in the manifold and somehow sitting over them.

From the above discussion you can see that even to discuss one type of vector field, a vector
space must be attached to each point of space. If you wish to make a drawing of such a system, It is
at best difficult. In three dimensional space you could have a three dimensional vector space at each
point. A crude way of picturing this is to restrict to two dimensions and draw a line attached to each
point, representing the vector space attached to that point. This pictorial representation won’t be used
in anything to follow however, so you needn’t worry about it.

The term “vector field” that I’ve been throwing around is just a prescription for selecting one
vector out of each of the vector spaces. Or, in other words, it is a function that assigns to each point
a vector in the vector space at that same point.

There is a minor confusion of terminology here in the use of the word “space.” This could be space
in the sense of the three dimensional Euclidean space in which we are sitting and doing computations.
Each point of the latter will have a vector space associated with it. To reduce confusion (I hope) I
shall use the word “manifold” for the space over which all the vector spaces are built. Thus: To each
point of the manifold there is associated a vector space. A vector field is a choice of one vector from
each of the vector spaces over the manifold. This is a vector field on the manifold. In short: The word
“manifold” is substituted here for the phrase “three dimensional Euclidean space.”
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(A comment on generalizations. While using the word manifold as above, everything said about

it will in fact be more general. For example it will still be acceptable in special relativity with four

dimensions of space-time. It will also be correct in other contexts where the structure of the manifold

is non-Euclidean.)

The point to emphasize here is that most of the work on tensors is already done and that the

application to fields of vectors and fields of tensors is in a sense a special case. At each point of the

manifold there is a vector space to which all previous results apply.

In the examples of vector fields mentioned above (electric field, magnetic field, velocity field)

keep your eye on the velocity. It will play a key role in the considerations to come, even in considerations

of other fields.

A word of warning about the distinction between a manifold and the vector spaces at each point

of the manifold. You are accustomed to thinking of three dimensional Euclidean space (the manifold)

as a vector space itself. That is, the displacement vector between two points is defined, and you can

treat these as vectors just like the electric vectors at a point. Don’t! Treating the manifold as a vector

space will cause great confusion. Granted, it happens to be correct in this instance, but in attempting

to understand these new concepts about vector fields (and tensor fields later), this additional knowledge

will be a hindrance. For our purposes therefore the manifold will not be a vector space. The concept

of a displacement vector is therefore not defined.

Just as vector fields were defined by picking a single vector from each vector space at various

points of the manifold, a scalar field is similarly an assignment of a number (scalar) to each point. In

short then, a scalar field is a function that gives a scalar (the dependent variable) for each point of the

manifold (the independent variable).

For each vector space, you can discuss the tensors that act on that space and so, by picking one

such tensor for each point of the manifold a tensor field is defined.

A physical example of a tensor field (of second rank) is stress in a solid. This will typically

vary from point to point. But at each point a second rank tensor is given by the relation between

infinitesimal area vectors and internal force vectors at that point. Similarly, the dielectric tensor in an

inhomogeneous medium will vary with position and will therefore be expressed as a tensor field. Of

course even in a homogeneous medium the dielectric tensor would be a tensor field relating ~D and ~E
at the same point. It would however be a constant tensor field. Like a uniform electric field, the tensors

at different points could be thought of as “parallel” to each other (whatever that means).

12.7 Coordinate Bases

In order to obtain a handle on this subject and in order to be able to do computations, it is necessary

to put a coordinate system on the manifold. From this coordinate system there will come a natural way

to define the basis vectors at each point (and so reciprocal basis vectors too). The orthonormal basis

vectors that you are accustomed to in cylindrical and spherical coordinates are not “coordinate bases.”

There is no need to restrict the discussion to rectangular or even to orthogonal coordinate

systems. A coordinate system is a means of identifying different points of the manifold by different

sets of numbers. This is done by specifying a set of functions: x1, x2, x3, which are the coordinates.

(There will be more in more dimensions of course.) These functions are real valued functions of points

in the manifold. The coordinate axes are defined as in the drawing by
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x1

x2

x1 = constant
x3 = constant

x2 = constant
x3 = constant

Specify the equations x2 = 0 and x3 = 0 for the x1 coordinate axis. For example in rectangular
coordinates x1 = x, x2 = y, x3 = z, and the x-axis is the line y = 0, and z = 0. In plan polar
coordinates x1 = r = a constant is a circle and x2 = φ = a constant is a straight line starting from the
origin.

Start with two dimensions and polar coordinates r and φ. As a basis in this system we routinely

use the unit vectors r̂ and φ̂, but is this the only choice? Is it the best choice? Not necessarily. Look
at two vectors, the differential d~r and the gradient ∇f .

d~r = r̂ dr + φ̂ rdφ and ∇f = r̂
∂f
∂r

+ φ̂
1

r
∂f
∂φ

(12.39)

And remember the chain rule too.
df
dt

=
∂f
∂r

dr
dt

+
∂f
∂φ

dφ
dt

(12.40)

In this basis the scalar product is simple, but you pay for it in that the components of the vectors have
extra factors in them — the r and the 1/r. An alternate approach is to place the complexity in the
basis vectors and not in the components.

~e1 = r̂, ~e2 = r φ̂ and ~e 1 = r̂, ~e 2 = φ̂/r (12.41)

These are reciprocal bases, as indicated by the notation. Of course the original r̂-φ̂ is self-reciprocal.
The preceding equations (12.39) are now

d~r = ~e1 dr + ~e2dφ and ∇f = ~e 1 ∂f
∂r

+ ~e 2 ∂f
∂φ

(12.42)

Make another change in notation to make this appear more uniform. Instead of r-φ for the coordinates,
call them x1 and x2 respectively, then

d~r = ~e1 dx
1 + ~e2dx

2 and ∇f = ~e 1 ∂f
∂x1

+ ~e 2 ∂f
∂x2

(12.43)

r̂ – φ̂ ~e1 – ~e2 ~e 1 – ~e 2
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The velocity vector is

d~r
dt

= ~e1
dr
dt

+ ~e2
dφ
dt

and Eq. (12.40) is
df
dt

=
∂f

∂xi
dxi

dt
= (∇f) .~v

This sort of basis has many technical advantages that aren’t at all apparent here. At this point
this “coordinate basis” is simply a way to sweep some of the complexity out of sight, but with further
developments of the subject the sweeping becomes shoveling. When you go beyond the introduction
found in this chapter, you find that using any basis other than a coordinate basis leads to equations
that have complicated extra terms, which you want nothing to do with.

In spherical coordinates x1 = r, x2 = θ, x3 = φ

~e1 = r̂, ~e2 = r θ̂, ~e3 = r sin θ φ̂ and ~e 1 = r̂, ~e 2 = θ̂/r, ~e 3 = φ̂/r sin θ

The velocity components are now

dxi/dt = {dr/dt, dθ/dt, dφ/dt}, and ~v = ~ei dx
i/dt (12.44)

This last equation is central to figuring out the basis vectors in an unfamiliar coordinate system.
The use of x1, x2, and x3 (xi) for the coordinate system makes the notation uniform. Despite

the use of superscripts, these coordinates are not the components of any vectors, though their time
derivatives are.

In ordinary rectangular coordinates, if a particle is moving along the x1-axis (the x-axis) then
dx2/dt = 0 = dx3/dt. Also, the velocity will be in the x direction and of size dx1/dt.

~e1 = x̂

as you would expect. Similarly
~e2 = ŷ, ~e3 = ẑ.

In a variation of rectangular coordinates in the plane the axes are not orthogonal to each other,
but are rectilinear anyway.

0 1 2 3 4

0

1

2

3

α

~e2

~e1

Still keep the requirement of Eq. (12.44)

~v = ~ei
dxi

dt
= ~e1

dx1

dt
+ ~e2

dx2

dt
. (12.45)

If the particle moves along the x1-axis (or parallel to it) then by the definition of the axes, x2 is a
constant and dx2/dt = 0. Suppose that the coordinates measure centimeters, so that the perpendicular
distance between the lines is one centimeter. The distance between the points (0, 0) and (1, 0) is then
1 cm/ sinα = cscα cm. If in ∆t = one second, particle moves from the first to the second of these
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points, ∆x1 = one cm, so dx1/dt = 1 cm/sec. The speed however, is cscα cm/sec because the
distance moved is greater by that factor. This means that

|~e1| = cscα

and this is greater than one; it is not a unit vector. The magnitudes of ~e2 is the same. The dot product
of these two vectors is ~e1 .~e2 = cosα/ sin2 α.

Reciprocal Coordinate Basis
Construct the reciprocal basis vectors from the direct basis by the equation

~e i .~ej = δij

In rectangular coordinates the direct and reciprocal bases coincide because the basis is orthonormal.
For the tilted basis of Eq. (12.45),

~e2 .~e 2 = 1 = |~e2| |~e 2| cos
(
90◦ − α

)
= (cscα)|~e 2| sinα = |~e 2|

The reciprocal basis vectors in this case are unit vectors.
The direct basis is defined so that the components of velocity are as simple as possible. In

contrast, the components of the gradient of a scalar field are equally simple provided that they are
expressed in the reciprocal basis. If you try to use the same basis for both you can, but the resulting
equations are a mess.

In order to compute the components of grad f (where f is a scalar field) start with its definition,
and an appropriate definition should not depend on the coordinate system. It ought to be some sort
of geometric statement that you can translate into any particular coordinate system that you want.
One way to define grad f is that it is that vector pointing in the direction of maximum increase of f
and equal in magnitude to df/d` where ` is the distance measured in that direction. This is the first
statement in section 8.5. While correct, this definition does not easily lend itself to computations.

Instead, think of the particle moving through the manifold. As a function of time it sees changing
values of f . The time rate of change of f as felt by this particle is given by a scalar product of the
particle’s velocity and the gradient of f . This is essentially the same as Eq. (8.16), though phrased in
a rather different way. Write this statement in terms of coordinates

d
dt
f
(
x1(t), x2(t), x3(t)

)
= ~v . grad f

The left hand side is (by the chain rule)

∂f
∂x1

∣∣∣∣
x2,x3

dx1

dt
+

∂f
∂x2

∣∣∣∣
x1,x3

dx2

dt
+

∂f
∂x3

∣∣∣∣
x1,x2

dx3

dt
=
∂f
∂x1

dx1

dt
+
∂f
∂x2

dx2

dt
+
∂f
∂x3

dx3

dt
(12.46)

~v is expressed in terms of the direct basis by

~v = ~ei
dxi

dt
,

now express grad f in the reciprocal basis

grad f = ~e i
(

grad f
)
i (12.47)
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The way that the scalar product looks in terms of these bases, Eq. (12.33) is

~v . grad f = ~ei
dxi

dt
.~e j
(

grad f
)
j = vi

(
grad f

)
i (12.48)

Compare the two equations (12.46) and (12.48) and you see

grad f = ~e i
∂f

∂xi
(12.49)

For a formal proof of this statement consider three cases. When the particle is moving along the x1

direction (x2 & x3 constant) only one term appears on each side of (12.46) and (12.48) and you can
divide by v1 = dx1/dt. Similarly for x2 and x3. As usual with partial derivatives, the symbol ∂f

/
∂xi

assumes that the other coordinates x2 and x3 are constant.
For polar coordinates this equation for the gradient reads, using Eq. (12.41),

grad f = ~e 1 ∂f
∂x1

+ ~e 2 ∂f
∂x2

=
(
r̂
)∂f
∂r

+
(1

r
φ̂
)∂f
∂φ

which is the standard result, Eq. (8.27). Notice again that the basis vectors are not dimensionless.
They can’t be, because ∂f/∂r doesn’t have the same dimensions as ∂f/∂φ.

0

1

2

0 1

x1

x2

~e1

~e2

α

Example
I want an example to show that all this formalism actually gives the
correct answer in a special case for which you can also compute all the
results in the traditional way. Draw parallel lines a distance 1 cm apart
and another set of parallel lines also a distance 1 cm apart intersecting
at an angle α between them. These will be the constant values of the
functions defining the coordinates, and will form a coordinate system
labeled x1 and x2. The horizontal lines are the equations x2 = 0,
x2 = 1 cm, etc.

Take the case of the non-orthogonal rectilinear coordinates again. The components of grad f in
the ~e 1 direction is ∂f/∂x1, which is the derivative of f with respect to x1 holding x2 constant, and
this derivative is not in the direction along ~e 1, but in the direction where x2 = a constant and that is
along the x1-axis, along ~e1. As a specific example to show that this makes sense, take a particular f
defined by

f(x1, x2) = x1

For this function grad f = ~e 1 ∂f
∂x1

+ ~e 2 ∂f
∂x2

= ~e 1

~e 1 is perpendicular to the x2-axis, the line x1 =constant, (as it should be). Its magnitude is the
magnitude of ~e 1, which is one.

To verify that this magnitude is correct, calculate it directly from the definition. The magnitude
of the gradient is the magnitude of df/d` where ` is measured in the direction of the gradient, that is,
in the direction ~e 1.

df
d`

=
∂f
∂x1

dx1

d`
= 1 . 1 = 1

Why 1 for dx1/d`? The coordinate lines in the picture are x1 = 0, 1, 2, . . .. When you move on the
straight line perpendicular to x2 = constant (~e 1), and go from x1 = 1 to x2 = 2, then both ∆x1 and
∆s are one.
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Metric Tensor
The simplest tensor field beyond the gradient vector above would be the metric tensor, which I’ve been
implicitly using all along whenever a scalar product arose. It is defined at each point by

g(~a,~b ) = ~a .~b (12.50)

Compute the components of g in plane polar coordinates. The contravariant components of g are from
Eq. (12.41)

gij = ~e i .~e j =

(
1 0
0 1/r2

)
Covariant:

gij = ~ei .~ej =

(
1 0
0 r2

)
Mixed:

gij = ~e i .~ej =

(
1 0
0 1

)

12.8 Basis Change
If you have two different sets of basis vectors you can compute the transformation on the components in
going from one basis to the other, and in dealing with fields, a different set of basis vectors necessarily
arises from a different set of coordinates on the manifold. It is convenient to compute the transformation
matrices directly in terms of the different coordinate functions. Call the two sets of coordinates xi and
yi. Each of them defines a set of basis vectors such that a given velocity is expressed as

~v = ~ei
dxi

dt
= ~e ′j

dyj

dt
(12.51)

What you need is an expression for ~e ′j in terms of ~ei at each point. To do this, take a particular path

for the particle — along the y1-direction (y2 & y3 constant). The right hand side is then

~e ′1
dy1

dt

Divide by dy1/dt to obtain

~e ′1 = ~ei
dxi

dt

/
dy1

dt

But this quotient is just

~e ′1 = ~ei
∂xi

∂y1

∣∣∣∣
y2,y3

And in general

~e ′j = ~ei
∂xi

∂yj
(12.52)

Do a similar calculation for the reciprocal vectors

grad f = ~e i
∂f

∂xi
= ~e ′j

∂f

∂yj
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Take the case for which f = yk, then

∂f

∂yj
=
∂yk

∂yj
= δkj

which gives

~e ′k = ~e i
∂yk

∂xi
(12.53)

The transformation matrices for the direct and the reciprocal basis are inverses of each other, In
the present context, this becomes

e ′k .~e ′j = δkj = ~e `
∂yk

∂x`
.~ei

∂xi

∂yj

= δ`i
∂yk

∂x`
∂xi

∂yj

=
∂yk

∂xi
∂xi

∂yj
=
∂yk

∂yj

The matrices ∂xi
/
∂yj and its inverse matrix, ∂yk

/
∂xi are called Jacobian matrices. When you

do multiple integrals and have to change coordinates, the determinant of one or the other of these
matrices will appear as a factor in the integral.

As an example, compute the change from rectangular to polar coordinates

x1 = x y1 = r x2 = y y2 = φ

x = r cosφ r =
√
x2 + y2 y = r sinφ φ = tan−1 y/x

~e ′j = ~ei
∂xi

∂yj

~e ′1 = ~e1
∂x1

∂y1
+ ~e2

∂x2

∂y1
= x̂

∂x
∂r

+ ŷ
∂y
∂r

= x̂ cosφ+ ŷ sinφ = r̂

~e ′2 = ~e1
∂x1

∂y2
+ ~e2

∂x2

∂y2
= x̂

∂x
∂φ

+ ŷ
∂y
∂φ

= x̂(−r sinφ) + ŷ(r cosφ) = rφ̂

Knowing the change in the basis vectors, the change of the components of any tensor is found
by computing it in the new basis and using the linearity of the tensor itself. The new components will
be linear combinations of those from the old basis.

A realistic example using non-orthonormal bases appears in special relativity. Here the manifold
is four dimensional instead of three and the coordinate changes of interest represent Lorentz transfor-
mations. Points in space-time (”events”) can be described by rectangular coordinates (ct, x, y, z),
which are concisely denoted by xi

i = (0, 1, 2, 3) where x0 = ct, x1 = x, x2 = y, x3 = z

The introduction of the factor c into x0 is merely a question of scaling. It also makes the units the
same on all axes.
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The basis vectors associated with this coordinate system point along the directions of the axes.
This manifold is not Euclidean however so that these vectors are not unit vectors in the usual

sense. We have
~e0 .~e0 = −1 ~e1 .~e1 = 1 ~e2 .~e2 = 1 ~e3 .~e3 = 1

and they are orthogonal pairwise. The reciprocal basis vectors are defined in the usual way,

~e i .~ej = δij

so that
~e 0 = −~e0 ~e 1 = ~e1 ~e 2 = ~e2 ~e 3 = ~e3

The contravariant (also covariant) components of the metric tensor are

gij =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 = gij (12.54)

An observer moving in the +x direction with speed v will have his own coordinate system with
which to describe the events of space-time. The coordinate transformation is

x′0 = ct′ =
x0 − v

cx
1√

1− v2/c2
=

ct− v
cx√

1− v2/c2

x′1 = x′ =
x1 − v

cx
0√

1− v2/c2
=

x− vt√
1− v2/c2

x′2 = y′ = x2 = y x′3 = z′ = x3 = z

(12.55)

You can check that these equations represent the transformation to an observer moving in the +x
direction by asking where the moving observer’s origin is as a function of time: It is at x′1 = 0 or
x− vt = 0, giving x = vt as the locus of the moving observer’s origin.

The graph of the coordinates is as usual defined by the equations (say for the x′0-axis) that x′1,
x′2, x′3 are constants such as zero. Similarly for the other axes.

x0 = ct
x′ 0 = ct′

x′ 1 = x′

x1 = x

~e0

~e ′0

~e ′1

~e1

Find the basis vectors in the transformed system by using equation (12.52).

~e ′j = ~ei
∂xi

∂yj

In the present case the yj are x′j and we need the inverse of the equations (12.55). They are found by
changing v to −v and interchanging primed and unprimed variables.

x0 =
x′0 + v

cx
′1√

1− v2/c2
x1 =

x′1 + v
cx
′0√

1− v2/c2
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~e ′0 = ~ei
∂xi

∂x′0
= ~e0

1√
1− v2/c2

+ ~e1
v/c√

1− v2/c2

~e ′1 = ~ei
∂xi

∂x′1
= ~e0

v/c√
1− v2/c2

+ ~e1
1√

1− v2/c2

(12.56)

It is easy to verify that these new vectors point along the primed axes as they should. They
also have the property that they are normalized to plus or minus one respectively as are the original
untransformed vectors. (How about the reciprocal vectors?)

As an example applying all this apparatus, do the transformation of the components of a second
rank tensor, the electromagnetic field tensor. This tensor is the function that acts on the current density
(four dimensional vector) and gives the force density (also a four-vector). Its covariant components are

(
Fij
)

= F
(
~ei,~ej

)
=


0 −Ex −Ey −Ez
Ex 0 Bz −By
Ey −Bz 0 Bx
Ez By −Bx 0

 (12.57)

where the E’s and B’s are the conventional electric and magnetic field components. Compute a sample
component of this tensor in the primed coordinate system.

F ′20 = F (~e ′2,~e
′
0) = F

(
~e2,~e0

1√
1− v2/c2

+ ~e1
v/c√

1− v2/c2

)

=
1√

1− v2/c2
F20 +

v/c√
1− v2/c2

F21

or in terms of the E and B notation,

E ′y =
1√

1− v2/c2

[
Ey −

v
c
Bz
]

Since v is a velocity in the +x direction this in turn is

E ′y =
1√

1− v2/c2

[
Ey +

1

c

(
~v × ~B

)
y

]
(12.58)

Except possibly for the factor in front of the brackets. this is a familiar, physically correct equation of
elementary electromagnetic theory. A charge is always at rest in its own reference system. In its own
system, the only force it feels is the electric force because its velocity with respect to itself is zero. The

electric field that it experiences is ~E ′, not the ~E of the outside world. This calculation tells you that

this force q ~E ′ is the same thing that I would expect if I knew the Lorentz force law, ~F = q
[ ~E+~v× ~B

]
.

The factor of
√

1− v2/c2 appears because force itself has some transformation laws that are not as
simple as you would expect.
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Exercises

1 On the three dimensional vector space of real quadratic polynomials in x, define the linear functional

F (f) =
∫ 1

0 dx f(x). Suppose that 1, x, and x2 are an orthonormal basis, then what vector ~A

represents this functional F so that ~A .~v = F (f), where the vector ~v means a quadratic polynomial,

as f(x) = a+ bx+ cx2. Ans: ~A = 1 + 1
2x+ 1

3x
2

2 In the preceding example, take the scalar product to be
〈
f, g

〉
=
∫ 1
−1 dx f(x)g(x) and find the vector

that represents the functional in this case. Ans: ~A = 1
2 + 3

4x

3 In the first exercise above, what if the polynomials can have arbitrary order? Ans: ~A = − 1
x ln(1−x)

(Not quite right because this answer is not a polynomial, so it is not a vector in the original space.
There really is no correct answer to this question as stated.)
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Problems

12.1 Does the function T defined by T (v) = v+ c with c a constant satisfy the definition of linearity?

12.2 Let the set X be the positive integers. Let the set Y be all real numbers. Consider the following
sets and determine if they are relations between X and Y and if they are functions.

{(0, 0), (1, 2.0), (3,−π), (0, 1.0), (−1, e)}
{(0, 0), (1, 2.0), (3,−π), (0, 1.0), (2, e)}
{(0, 0), (1, 2.0), (3,−π), (4, 1.0), (2, e)}
{(0, 0), (5, 5.5), (5., π) (3,−2.0) (7, 8)}

12.3 Starting from the definition of the tensor of inertia in Eq. (12.1) and using the defining equation
for components of a tensor, compute the components of I .

12.4 Find the components of the tensor relating ~d and ~F in the example of Eq. (12.2)

12.5 The product of tensors is defined to be just the composition of functions for the second rank tensor
viewed as a vector variable. If S and T are such tensors, then (ST )(v) = S(T (v)) (by definition)
Compute the components of ST in terms of the components of S and of T . Express the result both
in terms of index notation and matrices. Ans: This is matrix multiplication.

12.6 (a) The two tensors 1
1T and 1

1T̃ are derived from the same bilinear functional 0
2T , in the

Eqs. (12.20)–(12.22). Prove that for arbitrary ~u and ~v,

~u . 1
1T (~v ) = 1

1T̃ (~u ) .~v

(If it’s less confusing to remove all the sub- and superscripts, do so.)
(b) If you did this by writing everything in terms of components, do it again without components
and just using the nature of these as functions. (If you did in without components, do it again using
components.)

12.7 What is the significance of a tensor satisfying the relation T̃ [T (~v )] = T [T̃ (~v )] = ~v for all ~v?
Look at what effect it has on the scalar product of two vectors if you let T act on both. That is, what
is the scalar product of T~u and T~v?

12.8 Carry out the construction indicated in section 12.3 to show the dielectric tensor is symmetric.

12.9 Fill in the details of the proof that the alternating tensor is unique up to a factor.

12.10 Compute the components of such an alternating tensor in two dimensions.
Ans: The matrix is anti-symmetric.

12.11 Take an alternating tensor in three dimensions, pull off one of the arguments in order to obtain
a vector valued function of two vector variables. See what the result looks like, and in particular, write
it out in component form.
Ans: You should find a cross product here.

12.12 Take a basis ~e1 = 2 x̂, ~e2 = x̂+ 2 ŷ. Compute the reciprocal basis. Find the components of the

vectors ~A = x̂ − ŷ and ~B = ŷ in in each basis and compute ~A . ~B three different ways: in the ~e1-~e2
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basis, in its reciprocal basis, and mixed ( ~A in one basis and ~B in the reciprocal basis). A fourth way
uses the x̂-ŷ basis.

A

B

C

D

O

~v

12.13 Show that if the direct basis vectors have unit length along the directions

of
−−→
OA and

−−→
OB then the components of ~v in the direct basis are the lengths OA

and OB. What are the components in the reciprocal basis?

12.14 What happens to the components of the alternating tensor when a change
of basis is made? Show that the only thing that can happen is that all the
components are multiplied by the same number (which is the determinant of the
transformation). Compute this explicitly in two dimensions.

12.15 A given tensor (viewed as a function of two vector variables) has the property that it equals
zero whenever the two arguments are the same, T (~v,~v ) = 0. Show that it is antisymmetric. This is
also true if it is a function of more than two variables and the above equation holds on some pair of
arguments. Consider ~v = α~u+ β ~w

12.16 If the components of the alternating tensor are (in three dimensions) eijk where e123 = 1,

Compute eijk. Compute
eijke`mk, eijke`jk, eijkeijk

12.17 In three dimensions three non-collinear vectors from a point define a volume, that of the
parallelepiped included between them. This defines a number as a function of three vectors. Show
that if the volume is allowed to be negative when one of the vectors reverses that this defines a trilinear
functional and that it is completely antisymmetric, an alternating tensor. (Note problem 12.15.) If the
units of volume are chosen to correspond to the units of length of the basis vectors so that three one
inch long perpendicular vectors enclose one cubic inch as opposed to 16.387 cm3 then the functional is
called ”the” alternating tensor. Find all its components.

12.18 Find the direct coordinate basis in spherical coordinates, also the reciprocal basis.
Ans: One set is r̂, θ̂/r, φ̂/r sin θ (now which ones are these?)

12.19 Draw examples of the direct and reciprocal bases (to scale) for the example in Eq. (12.45). Do
this for a wide range of angles between the axes.

12.20 Show that the area in two dimensions enclosed by the infinitesimal parallelogram between x1

and x1 + dx1 and x2 and x2 + dx2 is
√
gdx1 dx2 where g is the determinant of (gij).

12.21 Compute the transformation laws for the other components of the electromagnetic field tensor.

12.22 The divergence of a tensor field is defined as above for a vector field. T is a tensor viewed as a
vector valued function of a vector variable

divT = lim
V→0

1

V

∮
T
(
d ~A
)

It is a vector. Note: As defined here it requires the addition of vectors at two different points of the
manifold, so it must be assumed that you can move a vector over parallel to itself and add it to a vector
at another point. Had I not made the point in the text about not doing this, perhaps you wouldn’t
have noticed the assumption involved, but now do it anyway. Compute divT in rectangular coordinates
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using the x̂, ŷ, ẑ basis.
Ans: ∂T ij/∂xj in coordinate basis.

12.23 Compute divT in cylindrical coordinates using both the coordinate basis and the usual unit
vector (r̂, φ̂, ẑ) basis. This is where you start to see why the coordinate basis has advantages.

12.24 Show that gijgj` = δi`.

12.25 If you know what it means for vectors at two different points to be parallel, give a definition for
what it means for two tensors to be parallel.

12.26 Fill in the missing steps in the derivation following Eq. (12.24), and show that the alternating
tensor is unique up to a factor.

12.27 The divergence of a vector field computed in a coordinate basis is div ~F = ∂F i/∂xi. The
divergence computed in standard cylindrical coordinates is Eq. (9.15). Show that these results agree.

12.28 From Eq. (12.31) verify the stated properties of the ω = 0 solution.



Vector Calculus 2
.

There’s more to the subject of vector calculus than the material in chapter nine. There are a couple
of types of line integrals and there are some basic theorems that relate the integrals to the derivatives,
sort of like the fundamental theorem of calculus that relates the integral to the anti-derivative in one
dimension.

13.1 Integrals
Recall the definition of the Riemann integral from section 1.6.

∫ b

a
dx f(x) = lim

∆xk→0

N∑
k=1

f(ξk) ∆xk (13.1)

This refers to a function of a single variable, integrated along that one dimension.
The basic idea is that you divide a complicated thing into little pieces to get an approximate

answer. Then you refine the pieces into still smaller ones to improve the answer and finally take the
limit as the approximation becomes perfect.

What is the length of a curve in the plane? Divide the curve into a lot of small pieces, then if the
pieces are small enough you can use the Pythagorean Theorem to estimate the length of each piece.

∆`k =
√

(∆xk)2 + (∆yk)2

∆xk

∆yk

The whole curve then has a length that you estimate to be the sum of all these intervals. Finally take
the limit to get the exact answer.∑

k

∆`k =
∑√

(∆xk)2 + (∆yk)2 −→
∫
d` =

∫ √
dx2 + dy2 (13.2)

How do you actually do this? That will depend on the way that you use to describe the curve itself.
Start with the simplest method and assume that you have a parametric representation of the curve:

x = f(t) and y = g(t)

Then dx = ḟ(t)dt and dy = ġ(t)dt, so

d` =

√(
ḟ(t)dt

)2
+
(
ġ(t)dt

)2
=

√
ḟ(t)2 + ġ(t)2 dt (13.3)

and the integral for the length is ∫
d` =

∫ b

a
dt
√
ḟ(t)2 + ġ(t)2

where a and b are the limits on the parameter t. Think of this as
∫
d` =

∫
v dt, where v is the speed.

325
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Do the simplest example first. What is the circumference of a circle? Use the parametrization

x = R cosφ, y = R sinφ then d` =
√

(−R sinφ)2 + (R cosφ)2 dφ = Rdφ (13.4)

The circumference is then
∫
d` =

∫ 2π
0 Rdφ = 2πR. An ellipse is a bit more of a challenge; see

problem 13.3.
If the curve is expressed in polar coordinates you may find another formulation preferable, though

in essence it is the same. The Pythagorean Theorem is still applicable, but you have to see what it says
in these coordinates.

∆`k =
√

(∆rk)2 + (rk∆φk)2 rk∆φk
∆rk

If this picture doesn’t seem to show much of a right triangle, remember there’s a limit involved, as ∆rk
and ∆φk approach zero this becomes more of a triangle. The integral for the length of a curve is then∫

d` =

∫ √
dr2 + r2 dφ2

To actually do this integral you will pick a parameter to represent the curve, and that parameter may
even be φ itself. For an example, examine one loop of a logarithmic spiral: r = r0 ekφ.

d` =
√
dr2 + r2 dφ2 =

√
(dr/dφ)2 + r2 dφ

The length of the arc from φ = 0 to φ = 2π is∫ √(
r0k ekφ

)2
+
(
r0 ekφ

)2
dφ =

∫ 2π

0
dφ r0 e

kφ
√
k2 + 1 = r0

√
k2 + 1

1

k

[
e2kπ − 1

]
If k → 0 you can easily check that this give the correct answer. In the other extreme, for large k, you
can also check that it is a plausible result, but it’s a little harder to see.

Weighted Integrals
The time for a particle to travel along a short segment of a path is dt = d`/v where v is the speed.
The total time along a path is of course the integral of dt.

T =

∫
dt =

∫
d`
v

(13.5)

How much time does it take a particle to slide down a curve under the influence of gravity? If the speed
is determined by gravity without friction, you can use conservation of energy to compute the speed. I’ll
use the coordinate y measured downward from the top point of the curve, then

x

y
mv2/2−mgy = E, so v =

√
(2E/m) + 2gy (13.6)
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Suppose that this particle starts at rest from y = 0, then E = 0 and v =
√

2gy. Does the total time
to reach a specific point depend on which path you take to get there? Very much so. This will lead to
a classic problem called the “brachistochrone.” See section 16.3 for that.
1 Take the straight-line path from (0, 0) to (x0, y0). The path is x = y .x0/y0.

d` =
√
dx2 + dy2 = dy

√
1 + x2

0/y
2
0, so

T =

∫
d`
v

=

∫ y0

0

dy
√

1 + x2
0/y

2
0√

2gy
=
√

1 + x2
0/y

2
0

1√
2g

1

2

√
y0 =

1

2

√
x2

0 + y2
0√

2gy0
(13.7)

x

y

2 There are an infinite number of possible paths, and another choice of path
can give a smaller or a larger time. Take another path for which it’s easy to
compute the total time. Drop straight down in order to pick up speed, then
turn a sharp corner and coast horizontally. Compute the time along this path
and it is the sum of two pieces.∫ y0

0

dy√
2gy

+

∫ x0

0

dx√
2gy0

=
1√
2g

[
1

2

√
y0 +

x0√
y0

]
=

1√
2gy0

[
x0 + y0/2

]
(13.8)

Which one takes a shorter time? See problem 13.9.
3 What if the path is a parabola, x = y2 .x0/y2

0? It drops rapidly at first, picking up speed, but then
takes a more direct route to the end. Use y as the coordinate, then

dx = 2y .x0/y
2
0, and d` =

√(
4y2x2

0/y
4
0

)
+ 1dy

T =

∫
dx
v

=

∫ y0

0

√(
4y2x2

0/y
4
0

)
+ 1

√
2gy

dy

This is not an integral that you’re likely to have encountered yet. I’ll refer you to a large table of
integrals, where you can perhaps find it under the heading of elliptic integrals.

In more advanced treatments of optics, the time it takes light to travel along a path is of central
importance because it is related to the phase of the light wave along that path. In that context however,
you usually see it written with an extra factor of the speed of light.

cT =

∫
c d`
v

=

∫
nd` (13.9)

This last form, written in terms of the index of refraction, is called the optical path. Compare problems
2.35 and 2.39.

13.2 Line Integrals
Work done on a point mass in one dimension is an integral. If the mass moves in three dimensions and
if the force happens to be a constant, then work is simply a dot product:

W =

∫ xf

xi

Fx(x) dx respectively W = ~F . ∆~r

The general case for work on a particle moving along a trajectory in space is a line integral. It combines
these two equations into a single expression for the work along an arbitrary path for an arbitrary force.
There is not then any restriction to the elementary case of constant force.
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The basic idea is a combination of Eqs. (13.1) and (13.2). Divide the specified curve into a
number of pieces, at the points {~rk}. Between points k − 1 and k you had the estimate of the arc
length as

√
(∆xk)2 + (∆yk)2, but here you need the whole vector from ~rk−1 to ~rk in order to evaluate

the work done as the mass moves from one point to the next. Let ∆~rk = ~rk − ~rk−1, then

lim
|∆~rk|→0

N∑
k=1

~F (~rk) . ∆~rk =

∫
~F (~r ) . d~r

~r0
~r1

~r2 ~r3 ~r4 ~r5
~r6 (13.10)

This is the definition of a line integral.
How do you evaluate these integrals? To repeat what happened with Eq. (13.2), that will depend

on the way that you use to describe the curve itself. Start with the simplest method and assume that

you have a parametric representation of the curve: ~r(t), then d~r = ~̇r dt and the integral is∫
~F (~r ) . d~r =

∫
~F
(
~r (t)

)
. ~̇r dt

This is now an ordinary integral with respect to t. In many specific examples, you may find an easier
way to represent the curve, but this is something that you can always fall back on.

In order to see exactly where this is used, start with ~F = m~a, Take the dot product with d~r and
manipulate the expression.

~F = m
d~v
dt
, so ~F . d~r = m

d~v
dt

. d~r = m
d~v
dt

. d~r
dt
dt = md~v . d~r

dt
= m~v . d~v

or ~F . d~r =
m
2
d
(
~v .~v

) (13.11)

The integral of this from an initial point of the motion to a final point is∫ ~rf

~ri

~F . d~r =

∫
m
2
d
(
~v .~v

)
=
m
2

[
v2
f − v2

i

]
(13.12)

This is a standard form of the work-energy theorem in mechanics. In most cases you have to specify
the whole path, not just the endpoints, so this way of writing the theorem is somewhat misleading. Is
it legitimate to manipulate ~v . d~v as in Eq. (13.11)? Yes. Simply write it in rectangular components as
vxdvx + vydvy + vzdvz and you can integrate each term with no problem; then assemble the result as
v2/2.

Example

If ~F = Axy x̂+B(x2 +L2)ŷ, what is the work done going from point (0, 0) to (L,L) along the three
different paths indicated.?∫

C1

~F . d~r =

∫
[Fx x̂+ Fy ŷ] .[x̂dx+ ŷ dy]

=

∫ [
Fxdx+ Fydy

]
=

∫ L

0
dx 0 +

∫ L

0
dy B2L2 = 2BL3

∫
C2

~F . d~r =

∫ L

0
dxAx2 +

∫ L

0
dy B(y2 + L2) = AL3/3 + 4BL3/3∫

C3

~F . d~r =

∫ L

0
dy B(0 + L2) +

∫ L

0
dxAxL = BL3 +AL3/2

12

3
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Gradient
What is the line integral of a gradient? Recall from section 8.5 and Eq. (8.16) that df = grad f . d~r.
The integral of the gradient is then∫ 2

1
grad f . d~r =

∫
df = f2 − f1 (13.13)

where the indices represent the initial and final points. When you integrate a gradient, you need the
function only at its endpoints. The path doesn’t matter. Well, almost. See problem 13.19 for a caution.

13.3 Gauss’s Theorem
The original definition of the divergence of a vector field is Eq. (9.9),

div~v = lim
V→0

1

V
dV
dt

= lim
V→0

1

V

∮
~v . d ~A

Fix a closed surface and evaluate the surface integral of ~v over that surface.

∮
S
~v . d ~A

d ~A

∆Vk
∆Vk′

n̂k′ n̂k

Now divide this volume into a lot of little volumes ∆Vk with individual bounding surfaces Sk. The
picture on the right shows just two adjoining pieces of whole volume, but there are many more. If you

do the surface integrals of ~v . d ~A over each of these pieces and add all of them, the result is the original
surface integral. ∑

k

∮
Sk

~v . d ~A =

∮
S
~v . d ~A (13.14)

The reason for this is that each interior face of volume Vk is matched with the face of an adjoining

volume Vk′ . The latter face will have d ~A pointing in the opposite direction, n̂k′ = −n̂k, so when you
add all the interior surface integrals they cancel. All that’s left is the surface on the outside and the
sum over all those faces is the original surface integral.

In the equation (13.14) multiply and divide every term in the sum by the volume ∆Vk.

∑
k

[
1

∆Vk

∮
Sk

~v . d ~A

]
∆Vk =

∮
S
~v . d ~A

Now increase the number of subdivisions, finally taking the limit as all the ∆Vk approach zero. The
quantity inside the brackets becomes the definition of the divergence of ~v and you then get

Gauss’s Theorem:

∫
V

div~v dV =

∮
S
~v . d ~A (13.15)

This* is Gauss’s theorem, the divergence theorem.

* You will sometimes see the notation ∂V instead of S for the boundary surface surrounding the
volume V . Also ∂A instead of C for the boundary curve surrounding the area A. It is probably a
better and more consistent notation, but it isn’t yet as common in physics books.
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r̂
θ

θ̂

Example
Verify Gauss’s Theorem for the solid hemisphere, r ≤ R,
0 ≤ θ ≤ π/2, 0 ≤ φ ≤ 2π. Use the vector field

~F = r̂ αr2 sin θ + θ̂ βrθ2 cos2 φ+ φ̂γr sin θ cos2 φ (13.16)

Doing the surface integral on the hemisphere n̂ = r̂, and on the bottom flat disk you have n̂ = θ̂. The
surface integral is then assembled from two pieces,∮

~F . d ~A =

∫
hemisph

r̂ αr2 sin θ . r̂ dA+

∫
disk

θ̂ βrθ2 cos2 φ . θ̂ dA

=

∫ π/2

0
R2 sin θ dθ

∫ 2π

0
dφαR2 sin θ +

∫ R

0
r dr

∫ 2π

0
dφβr(π/2)2 cos2 φ

= απ2R4/2 + βπ3R3/12 (13.17)

Now do the volume integral of the divergence, using Eq. (9.16).

div ~F =
1

r2

∂
∂r
αr4 sin θ +

1

r sin θ
∂
∂θ
βrθ2 sin θ cos2 φ+

1

r sin θ
∂
∂φ
γr sin θ cos2 φ

= 4αr sin θ + β cos2 φ[2θ + θ2 cot θ] + 2γ sinφ cosφ

The γ term in the volume integral is zero because the 2 sinφ cosφ = sin 2φ factor averages to zero
over all φ. ∫ R

0
dr r2

∫ π/2

0
sin θ dθ

∫ 2π

0
dφ
[
4αr sin θ + β cos2 φ[2θ + θ2 cot θ]

]
= 4α . R

4

4
. 2π . π

4
+ β . R

3

3
.π .

∫ π/2

0
dθ sin θ[2θ + θ2 cot θ]

= απ2R2/2 + βπ3R3/12

The last integration used parametric differentiation starting from
∫ π/2

0 dθ cos kθ, with differentiation
with respect to k.

13.4 Stokes’ Theorem
The expression for the curl in terms of integrals is Eq. (9.17),

curl~v = lim
V→0

1

V

∮
d ~A × ~v (13.18)

Use the same reasoning that leads from the definition of the divergence to Eqs. (13.14) and (13.15)
(see problem 13.6), and this leads to the analog of Gauss’s theorem, but with cross products.∮

S
d ~A× ~v =

∫
V

curl~v dV (13.19)

This isn’t yet in a form that is all that convenient, and a special case is both easier to interpret and
more useful in applications. First apply it to a particular volume, one that is very thin and small. Take
a tiny disk of height ∆h, with top and bottom area ∆A1. Let n̂1 be the unit normal vector out of the
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top area. For small enough values of these dimensions, the right side of Eq. (13.18) is simply the value
of the vector curl~v inside the volume times the volume ∆A1∆h itself.

∮
S
d ~A× ~v =

∫
V

curl~v dV = curl~v ∆A1∆h
n̂1

Take the dot product of both sides with n̂1, and the parts of the surface integral from the top and

the bottom faces disappear. That’s just the statement that on the top and the bottom, d ~A is in the

direction of ±n̂1, so the cross product makes d ~A× ~v perpendicular to n̂1.
I’m using the subscript 1 for the top surface and I’ll use 2 for the surface around the edge.

Otherwise it’s too easy to get the notation mixed up.

Now look at d ~A × ~v around the thin edge. The element of area has height ∆h and length ∆`
along the arc. Call n̂2 the unit normal out of the edge.

∆ ~A2 = ∆h∆`n̂2

n̂2
d~̀

The product n̂1 . ∆ ~A2 × ~v = n̂1 . n̂2 × ~v∆h∆` = n̂1 × n̂2 .~v∆h∆`, using the property of the triple
scalar product. The product n̂1 × n̂2 is in the direction along the arc of the edge, so

n̂1 × n̂2 ∆` = ∆~̀ (13.20)

Put all these pieces together and you have

n̂1 .
∮
S
d ~A× ~v =

∮
C
~v . d~̀∆h = n̂1 . curl~v ∆A1∆h

Divide by ∆A1∆h and take the limit as ∆A1 → 0. Recall that all the manipulations above work only
under the assumption that you take this limit.

n̂1 . curl~v = lim
∆A→0

1

∆A

∮
C
~v . d~̀ (13.21)

You will sometimes see this equation (13.21) taken as the definition of the curl, and it does have an
intuitive appeal. The one drawback to doing this is that it isn’t at all obvious that the thing on the
right-hand side is the dot product of n̂1 with anything. It is, because I deduced that fact from the
vectors in Eq. (13.19), but if you use Eq. (13.21) as your starting point you have some proving to do.

This form is easier to interpret than was the starting point with a volume integral. The line

integral of ~v . d~̀ is called the circulation of ~v around the loop. Divide this by the area of the loop and
take the limit as the area goes to zero and you then have the “circulation density” of the vector field.
The component of the curl along some direction is then the circulation density around that direction.
Notice that the equation (13.20) dictates the right-hand rule that the direction of integration around
the loop is related to the direction of the normal n̂1.

Stokes’ theorem follows in a few lines from Eq. (13.21). Pick a surface A with a boundary C
(or ∂A in the other notation). The surface doesn’t have to be flat, but you have to be able to tell one
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side from the other.* From here on I’ll imitate the procedure of Eq. (13.14). Divide the surface into a

lot of little pieces ∆Ak, and do the line integral of ~v . d~̀ around each piece. Add all these pieces and
the result is the whole line integral around the outside curve.

∑
k

∮
Ck

~v . d~̀=

∮
C
~v . d~̀ k k′ (13.22)

As before, on each interior boundary between area ∆Ak and the adjoining ∆Ak′ , the parts of the line
integrals on the common boundary cancel because the directions of integration are opposite to each
other. All that’s left is the curve on the outside of the whole loop, and the sum over those intervals is
the original line integral.

Multiply and divide each term in the sum (13.22) by ∆Ak and you have

∑
k

[
1

∆Ak

∮
Ck

~v . d~̀

]
∆Ak =

∮
C
~v . d~̀ (13.23)

Now increase the number of subdivisions of the surface, finally taking the limit as all the ∆Ak → 0,
and the quantity inside the brackets becomes the normal component of the curl of ~v by Eq. (13.21).
The limit of the sum is the definition of an integral, so

Stokes’ Theorem:

∫
A

curl~v . d ~A =

∮
C
~v . d~̀ (13.24)

What happens if the vector field ~v is the gradient of a function, ~v = ∇f? By Eq. (13.13) the
line integral in (13.24) depends on just the endpoints of the path, but in this integral the initial and
final points are the same. That makes the integral zero: f1−f1. That implies that the surface integral
on the left is zero no matter what the surface spanning the contour is, and that can happen only if the
thing being integrated is itself zero. curl grad f = 0. That’s one of the common vector identities in
problem 9.36. Of course this statement requires the usual assumption that there are no singularities of
~v within the area.

θ0

n̂Example
Verify Stokes’ theorem for that part of a spherical surface r = R, 0 ≤ θ ≤ θ0,
0 ≤ φ < 2π. Use for this example the vector field

~F = r̂Ar2 sin θ + θ̂Brθ2 cosφ+ φ̂Cr sin θ cos2 φ (13.25)

To compute the curl of ~F , use Eq. (9.33), getting

∇× ~F = r̂
1

r sin θ

(
∂
∂θ

(
sin θ Cr sin θ cos2 φ

)
− ∂
∂φ

(
Brθ2 cosφ

))
+ · · ·

= r̂
1

r sin θ

(
Cr cos2 φ 2 sin θ cos θ +Brθ2 sinφ

)
+ · · · (13.26)

* That means no Klein bottles or Möbius strips.
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I need only the r̂ component of the curl because the surface integral uses only the normal (r̂)
component. The surface integral of this has the area element dA = r2 sin θ dθ dφ.∫

curl ~F . d ~A =

∫ θ0

0
R2 sin θ dθ

∫ 2π

0
dφ

1

R sin θ

(
CR cos2 φ 2 sin θ cos θ +BRθ2 sinφ

)
= R2

∫ θ0

0
dθ
∫ 2π

0
dφ 2C cos2 φ sin θ cos θ

= R22Cπ sin2 θ0/2 = CR2π sin2 θ0

The other side of Stokes’ theorem is the line integral around the circle at angle θ0.∮
~F . d~̀=

∫ 2π

0
r sin θ0 dφCr sin θ cos2 φ

=

∫ 2π

0
dφCR2 sin2 θ0 cos2 φ

= CR2 sin2 θ0 π (13.27)

and the two sides of the theorem agree. Check! Did I get the overall signs right? The direction of
integration around the loop matters. A further check: If θ0 = π, the length of the loop is zero and
both integrals give zero as they should.

Conservative Fields
An immediate corollary of Stokes’ theorem is that if the curl of a vector field is zero throughout a region
then line integrals are independent of path in that region. To state it a bit more precisely, in a volume
for which any closed path can be shrunk to a point without leaving the region, if the curl of ~v equals

zero, then
∫ b
a
~F . d~r depends on the endpoints of the path, and not on how you get there.

To see why this follows, take two integrals from point a to point b.

∫
1
~v . d~r and

∫
2
~v . d~r

a b

1

2

The difference of these two integrals is∫
1
~v . d~r −

∫
2
~v . d~r =

∮
~v . d~r

This equations happens because the minus sign is the same thing that you get by integrating in the
reverse direction. For a field with ∇ × ~v = 0, Stokes’ theorem says that this closed path integral is
zero, and the statement is proved.

What was that fussy-sounding statement “for which any closed path can be shrunk to a point
without leaving the region?” Consider the vector field in three dimensions, written in rectangular and
cylindrical coordinates,

~v = A(xŷ − y x̂)/(x2 + y2) = Aφ̂/r (13.28)

You can verify (in either coordinate system) that its curl is zero — except for the z-axis, where it is
singular. A closed loop line integral that doesn’t encircle the z-axis will be zero, but if it does go around
the axis then it is not. The vector’s direction θ̂ always points counterclockwise around the axis. See
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problem 13.17. If you have a loop that encloses the singular line, then you can’t shrink the loop without
its getting hung up on the axis.

The converse of this theorem is also true. If every closed-path line integral of ~v is zero, and if
the derivatives of ~v are continuous, then its curl is zero. Stokes’ theorem tells you that every surface

integral of ∇ × ~v is zero, so you can pick a point and a small ∆ ~A at this point. For small enough

area whatever the curl is, it won’t change much. The integral over this small area is then ∇× ~v . ∆ ~A,
and by assumption this is zero. It’s zero for all values of the area vector. The only vector whose dot
product with all vectors is zero is itself the zero vector.

Potentials
The relation between the vanishing curl and the fact that the line integral is independent of path leads
to the existence of potential functions.

If curl ~F = 0 in a simply-connected domain (that’s one for which any closed loop can be shrunk

to a point), then I can write ~F as a gradient, − grad f . The minus sign is conventional. I’ve already
constructed the answer (almost), and to complete the calculation note that line integrals are independent
of path in such a domain, and that means that the integral∫ ~r

~r0

~F . d~r (13.29)

is a function of the two endpoints alone. Fix ~r0 and treat this as a function of the upper limit ~r. Call
it −f(~r ). The defining equation for the gradient is Eq. (8.16),

df = grad f . d~r

How does the integral (13.29) change when you change ~r a bit?∫ ~r+d~r

~r0

~F . d~r −
∫ ~r

~r0

~F . d~r =

∫ ~r+d~r

~r

~F . d~r = F . d~r

This is −df because I called this integral −f(~r ). Compare the last two equations and because d~r is
arbitrary you immediately get

~F = − grad f (13.30)

I used this equation in section 9.9, stating that the existence of the gravitational potential energy
followed from the fact that ∇× ~g = 0.

Vector Potentials
This is not strictly under the subject of conservative fields, but it’s a convenient place to discuss it
anyway. When a vector field has zero curl then it’s a gradient. When a vector field has zero divergence
then it’s a curl. In both cases the converse is simple, and it’s what you see first: ∇ × ∇f = 0 and

∇ .∇ × ~A = 0 (problem 9.36). In Eqs. (13.29) and (13.30) I was able to construct the function f

because ∇× ~F = 0. It is also possible, if ∇ . ~F = 0, to construct the function ~A such that ~F = ∇× ~A.
In both cases, there are extra conditions needed for the statements to be completely true. To

conclude that a conservative field (∇ × ~F = 0) is a gradient requires that the domain be simply-
connected, allowing the line integral to be completely independent of path. To conclude that a field

satisfying ∇ . ~F = 0 can be written as ~F = ∇× ~A requires something similar: that all closed surfaces

can be shrunk to a point. This statement is not so easy to prove, and the explicit construction of ~A
from ~F is not very enlightening.
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You can easily verify that ~A = ~B×~r/2 is a vector potential for the uniform field ~B. Neither the
scalar potential nor the vector potential are unique. You can always add a constant to a scalar potential
because the gradient of a scalar is zero and it doesn’t change the result. For the vector potential you
can add the gradient of an arbitrary function because that doesn’t change the curl.

~F = −∇(f +C) = −∇f, and ~B = ∇× ( ~A+∇f) = ∇× ~A (13.31)

13.5 Reynolds Transport Theorem
When an integral has limits that are functions of time, how do you differentiate it? That’s pretty easy
for one-dimensional integrals, as in Eqs. (1.19) and (1.21).

d
dt

∫ f2(t)

f1(t)
dx g(x, t) =

∫ f2(t)

f1(t)
dx

∂g(x, t)
∂t

+ g(f2(t), t)
df2(t)
dt

− g(f1(t), t)
df1(t)
dt

(13.32)

One of Maxwell’s equations for electromagnetism is

∇× ~E = −∂
~B
∂t

(13.33)

Integrate this equation over the surface S.∫
S
∇× ~E . d ~A =

∫
C

~E . d~̀=

∫
S
−∂

~B
∂t

. d ~A (13.34)

This used Stokes’ theorem, and I would like to be able to pull the time derivative out of the integral,
but can I? If the surface is itself time independent then the answer is yes, but what if it isn’t? What if
the surface integral has a surface that is moving? Can this happen? That’s how generators works, and
you wouldn’t be reading this now without the power they provide. The copper wire loops are rotating
at high speed, and it is this motion that provides the EMF.

I’ll work backwards and compute the time derivative of a surface integral, allowing the surface
itself to move. To do this, I’ll return to the definition of a derivative. The time variable appears in two
places, so use the standard trick of adding and subtracting a term, just as in section 1.5. Call Φ the

flux integral,
∫ ~B . d ~A.

∆Φ =

∫
S(t+∆t)

~B(t+ ∆t) . d ~A−
∫
S(t)

~B(t) . d ~A

=

∫
S(t+∆t)

~B(t+ ∆t) . d ~A−
∫
S(t+∆t)

~B(t) . d ~A

+

∫
S(t+∆t)

~B(t) . d ~A−
∫
S(t)

~B(t) . d ~A

(13.35)

~B is a function of ~r too, but I won’t write it. The first two terms have the same surface, so they
combine to give ∫

S(t+∆t)
∆ ~B . d ~A

and when you divide by ∆t and let it approach zero, you get∫
S(t)

∂ ~B
∂t

. d ~A
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Now for the next two terms, which require some manipulation. Add and subtract the surface that forms
the edge between the boundaries C(t) and C(t+ ∆t).

= −

∫
S(t+∆t)

~B(t) . d ~A−
∫
S(t)

~B(t) . d ~A =

∮
~B(t) . d ~A−

∫
edge

~B . d ~A (13.36)

The strip around the edge between the two surfaces make the surface integral closed, but I then have
to subtract it as a separate term.

You can convert the surface integral to a volume integral with Gauss’s theorem, but it’s still

necessary to figure out how to write the volume element. [Yes, ∇ . ~B = 0, but this result can be
applied in other cases too, so don’t use that fact here.] The surface is moving at velocity ~v, so an area

element ∆ ~A will in time ∆t sweep out a volume ∆ ~A .~v∆t. Note: ~v isn’t necessarily a constant in
space and these surfaces aren’t necessarily flat.

∆V = ∆ ~A .~v∆t =⇒
∮
~B(t) . d ~A =

∫
d3r∇ . ~B =

∫
S(t)
∇ . ~B d ~A .~v∆t (13.37)

To do the surface integral around the edge, use the same method as in deriving Stokes’ theorem,
Eq. (13.20).

∆ ~A = ∆~̀× ~v∆t

∆~̀ ~v∆t∫
edge

~B . d ~A =

∫
C

~B . d~̀× ~v∆t =

∫
C
~v × ~B . d~̀∆t (13.38)

Put Eqs. (13.37) and (13.38) into Eq. (13.36) and then into Eq. (13.35), divide by ∆t and let ∆t→ 0.

d
dt

∫
S(t)

~B . d ~A =

∫
S(t)

∂ ~B
∂t

. d ~A+

∫
S(t)
∇ . ~B~v . d ~A−

∫
C(t)

~v × ~B . d~̀ (13.39)

This transport theorem is the analog of Eq. (13.32) for a surface integral.
In order to check this equation, and to see what the terms do, try some example vector functions

that isolate the terms, so that only one of the terms on the right side of (13.39) is non-zero at a time.

1 : ~B = B0 ẑ t, with a surface z = 0, x2 + y2 < R2

For a constant B0, and ~v = 0, only the first term is present. The equation is B0πR2 = B0πR2.
Now take a static field

2 : ~B = Cz ẑ, with a moving surface z = vt, x2 + y2 < R2

The first and third terms on the right vanish, and ∇ . ~B = C. The other terms are

d
dt
Cz ẑ .πR2 ẑ

∣∣∣∣
z=vt

= CvπR2 =

∫
(C)v ẑ . d ~A = CvπR2
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Now take a uniform static field

3 : ~B = B0 ẑ with a radially expanding surface z = 0, x2 + y2 < R2, R = vt

The first and second terms on the right are now zero, and

d
dt
B0π(vt)2 = 2B0πv

2t = −
∮

(v r̂ ×B0 ẑ) . θ̂d`

= −
∮

(−vB0 θ̂) . θ̂d` = +vB02πR
∣∣∣
R=vt

= 2B0πv
2t

Draw some pictures of these three cases to see if the pictures agree with the algebra.

Faraday’s Law
If you now apply the transport theorem (13.39) to Maxwell’s equation (13.34), and use the fact that

∇ . ~B = 0 you get ∫
C(t)

( ~E + ~v × ~B
)

. d~̀= − d
dt

∫
S(t)

~B . d ~A (13.40)

This is Faraday’s law, saying that the force per charge integrated around a closed loop (called the EMF)
is the negative time derivative of the magnetic flux through the loop.

Occasionally you will find an introductory physics text that writes Faraday’s law without the

~v × ~B term. That’s o.k. as long as the integrals involve only stationary curves and surfaces, but some
will try to apply it to generators, with moving conductors. This results in amazing contortions to try
to explain the results. For another of Maxwell’s equations, see problem 13.30.

The electromagnetic force on a charge is ~F = q
( ~E+~v× ~B

)
. This means that if a charge inside

a conductor is free to move, the force on it comes from both the electric and the magnetic fields in this

equation. (The Lorentz force law.) The integral of this force . d~̀ is the work done on a charge along

some specified path. If this integral is independent of path: ∇ × ~E = 0 and ~v = 0, then this work
divided by the charge is the potential difference, the voltage, between the initial and final points. In the
more general case, where one or the other of these requirements is false, then it’s given the somewhat
antiquated name EMF, for “electromotive force.” (It is often called “voltage” anyway, though if you’re
being fussy that’s not really correct.)

13.6 Fields as Vector Spaces
It’s sometimes useful to look back at the general idea of a vector space and to rephrase some common

ideas in that language. Vector fields, such as ~E(x, y, z) can be added and multiplied by scalars. They
form vector spaces, infinite dimensional of course. They even have a natural scalar product〈 ~E1, ~E2

〉
=

∫
d3r ~E1(~r ) . ~E2(~r ) (13.41)

Here I’m assuming that the scalars are real numbers, though you can change that if you like. For this
to make sense, you have to assume that the fields are square integrable, but for the case of electric or
magnetic fields that just means that the total energy in the field is finite. Because these are supposed
to satisfy some differential equations (Maxwell’s), the derivative must also be square integrable, and I’ll
require that they go to zero at infinity faster than 1/r3 or so.

The curl is an operator on this space, taking a vector field into another vector field. Recall the
definitions of symmetric and hermitian operators from section 7.14. The curl satisfies the identity〈 ~E1,∇× ~E2

〉
=
〈
∇× ~E1, ~E2

〉
(13.42)
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For a proof, just write it out and then find the vector identity that will allow you to integrate by parts.

∇ .
( ~A× ~B

)
= ~B .∇× ~A− ~A .∇× ~B (13.43)

Equation (13.42) is∫
d3r ~E1(~r ) .∇× ~E2(~r ) =

∫
d3r

(
∇× ~E1(~r )

)
. ~E2(~r )−

∫
d3r∇ .

( ~E1 × ~E2

)
The last integral becomes a surface integral by Gauss’s theorem,

∮
d ~A .

( ~E1 × ~E2

)
, and you can now

let the volume (and so the surface) go to infinity. The fields go to zero sufficiently fast, so this is zero
and the result is proved: Curl is a symmetric operator. Its eigenvalues are real and its eigenvectors are
orthogonal. This is not a result you will use often, but the next one is important.

Helmholtz Decomposition
There are subspaces in this vector space of fields: (1) The set of all fields that are gradients. (2) The
set of all fields that are curls. These subspaces are orthogonal to each other; every vector in the first
is orthogonal to every vector in the second. To prove this, just use the same vector identity (13.43)

and let ~A = ∇f . I will first present a restricted version of this theorem because it’s simpler. Assume
that the domain is all space and that the fields and their derivatives all go to zero infinitely far away.
A generalization to finite boundaries will be mentioned at the end.

∇f .∇× ~B = ~B .∇×∇f −∇ .
(
∇f × ~B

)
Calculate the scalar product of one vector field with the other.〈

∇f,∇× ~B
〉

=

∫
d3r∇f .∇× ~B =

∫
d3r

[ ~B .∇×∇f −∇ .
(
∇f × ~B

)]
= 0−

∮ (
∇f × ~B

)
. d ~A = 0 (13.44)

As usual, the boundary condition that the fields and their derivatives go to zero rapidly at infinity kills
the surface term. This proves the result, that the two subspaces are mutually orthogonal.

Do these two cases exhaust all possible vector fields? In this restricted case with no boundaries
short of infinity, the answer is yes. The general case later will add other possibilities. Here you have
two orthogonal subspaces, and to show that these two fill out the whole vector space, I will ask the
question: what are all the vector fields orthogonal to both of them? I will show first that whatever they
are will satisfy Laplace’s equation, and then the fact that the fields go to zero at infinity will be enough
to show that this third case is identically zero. This statement is the Helmholtz theorem: Such vector
fields can be written as the sum of two orthogonal fields: a gradient, and a curl.

To prove it, my plan of attack is to show that if a field ~F is orthogonal to all gradients and to all

curls, then ∇2 ~F is orthogonal to all square-integrable vector fields. The only vector that is orthogonal

to everything is the zero vector, so ~F satisfies Laplace’s equation. The assumption now is that for
general f and ~v, ∫

d3r ~F .∇f = 0 and

∫
d3r ~F .∇× ~v = 0

I want to show that for a general vector field ~u,

∫
d3r ~u .∇2 ~F = 0

gradients
curls

~F
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The method is essentially two partial integrals, moving two derivatives from ~F over to ~u. Start with
the ∂2/∂z2 term in the Laplacian and hold off on the dx and dy integrals. Remember that all these

functions go to zero at infinity. Pick the i-component of ~u and the j-component of ~F .∫ ∞
−∞

dz ui
∂2

∂z2
Fj = ui∂zFj

∣∣∣∣∞
−∞
−
∫
dz
(
∂zui

)(
∂zFj

)
= 0−

(
∂zui

)
Fj

∣∣∣∣∞
−∞

+

∫
dz
(
∂2
zui
)
Fj =

∫ ∞
−∞

dz
(
∂2
zui
)
Fj

Now reinsert the dx and dy integrals. Repeat this for the other two terms in the Laplacian, ∂2
xFj and

∂2
yFj . The result is ∫

d3r ~u .∇2 ~F =

∫
d3r

(
∇2~u

)
. ~F (13.45)

If this looks familiar it is just the three dimensional version of the manipulations that led to Eq. (5.15).
Now use the identity

∇× (∇× ~u ) = ∇(∇ .~u )−∇2~u

in the right side of (13.45) to get∫
d3r ~u .∇2 ~F =

∫
d3r

[(
∇(∇ .~u )

)
. ~F −

(
∇× (∇× ~u )

)
. ~F
]

(13.46)

The first term on the right is the scalar product of the vector field ~F with a gradient. The second term is
the scalar product with a curl. Both are zero by the hypotheses of the theorem, thereby demonstrating

that the Laplacian of ~F is orthogonal to everything, and so ∇2 ~F = 0.
When you do this in all of space, with the boundary conditions that the fields all go to zero at

infinity, the only solutions to Laplace’s equation are identically zero. In other words, the two vector
spaces (the gradients and the curls) exhaust all the possibilities. How to prove this? Just pick a
component, say Fx, treat it as simply a scalar function — call it f — and apply a vector identity,
problem 9.36.

∇ .(φ ~A ) = (∇φ) . ~A+ φ(∇ . ~A )

Let φ = f and ~A = ∇f, then ∇ .(f∇f) = ∇f .∇f + f∇2f

Integrate this over all space and apply Gauss’s theorem. (I.e. integrate by parts.)∫
d3r∇ .(f∇f) =

∮
f∇f . d ~A =

∫
d3r

[
∇f .∇f + f∇2f

]
(13.47)

If f and its derivative go to zero fast enough at infinity (a modest requirement), the surface term,∮
d ~A, goes to zero. The Laplacian term, ∇2f = 0, and all that’s left is∫

d3r∇f .∇f = 0

This is the integral of a quantity that can never be negative. The only way that the integral can be
zero is that the integrand is zero. If ∇f = 0, then f is a constant, and if it must also go to zero far
away then that constant is zero.
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This combination of results, the Helmholtz theorem, describes a field as the sum of a gradient
and a curl, but is there a way to find these two components explicitly? Yes.

~F = ∇f +∇×B, so ∇ . ~F = ∇2f, and ∇× ~F = ∇×∇×B = ∇(∇ . ~B )−∇2 ~B

Solutions of these equations are

f(~r ) =
−1

4π

∫
d3r′

∇ . ~F (~r ′)∣∣~r − ~r ′∣∣ and ~B(~r ) =
1

4π

∫
d3r′

∇× ~F (~r ′)∣∣~r − ~r ′∣∣ (13.48)

Generalization
In all this derivation, I assumed that the domain is all of three-dimensional space, and this made the
calculations easier. A more general result lets you specify boundary conditions on some finite boundary
and then a general vector field is the sum of as many as five classes of vector functions. This is the
Helmholtz-Hodge decomposition theorem, and it has applications in the more complicated aspects of
fluid flow (as if there are any simple ones), even in setting up techniques of numerical analysis for such
problems. The details are involved, and I will simply refer you to a good review article* on the subject.

Exercises

1 For a circle, from the definition of the integral, what is
∮
d~̀? What is

∮
d`? What is

∮
d~̀× ~C where

~C is a constant vector?

2 What is the work you must do in lifting a mass m in the Earth’s gravitational field from a radius R1

to a radius R2. These are measured from the center of the Earth and the motion is purely radial.

3 Same as the preceding exercise but the motion is 1. due north a distance R1θ0 then 2. radially out
to R2 then 3. due south a distance R2θ0.

4 Verify Stokes’ Theorem by separately calculating the left and the right sides of the theorem for the
case of the vector field

~F (x, y) = x̂Ay + ŷBx

around the rectangle (a < x < b), (c < y < d).

5 Verify Stokes’ Theorem by separately calculating the left and the right sides of the theorem for the
case of the vector field

~F (x, y) = x̂Ay − ŷBx
around the rectangle (a < x < b), (c < y < d).

6 Verify Stokes’ Theorem for the semi-cylinder 0 < z < h, 0 < φ < π, r = R. The vector field is
~F (r, φ, z) = r̂Ar2 sinφ+ φ̂Brφ2z + ẑCrz2

7 Verify Gauss’s Theorem using the whole cylinder 0 < z < h, r = R and the vector field ~F (r, φ, z) =

r̂Ar2 sinφ+ φ̂Brz sin2 φ+ ẑCrz2.

8 What would happen if you used the volume of the preceding exercise and the field of the exercise
before that one to check Gauss’s law?

* Cantarella, DeTurck, and Gluck: The American Mathematical Monthly, May 2002. The paper
is an unusual mix of abstract topological methods and very concrete examples. It thereby gives you a
fighting chance at the subject.
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Problems

13.1 In the equation (13.4) what happens if you start with a different parametrization for x and y,
perhaps x = R cos(φ′/2) and y = R sin(φ′/2) for 0 < φ′ < 4π. Do you get the same answer?

13.2 What is the length of the arc of the parabola y = (a2 − x2)/b, (−a < x < a)?
But First draw a sketch and make a rough estimate of what the result ought to be. Then do the
calculation and compare the answers. What limiting cases allow you to check your result?
Ans: (b/2)

[
sinh−1 c+ c

√
1 + c2

]
where c = 2a/b

13.3 (a) You can describe an ellipse as x = a cosφ, y = b sinφ. (Prove this.)
(b) Warm up by computing the area of the ellipse.
(c) What is the circumference of this ellipse? You will find a (probably) unfamiliar integral here, so to

put this integral into a standard form, note that it is 4
∫ π/2

0 . Then use cos2 φ = 1 − sin2 φ. Finally,
look up chapter 17, Elliptic Integrals, of Abramowitz and Stegun. You will find the reference to this
at the end of section 1.4. Notice in this integral that when you integrate, it will not matter whether
you have a sin2 or a cos2. Ans: 4aE(m)

13.4 For another derivation of the work-energy theorem, one that doesn’t use the manipulations of
calculus as in Eq. (13.11), go back to basics.

(a) For a constant force, start from ~F = m~a and derive by elementary manipulations that

~F . ∆~r =
m
2

[
v2
f − v2

i

]
All that you need to do is to note that the acceleration is a constant so you can get ~v and ~r as functions
of time. Then eliminate t
(b) Along a specified curve Divide the curve at points

~ri = ~r0, ~r1, ~r2, . . . ~rN = ~rf

In each of these intervals apply the preceding equation. This makes sense in that if the interval is small
the force won’t change much in the interval.
(c) Add all these N equations and watch the kinetic energy terms telescope and (mostly) cancel. This
limit as all the ∆~rk → 0 is Eq. (13.12).

13.5 The manipulation in the final step of Eq. (13.12) seems almost too obvious. Is it? Well yes, but
write out the definition of this integral as the limit of a sum to verify that it really is easy.

13.6 Mimic the derivation of Gauss’s theorem, Eq. (13.15), and derive the identities∮
S
d ~A× ~v =

∫
V

curl~v dV, and

∮
S
f d ~A =

∫
V

grad f dV

13.7 The force by a magnetic field on a small piece of wire, length d`, and carrying a current I is

d~F = I d~̀× ~B. The total force on a wire carrying this current in a complete circuit is the integral of

this. Let ~B = x̂Ay − ŷAx. The wire consists of the line segments around the rectangle 0 < x < a,
0 < y < b. The direction of the current is in the +ŷ direction on the x = 0 line. What is the total
force on the loop? Ans: 0

http://www.math.sfu.ca/~cbm/aands/
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13.8 Verify Stokes’ theorem for the field ~F = Axy x̂ + B(1 + x2y2) ŷ and for the rectangular loop
a < x < b, c < y < d.

13.9 Which of the two times in Eqs. (13.7) and (13.8) is shorter. (Compare their squares; it’s easier.)

13.10 Write the equations (9.36) in an integral form.

13.11 Start with Stokes’ theorem and shrink the boundary curve to a point. That
doesn’t mean there’s no surface left; it’s not flat, remember. The surface is pinched off
like a balloon. It is now a closed surface, and what is the value of this integral? Now
apply Gauss’s theorem to it and what do you get? Ans: See Eq. (9.34)

13.12 Use the same surface as in the example, Eq. (13.25), and verify Stokes’ theorem for the vector
field

~F = r̂Ar−1 cos2 θ sinφ+ θ̂Br2 sin θ cos2 φ+ φ̂Cr−2 cos2 θ sin2 φ

13.13 Use the same surface as in the example, Eq. (13.25), and examine Stokes’ theorem for the vector
field

~F = r̂ f(r, θ, φ) + θ̂ g(r, θ, φ) + φ̂h(r, θ, φ)

(a) Show from the line integral part that the answer can depend only on the function h, not f or g.
(b) Now examine the surface integral over this cap and show the same thing.

13.14 For the vector field in the x-y plane: ~F =
(
xŷ− y x̂

)
/2, use Stokes’ theorem

to compute the line integral of ~F . d~r around an arbitrary closed curve. What is the
significance of the sign of the result? When you considered an “arbitrary” loop, did
you consider the possibilities presented by these curves?

13.15 What is the (closed) surface integral of ~F = ~r/3 over an arbitrary closed surface? Ans: V .

13.16 What is the (closed) surface integral of ~F = ~r/3 over an arbitrary closed surface? This time

however, the surface integral uses the cross product:
∮
d ~A × ~F . If in doubt, try drawing the picture

for a special case first.

13.17 For the vector field Eq. (13.28) explicitly show that
∮
~v . d~r is zero for a curve such

as that in the picture and that it is not zero for a circle going around the singularity.

13.18 Refer to Eq. (13.27) and check it for small θ0. Notice the combination π(Rθ0)2.

13.19 For the vector field, Eq. (13.28), use Eq. (13.29) to try to construct a potential function. Because
within a certain domain the integral is independent of path, you can pick the most convenient possible
path, the one that makes the integration easiest. What goes wrong?

13.20 Refer to problem 9.33 and construct the solutions by integration, using the methods of this
chapter.

13.21 (a) Evaluate
∮ ~F . d~r for ~F = x̂Axy + ŷBx around the circle of radius R centered at the

origin.
(b) Now do it again, using Stokes’ theorem this time.

13.22 Same as the preceding problem, but
∮
d~r × ~F instead.

13.23 Use the same field as the preceding two problems and evaluate the surface integral of ~F . d ~A
over the hemispherical surface x2 + y2 + z2 = R2, z > 0.
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13.24 The same field and surface as the preceding problem, but now the surface integral d ~A × ~F .
Ans: ẑ 2πBr3/3

13.25 (a) Prove the identity ∇ .
( ~A× ~B

)
= ~B .∇× ~A− ~A .∇× ~B. (index mechanics?)

(b) Next apply Gauss’s theorem to ∇ .
( ~A× ~B) and take the special case that ~B is an arbitrary constant

to derive Eq. (13.19).

13.26 (a) Prove the identity ∇ .(f ~F ) = f∇ . ~F + ~F .∇f .

(b) Apply Gauss’s theorem to ∇ .(f ~F ) for an arbitrary constant ~F to derive a result found in another
problem.
(c) Explain why the word “arbitrary” is necessary here.

13.27 The vector potential is not unique, as you can add an arbitrary gradient to it without affecting

its curl. Suppose that ~B = ∇× ~A with

~A = x̂αxyz + ŷ βx2z + ẑ γxyz2

Find a function f(x, y, z) such that ~A′ = ~A+∇f has the z-component identically zero. Do you get

the same ~B by taking the curl of ~A and of ~A′?

13.28 Take the vector field
~B = αxy x̂+ βxy ŷ + γ(xz + yz)ẑ

Write out the equation ~B = ∇× ~A in rectangular components and figure out what functionsAx(x, y, z),
Ay(x, y, z), and Az(x, y, z) will work. Note: From the preceding problem you see that you may if you

wish pick any one of the components of ~A to be zero — that will cut down on the labor. Also, you

should expect that this problem is impossible unless ~B has zero divergence. That fact should come out
of your calculations, so don’t put it in yet. Determine the conditions on α, β, and γ that make this

problem solvable, and show that this is equivalent to ∇ . ~B = 0.

13.29 A magnetic monopole, if it exists, will have a magnetic field µ0qmr̂/4πr2. The divergence of this
magnetic field is zero except at the origin, but that means that not every closed surface can be shrunk
to a point without running into the singularity. The necessary condition for having a vector potential is
not satisfied. Try to construct such a potential anyway. Assume a solution in spherical coordinates of

the form ~A = φ̂f(r)g(θ) and figure out what f and g will have this ~B for a curl. Sketch the resulting
~A. You will run into a singularity (or two, depending). Ans: ~A = φ̂µ0qm(1− cos θ)/

(
4πr2 sin θ

)
(not

unique)

13.30 Apply the Reynolds transport theorem to the other of Maxwell’s equations.

∇× ~B = µ0
~j + µ0ε0

∂ ~E
∂t

Don’t simply leave the result in the first form that you find. Manipulate it into what seems to be the
best form. Use µ0ε0 = 1/c2.

Ans:
∮ ( ~B − ~v × ~E/c2

)
. d~̀= µ0

∫ (
~j − ρ~v

)
. d ~A+ µ0ε0(d/dt)

∫ ~E . d ~A
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13.31 Derive the analog of the Reynolds transport theorem, Eq. (13.39), for a line integral around a
closed loop.

(a)
d
dt

∮
C(t)

~F (~r, t) . d~̀=

∮
C(t)

∂ ~F
∂t

. d~̀−
∮
C(t)

~v × (∇× ~F ) . d~̀

and for the surface integral of a scalar. You will need problem 13.6.

(b)
d
dt

∫
S(t)

φ(~r, t)d ~A =

∫
S(t)

∂φ
∂t
d ~A+

∫
S(t)

(∇φ) d ~A .~v −
∮
C(t)

φd~̀× ~v

Make up examples that test the validity of individual terms in the equations. I recommend cylindrical
coordinates for your examples.

13.32 Another transport theorem is more difficult to derive.

d
dt

∮
C(t)

d~̀× ~F (~r, t) =

∮
C(t)

d~̀× ∂
~F
∂t

+

∮
C(t)

(∇ . ~F )d~̀× ~v −
∫
C(t)

(∇~F ) . d~̀× ~v

I had to look up some vector identities, including one for ∇× ( ~A × ~B ). A trick that I found helpful:

At a certain point take the dot product of the whole equation with a fixed vector ~B and manipulate

the resulting product, finally factoring out the arbitrary vector ~B . at the end. Make up examples that
test the validity of individual terms in the equations. Again, I recommend cylindrical coordinates for
your examples.

13.33 Apply Eq. (13.39) to the velocity field itself. That is, let ~B = ~v. Suppose further that the fluid
is incompressible with ∇ .~v = 0 and that the flow is stationary (no time dependence). Explain the
results.

13.34 Assume that the Earth’s atmosphere obeys the density equation ρ = ρ0e−z/h for a height z
above the surface. (a) Through what amount of air does sunlight have to travel when coming from
straight overhead? Take the measure of this to be

∫
ρ d` (called the “air mass”). (b) Through what

amount of air does sunlight have to travel when coming from just on the horizon at sunset? Neglect
the fact that light will refract in the atmosphere and that the path in the second case won’t really be a
straight line. Take h = 10 km and the radius of the Earth to be 6400 km. The integral you get for the
second case is probably not familiar. You may evaluate it numerically for the numbers that I stated,
or you may look it up in a big table of integrals such as Gradshteyn and Ryzhik, or you may use an
approximation, h� R. (I recommend the last.) What is the numerical value of the ratio of these two
air mass integrals? This goes far in explaining why you can look at the setting sun.
(c) If refraction in the atmosphere is included, the light will bend and pass through a still larger air
mass. The overall refraction comes to about 0.5◦, and calculating the path that light takes is hard,
but you can find a bound on the answer by assuming a path that follows the surface of the Earth
through this angle and then takes off on a straight line. What is the air mass ratio in this case? The
real answer is somewhere between the two calculations. (The really real answer is a little bigger than

either because the atmosphere is not isothermal and so the approximation ρ = ρ0e−z/h is not exact.)

Ans: ≈
√
Rπ/2h = 32, +Rθ/h→ 37.
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P

V

13.35 Work in a thermodynamic system is calculated from dW = P dV . Assume an
ideal gas, so that PV = nRT . (a) What is the total work,

∮
dW , done around this cycle

as the pressure increases at constant volume, then decreases at constant temperature,
finally the volume decreases at constant pressure.
(b) In the special case for which the changes in volume and pressure are very small, esti-
mate from the graph approximately what to expect for the answer. Now do an expansion
of the result of part (a) to see if it agrees with what you expect. Ans: ≈ ∆P ∆V/2

13.36 Verify the divergence theorem for the vector field

~F = αxyz x̂+ βx2z(1 + y)ŷ + γxyz2 ẑ

and for the volume (0 < x < a), (0 < y < b), (0 < z < c).

13.37 Evaluate
∫ ~F . d ~A over the curved surface of the hemisphere x2 + y2 + z2 = R2 and z > 0.

The vector field is given by ~F = ∇×
(
αy x̂+ βxŷ + γxy ẑ

)
. Ans: (β − α)πR2

13.38 A vector field is given in cylindrical coordinates to be ~F = r̂ αr2z sin2 φ+ φ̂βrz+ ẑ γzr cos2 φ.
Verify the divergence theorem for this field for the region (0 < r < R), (0 < φ < 2π), (0 < z < h).

13.39 For the function F (r, θ) = rn(A + B cos θ + C cos2 θ), compute the gradient and then the
divergence of this gradient. For what values of the constants A, B, C, and (positive, negative, or zero)
integer n is this result, ∇ .∇F , zero? These coordinates are spherical, and this combination div grad
is the Laplacian.
Ans: In part, n = 2, C = −3A, B = 0.

13.40 Repeat the preceding problem, but now interpret the coordinates as cylindrical (change θ to φ).
And don’t necessarily leave your answers in the first form that you find them.

13.41 Evaluate the integral
∫ ~F . d ~A over the surface of the hemisphere x2 + y2 + z2 = 1 with z > 0.

The vector field is ~F = A(1 + x+ y)x̂+B(1 + y + z)ŷ +C(1 + z + x)ẑ. You may choose to do this
problem the hard way or the easy way. Or both.
Ans: π(2A+ 2B + 5C)/3

13.42 An electric field is known in cylindrical coordinates to be ~E = f(r)r̂, and the electric charge

density is a function of r alone, ρ(r). They satisfy the Maxwell equation ∇ . ~E = ρ/ε0. If the charge

density is given as ρ(r) = ρ0 e−r/r0 . Compute ~E. Demonstrate the behavior of ~E is for large r and
for small r.

13.43 Repeat the preceding problem, but now r is a spherical coordinate.

13.44 Find a vector field ~F such that ∇ . ~F = αx + βy + γ and ∇ × ~F = ẑ. Next, find an infinite
number of such fields.

13.45 Gauss’s law says that the total charge contained inside a surface is ε0
∮ ~E . d ~A. For the electric

field of problem 10.37, evaluate this integral over a sphere of radius R1 > R and centered at the origin.

13.46 (a) In cylindrical coordinates, for what n does the vector field ~v = rn φ̂ have curl equal to zero?
Draw it.
(b) Also, for the same closed path as in problem 13.17 and for all n, compute

∮
~v . d~r.
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13.47 Prove the identity Eq. (13.43). Write it out in index notation first.

13.48 There an analog of Stokes’ theorem for
∮
d~̀× ~B. This sort of integral comes up in computing

the total force on the current in a circuit. Try multiplying (dot) the integral by a constant vector ~C.
Then manipulate the result by standard methods and hope that in the end you have the same constant
~C . something.

Ans: =
∫ [

(∇ ~B) . d ~A− (∇ . ~B) . d ~A
]

and the second term vanishes for magnetic fields.

13.49 In the example (13.16) using Gauss’s theorem, the term in γ contributed zero to the surface
integral (13.17). In the subsequent volume integral the same term vanished because of the properties
of sinφ cosφ. But this term will vanish in the surface integral no matter what the function of φ is in

the φ̂ component of the vector ~F . How then is it always guaranteed to vanish in the volume integral?

13.50 Interpret the vector field ~F from problem 13.37 as an electric field ~E, then use Gauss’s law that

qenclosed = ε0
∮ ~E . d ~A to evaluate the charge enclosed within a sphere or radius R centered at the

origin.

13.51 Derive the identity Eq. (13.32) starting from the definition of a derivative and doing the same
sort of manipulation that you use in deriving the ordinary product rule for differentiation.

13.52 A right tetrahedron has three right triangular sides that meet in one vertex.
Think of a corner chopped off of a cube. The sum of the squares of the areas of the
three right triangles equals the square of the area of the fourth face. The results of
problem 13.6 will be useful.



Complex Variables
.

In the calculus of functions of a complex variable there are three fundamental tools, the same funda-
mental tools as for real variables. Differentiation, Integration, and Power Series. I’ll first introduce all
three in the context of complex variables, then show the relations between them. The applications of
the subject will form the major part of the chapter.

14.1 Differentiation
When you try to differentiate a continuous function is it always differentiable? If it’s differentiable once
is it differentiable again? The answer to both is no. Take the simple absolute value function of the real
variable x.

f(x) = |x| =
{

x (x ≥ 0)
−x (x < 0)

This has a derivative for all x except zero. The limit

f(x+ ∆x)− f(x)

∆x
−→

 1 (x > 0)
−1 (x < 0)

? (x = 0)
(14.1)

works for both x > 0 and x < 0. If x = 0 however, you get a different result depending on whether
∆x→ 0 through positive or through negative values.

If you integrate this function,

∫ x

0
|x′| dx′ =

{
x2/2 (x ≥ 0)
−x2/2 (x < 0)

the result has a derivative everywhere, including the origin, but you can’t differentiate it twice. A few
more integrations and you can produce a function that you can differentiate 42 times but not 43.

There are functions that are continuous but with no derivative anywhere. They’re harder* to
construct, but if you grant their existence then you can repeat the preceding manipulation and create
a function with any number of derivatives everywhere, but no more than that number anywhere.

For a derivative to exist at a point, the limit Eq. (14.1) must have the same value whether you
take the limit from the right or from the left.

Extend the idea of differentiation to complex-valued functions of complex variables. Just change
the letter x to the letter z = x + iy. Examine a function such as f(z) = z2 = x2 − y2 + 2ixy or
cos z = cosx cosh y + i sinx sinh y. Can you differentiate these (yes) and what does that mean?

f ′(z) = lim
∆z→0

f(z + ∆z)− f(z)

∆z
=
df
dz

(14.2)

* Weierstrass surprised the world of mathematics with
∑∞

0 ak cos(bkx). If a < 1 while ab > 1
this is continuous but has no derivative anywhere. This statement is much more difficult to prove than
it looks.

347
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is the appropriate definition, but for it to exist there are even more restrictions than in the real case.
For real functions you have to get the same limit as ∆x→ 0 whether you take the limit from the right
or from the left. In the complex case there are an infinite number of directions through which ∆z can
approach zero and you must get the same answer from all directions. This is such a strong restriction
that it isn’t obvious that any function has a derivative. To reassure you that I’m not talking about an
empty set, differentiate z2.

(z + ∆z)2 − z2

∆z
=

2z∆z + (∆z)2

∆z
= 2z + ∆z −→ 2z

It doesn’t matter whether ∆z = ∆x or = i∆y or = (1 + i)∆t. As long as it goes to zero you get the
same answer.

For a contrast take the complex conjugation function, f(z) = z* = x− iy. Try to differentiate
that.

(z + ∆z)* − z*

∆z
=

(∆z)*

∆z
=

∆r e−iθ

∆r eiθ
= e−2iθ

The polar form of the complex number is more convenient here, and you see that as the distance ∆r
goes to zero, this difference quotient depends on the direction through which you take the limit. From
the right and the left you get +1. From above and below (θ = ±π/2) you get −1. The limits aren’t
the same, so this function has no derivative anywhere. Roughly speaking, the functions that you’re
familiar with or that are important enough to have names (sin, cos, tanh, Bessel, elliptic, . . . ) will be
differentiable as long as you don’t have an explicit complex conjugation in them. Something such as
|z| =

√
z*z does not have a derivative for any z.

For functions of a real variable, having one or fifty-one derivatives doesn’t guarantee you that
it has two or fifty-two. The amazing property of functions of a complex variable is that if a function
has a single derivative everywhere in the neighborhood of a point then you are guaranteed that it has
an infinite number of derivatives. You will also be assured that you can do a power series expansions
about that point and that the series will always converge to the function. There are important and
useful integration methods that will apply to all these functions, and for a relatively small effort they
will open impressively large vistas of mathematics.

For an example of the insights that you gain using complex variables, consider the function
f(x) = 1/

(
1 + x2

)
. This is a perfectly smooth function of x, starting at f(0) = 1 and slowing

dropping to zero as x → ±∞. Look at the power series expansion about x = 0 however. This is just
a geometric series in (−x2), so (

1 + x2
)−1

= 1− x2 + x4 − x6 + · · ·

This converges only if −1 < x < +1. Why such a limitation? The function is infinitely differentiable
for all x and is completely smooth throughout its domain. This remains mysterious as long as you
think of x as a real number. If you expand your view and consider the function of the complex variable
z = x+iy, then the mystery disappears. 1/(1+z2) blows up when z → ±i. The reason that the series
fails to converge for values of |x| > 1 lies in the complex plane, in the fact that at the distance = 1 in
the i-direction there is a singularity, and in the fact that the domain of convergence is a disk extending
out to the nearest singularity.

Definition: A function is said to be analytic at the point z0 if
it is differentiable for every point z in the disk |z − z0| < ε.
Here the positive number ε may be small, but it is not zero.
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εNecessarily if f is analytic at z0 it will also be analytic at every point within the disk
|z − z0| < ε. This follows because at any point z1 within the original disk you have a disk
centered at z1 and of radius (ε− |z1 − z0|)/2 on which the function is differentiable.

The common formulas for differentiation are exactly the same for complex variables as
they are for real variables, and their proofs are exactly the same. For example, the product
formula:

f(z + ∆z)g(z + ∆z)− f(z)g(z)

∆z

=
f(z + ∆z)g(z + ∆z)− f(z)g(z + ∆z) + f(z)g(z + ∆z)− f(z)g(z)

∆z

=
f(z + ∆z)− f(z)

∆z
g(z + ∆z) + f(z)

g(z + ∆z)− g(z)

∆z

As ∆z → 0, this becomes the familiar f ′g + fg′. That the numbers are complex made no difference.
For integer powers you can use induction, just as in the real case: dz/dz = 1 and

If
dzn

dz
= nzn−1, then use the product rule

dzn+1

dz
=
d(zn . z)

dz
= nzn−1 . z + zn . 1 = (n+ 1)zn

The other differentiation techniques are in the same spirit. They follow very closely from the
definition. For example, how do you handle negative powers? Simply note that znz−n = 1 and use
the product formula. The chain rule, the derivative of the inverse of a function, all the rest, are close
to the surface.

14.2 Integration
The standard Riemann integral of section 1.6 is

∫ b

a
f(x) dx = lim

∆xk→0

N∑
k=1

f(ξk)∆xk

The extension of this to complex functions is direct. Instead of partitioning the interval a < x < b into
N pieces, you have to specify a curve in the complex plane and partition it into N pieces. The interval
is the complex number ∆zk = zk − zk−1.

∫
C
f(z) dz = lim

∆zk→0

N∑
k=1

f(ζk)∆zk

z0
z1

z2 z3 z4 z5
z6

ζ1

ζ2
ζ3 ζ4 ζ5 ζ6

Just as ξk is a point in the kth interval, so is ζk a point in the kth interval along the curve C.
How do you evaluate these integrals? Pretty much the same way that you evaluate line integrals

in vector calculus. You can write this as∫
C
f(z) dz =

∫ (
u(x, y) + iv(x, y)

)(
dx+ idy

)
=

∫ [
(udx− v dy) + i(udy + v dx)

]
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If you have a parametric representation for the values of x(t) and y(t) along the curve this is∫ t2

t1

[
(u ẋ− v ẏ) + i(u ẏ + v ẋ)

]
dt

For example take the function f(z) = z and integrate it around a circle centered at the origin. x =
R cos θ, y = R sin θ.∫

z dz =

∫ [
(xdx− y dy) + i(xdy + y dx)

]
=

∫ 2π

0
dθR2

[
(− cos θ sin θ − sin θ cos θ) + i(cos2 θ − sin2 θ)

]
= 0

Wouldn’t it be easier to do this in polar coordinates? z = reiθ.∫
z dz =

∫
reiθ

[
eiθdr + ireiθdθ

]
=

∫ 2π

0
ReiθiReiθdθ = iR2

∫ 2π

0
e2iθdθ = 0 (14.3)

Do the same thing for the function 1/z. Use polar coordinates.∮
1

z
dz =

∫ 2π

0

1

Reiθ
iReiθdθ =

∫ 2π

0
i dθ = 2πi (14.4)

This is an important result! Do the same thing for zn where n is any positive or negative integer,
problem 14.1.

Rather than spending time on more examples of integrals, I’ll jump to a different subject. The
main results about integrals will follow after that (the residue theorem).

14.3 Power (Laurent) Series
The series that concern us here are an extension of the common Taylor or power series, and they are
of the form

+∞∑
−∞

ak(z − z0)k (14.5)

The powers can extend through all positive and negative integer values. This is sort of like the Frobenius
series that appear in the solution of differential equations, except that here the powers are all integers
and they can either have a finite number of negative powers or the powers can go all the way to minus
infinity.

The common examples of Taylor series simply represent the case for which no negative powers
appear.

sin z =
∞∑
0

(−1)k
z2k+1

(2k + 1)!
or J0(z) =

∞∑
0

(−1)k
z2k

22k(k!)2
or

1

1− z
=
∞∑
0

zk

If a function has a Laurent series expansion that has a finite number of negative powers, it is said to
have a pole.

cos z
z

=
∞∑
0

(−1)k
z2k−1

(2k)!
or

sin z
z3

=
∞∑
0

(−1)k
z2k−2

(2k + 1)!
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The order of the pole is the size of the largest negative power. These have respectively first order and
second order poles.

If the function has an infinite number of negative powers, and the series converges all the way
down to (but of course not at) the singularity, it is said to have an essential singularity.

e1/z =
∞∑
0

1

k! zk
or sin

[
t

(
z +

1

z

)]
= · · · or

1

1− z
=

1

z
−1

1− 1
z

= −
∞∑
1

z−k

The first two have essential singularities; the third does not.
It’s worth examining some examples of these series and especially in seeing what kinds of

singularities they have. In analyzing these I’ll use the fact that the familiar power series derived for real
variables apply here too. The binomial series, the trigonometric functions, the exponential, many more.

1/z(z − 1) has a zero in the denominator for both z = 0 and z = 1. What is the full behavior
near these two points?

1

z(z − 1)
=

−1

z(1− z)
=
−1

z
(1− z)−1 =

−1

z

[
1 + z + z2 + z3 + · · ·

]
=
−1

z
− 1− z − z2 − · · ·

1

z(z − 1)
=

1

(z − 1)(1 + z − 1)
=

1

z − 1

[
1 + (z − 1)

]−1

=
1

z − 1

[
1 + (z − 1) + (z − 1)2 + (z − 1)3 + · · ·

]
=

1

z − 1
+ 1 + (z − 1) + · · ·

This shows the full Laurent series expansions near these points. Keep your eye on the coefficient
of the inverse first power. That term alone plays a crucial role in what will follow.

csc3 z near z = 0:

1

sin3 z
=

1[
z − z3

6 + z5
120 − · · ·

]3 =
1

z3
[
1− z2

6 + z4
120 − · · ·

]3
=

1

z3

[
1 + x

]−3
=

1

z3

[
1− 3x+ 6x2 − 10x3 + · · ·

]
=

1

z3

[
1− 3

(
−z

2

6
+
z4

120
− · · ·

)
+ 6

(
−z

2

6
+
z4

120
− · · ·

)2

− · · ·

]

=
1

z3

[
1 +

z2

2
+ z4

(
1

6
− 3

120

)
+ · · ·

]
=

1

z3

[
1 +

1

2
z2 +

17

120
z4 + · · ·

]
(14.6)

This has a third order pole, and the coefficient of 1/z is 1/2. Are there any other singularities for
this function? Yes, every place that the sine vanishes you have a pole: at nπ. (What is the order of
these other poles?) As I commented above, you’ll soon see that the coefficient of the 1/z term plays a
special role, and if that’s all that you’re looking for you don’t have to work this hard. Now that you’ve
seen what various terms do in this expansion, you can stop carrying along so many terms and still get
the 1/2z term. See problem 14.17

The structure of a Laurent series is such that it will converge in an annulus. Examine the absolute
convergence of such a series.

∞∑
−∞

∣∣akzk∣∣ =

−1∑
−∞

∣∣akzk∣∣+

∞∑
0

∣∣akzk∣∣
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The ratio test on the second sum is

if for large enough positive k,
|ak+1||z|k+1

|ak||z|k
=
|ak+1|
|ak|

|z| ≤ x < 1 (14.7)

then the series converges. The smallest such x defines the upper bound of the |z| for which the sum
of positive powers converges. If |ak+1|/|ak| has a limit then |z|max = lim |ak|/|ak+1|.

Do the same analysis for the series of negative powers, applying the ratio test.

if for large enough negative k, you have
|ak−1||z|k−1

|ak||z|k
=
|ak−1|
|ak|

1

|z|
≤ x < 1 (14.8)

then the series converges. The largest such x defines the lower bound of those |z| for which the sum
of negative powers converges. If |ak−1|/|ak| has a limit as k → −∞ then |z|min = lim |ak−1|/|ak|.

If |z|min < |z|max then there is a range of z for which the series converges absolutely (and so of
course it converges).

|z|min < |z| < |z|max an annulus

|z|min

|z|max

If either of these series of positive or negative powers is finite, terminating in a polynomial, then
respectively |z|max =∞ or |z|min = 0.

A major result is that when a function is analytic at a point (and so automatically in a neigh-
borhood of that point) then it will have a Taylor series expansion there. The series will converge,
and the series will converge to the given function. Is it possible for the Taylor series for a function
to converge but not to converge to the expected function? Yes, for functions of a real variable it is.
See problem 14.3. The important result is that for analytic functions of a complex variable this cannot
happen, and all the manipulations that you would like to do will work. (Well, almost all.)

14.4 Core Properties
There are four closely intertwined facts about analytic functions. Each one implies the other three. For
the term “neighborhood” of z0, take it to mean all points satisfying |z − z0| < r for some positive r.

1. The function has a single derivative in a neighborhood of z0.
2. The function has an infinite number of derivatives in a neighborhood of z0.
3. The function has a power series (non-negative exponents) expansion about
z0 and the series converges to the specified function in a disk centered at z0

and extending to the nearest singularity. You can compute the derivative of
the function by differentiating the series term-by-term.

4. All contour integrals of the function around closed paths in a neighborhood
of z0 are zero.

Item 3 is a special case of the result about Laurent series. There are no negative powers when
the function is analytic at the expansion point.

The second part of the statement, that it’s the presence of a singularity that stops the series
from converging, requires some computation to prove. The key step in the proof is to show that when
the series converges in the neighborhood of a point then you can differentiate term-by-term and get the
right answer. Since you won’t have a derivative at a singularity, the series can’t converge there. That
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important part of the proof is the one that I’ll leave to every book on complex variables ever written.
E.g. Schaum’s outline on Complex Variables by Spiegel, mentioned in the bibliography. It’s not hard,
but it requires attention to detail.

Instead of a direct approach to all these ideas, I’ll spend some time showing how they’re related
to each other. The proofs that these are valid are not all that difficult, but I’m going to spend time on
their applications instead.

14.5 Branch Points
The function f(z) =

√
z has a peculiar behavior. You are so accustomed to it that you may not think

of it as peculiar, but simply an annoyance that you have to watch out for. It’s double valued. The
very definition of a function however says that a function is single valued, so what is this? I’ll leave the
answer to this until later, section 14.7, but for now I’ll say that when you encounter this problem you
have to be careful of the path along which you move, in order to avoid going all the way around such
a point.

14.6 Cauchy’s Residue Theorem
This is the fundamental result for applications in physics. If a function has a Laurent series expansion
about the point z0, the coefficient of the term 1/(z − z0) is called the residue of f at z0. The residue
theorem tells you the value of a contour integral around a closed loop in terms of the residues of the
function inside the loop. ∮

f(z) dz = 2πi
∑
k

Res(f)|zk (14.9)

To make sense of this result I have to specify the hypotheses. The direction of integration is counter-
clockwise. Inside and on the simple closed curve defining the path of integration, f is analytic except
at isolated points of singularity inside, where there is a Laurent series expansion. There are no branch
points inside the curve. It says that at each singularity zk inside the contour, find the residue; add
them; the result (times 2πi) is the value of the integral on the left. The term “simple” closed curve
means that it doesn’t cross itself.

Why is this theorem true? The result depends on some of the core properties of analytic functions,
especially that fact that you can distort the contour of integration as long as you don’t pass over a
singularity. If there are several isolated singularities inside a contour (poles or essential singularities),
you can contract the contour C1 to C2 and then further to loops around the separate singularities. The
parts of C2 other than the loops are pairs of line segments that go in opposite directions so that the
integrals along these pairs cancel each other.

C1

C2

The problem is now to evaluate the integrals around the separate singularities of the function,
then add them. The function being integrated is analytic in the neighborhoods of the singularities (by
assumption they are isolated). That means there is a Laurent series expansion around each, and that
it converges all the way down to the singularity itself (though not at it). Now at the singularity zk you
have ∮ ∞∑

n=−∞
an(z − zk)n
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The lower limit may be finite, but that just makes it easier. In problem 14.1 you found that the integral
of zn around counterclockwise about the origin is zero unless n = −1 in which case it is 2πi. Integrating
the individual terms of the series then gives zero from all terms but one, and then it is 2πia−1, which
is 2πi times the residue of the function at zk. Add the results from all the singularities and you have
the Residue theorem.

Example 1
The integral of 1/z around a circle of radius R centered at the origin is 2πi. The Laurent series
expansion of this function is trivial — it has only one term. This reproduces Eq. (14.4). It also says

that the integral around the same path of e1/z is 2πi. Write out the series expansion of e1/z to
determine the coefficient of 1/z.

Example 2
Another example. The integral of 1/(z2−a2) around a circle centered at the origin
and of radius 2a. You can do this integral two ways. First increase the radius of the
circle, pushing it out toward infinity. As there are no singularities along the way, the
value of the integral is unchanged. The magnitude of the function goes as 1/R2 on
a large (R� a) circle, and the circumference is 2πR. the product of these goes to
zero as 1/R, so the value of the original integral (unchanged, remember) is zero.

Another way to do the integral is to use the residue theorem. There are two poles inside the
contour, at ±a. Look at the behavior of the integrand near these two points.

1

z2 − a2
=

1

(z − a)(z + a)
=

1

(z − a)(2a+ z − a)
≈ [near +a]

1

2a(z − a)

=
1

(z + a)(z + a− 2a)
≈ [near −a]

1

−2a(z + a)

The integral is 2πi times the sum of the two residues.

2πi

[
1

2a
+

1

−2a

]
= 0

For another example, with a more interesting integral, what is∫ +∞

−∞

eikxdx
a4 + x4

(14.10)

If these were squares instead of fourth powers, and it didn’t have the exponential in it, you could easily
find a trigonometric substitution to evaluate it. This integral would be formidable though. To illustrate
the method, I’ll start with that easier example,

∫
dx/(a2 + x2).

Example 3
The function 1/(a2 + z2) is singular when the denominator vanishes — when z = ±ia. The integral
is the contour integral along the x-axis.

∫
C1

dz
a2 + z2

C1
(14.11)

The figure shows the two places at which the function has poles, ±ia. The method is to move the
contour around and to take advantage of the theorems about contour integrals. First remember that
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as long as it doesn’t move across a singularity, you can distort a contour at will. I will push the contour
C1 up, but I have to leave the endpoints where they are in order not let the contour cross the pole at
ia. Those are my sole constraints.

C2 C3 C4 C5

As I push the contour from C1 up to C2, nothing has changed, and the same applies to C3. The
next two steps however, requires some comment. In C3 the two straight-line segments that parallel the
y-axis are going in opposite directions, and as they are squeezed together, they cancel each other; they
are integrals of the same function in reverse directions. In the final step, to C5, I pushed the contour all
the way to +i∞ and eliminated it. How does that happen? On a big circle of radius R, the function
1/(a2 + z2) has a magnitude approximately 1/R2. As you push the top curve in C4 out, forming a big
circle, its length is πR. The product of these is π/R, and that approaches zero as R → ∞. All that
is left is the single closed loop in C5, and I evaluate that with the residue theorem.∫

C1

=

∫
C5

= 2πi Res
z=ia

1

a2 + z2

Compute this residue by examining the behavior near the pole at ia.

1

a2 + z2
=

1

(z − ia)(z + ia)
≈ 1

(z − ia)(2ia)

Near the point z = ia the value of z+ ia is nearly 2ia, so the coefficient of 1/(z− ia) is 1/(2ia), and
that is the residue. The integral is 2πi times this residue, so∫ ∞

−∞
dx

1

a2 + x2
= 2πi . 1

2ia
=
π
a

(14.12)

The most obvious check on this result is that it has the correct dimensions. [dz/z2] = L/L2 = 1/L, a
reciprocal length (assuming a is a length). What happens if you push the contour down instead of up?
See problem 14.10

Example 4
How about the more complicated integral, Eq. (14.10)? There are more poles, so that’s where to start.
The denominator vanishes where z4 = −a4, or at

z = a
(
eiπ+2inπ)1/4

= aeiπ/4einπ/2

∫
C1

eikz dz
a4 + z4

C1

I’m going to use the same method as before, pushing the contour past some poles, but I have to be a
bit more careful this time. The exponential, not the 1/z4, will play the dominant role in the behavior

at infinity. If k is positive then if z = iy, the exponential ei
2ky = e−ky → 0 as y → +∞. It will blow

up in the −i∞ direction. Of course if k is negative the reverse holds.
Assume k > 0, then in order to push the contour into a region where I can determine that the

integral along it is zero, I have to push it toward +i∞. That’s where the exponential drops rapidly to
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zero. It goes to zero faster than any inverse power of y, so even with the length of the contour going
as πR, the combination vanishes.

C2 C3 C4

As before, when you push C1 up to C2 and to C3, nothing has changed, because the contour
has crossed no singularities. The transition to C4 happens because the pairs of straight line segments
cancel when they are pushed together and made to coincide. The large contour is pushed to +i∞
where the negative exponential kills it. All that’s left is the sum over the two residues at aeiπ/4 and
ae3iπ/4. ∫

C1

=

∫
C4

= 2πi
∑

Res
eikz

a4 + z4

The denominator factors as

a4 + z4 = (z − aeiπ/4)(z − ae3iπ/4)(z − ae5iπ/4)(z − ae7iπ/4)

The residue at aeiπ/4 = a(1 + i)/
√

2 is the coefficient of 1/(z − aeiπ/4), so it is

eika(1+i)/
√

2

(aeiπ/4 − ae3iπ/4)(aeiπ/4 − ae5iπ/4)(aeiπ/4 − ae7iπ/4)

1

2 3

Do you have to do a lot of algebra to evaluate this denominator? Maybe you will prefer that to the
alternative: draw a picture. The distance from the center to a corner of the square is a, so each side
has length a

√
2. The first factor in the denominator of the residue is the line labeled “1” in the figure,

so it is a
√

2. Similarly the second and third factors (labeled in the diagram) are 2a(1 + i)/
√

2 and
ia
√

2. This residue is then

Res
eiπ/4

=
eika(1+i)/

√
2(

a
√

2
)
(2a(1 + i)/

√
2)(ia

√
2)

=
eika(1+i)/

√
2

a32
√

2(−1 + i)
(14.13)

For the other pole, at e3iπ/4, the result is

Res
e3iπ/4

=
eika(−1+i)/

√
2

(−a
√

2)(2a(−1 + i)/
√

2)(ia
√

2)
=
eika(−1+i)/

√
2

a32
√

2(1 + i)
(14.14)

The final result for the integral Eq. (14.10) is then the sum of these (×2πi)

∫ +∞

−∞

eikxdx
a4 + x4

= 2πi
[
(14.13) + (14.14)

]
=
πe−ka/

√
2

a3
cos[(ka/

√
2)− π/4] (14.15)

This would be a challenge to do by other means, without using contour integration. It is probably
possible, but would be much harder. Does the result make any sense? The dimensions work, because
the [dz/z4] is the same as 1/a3. What happens in the original integral if k changes to −k? It’s
even in k of course. (Really? Why?) This result doesn’t look even in k but then it doesn’t have to
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because it applies only for the case that k > 0. If you have a negative k you can do the integral again
(problem 14.42) and verify that it is even.

Example 5
Another example for which it’s not immediately obvious how to use the residue theorem:∫ ∞

−∞
dx

sinax
x

C1 C2
(14.16)

This function has no singularities. The sine doesn’t, and the only place the integrand could have one
is at zero. Near that point, the sine itself is linear in x, so (sinax)/x is finite at the origin. The trick
in using the residue theorem here is to create a singularity where there is none. Write the sine as a
combination of exponentials, then the contour integral along C1 is the same as along C2, and∫

C1

dz
eiaz − e−iaz

2iz
=

∫
C2

dz
eiaz − e−iaz

2iz
=

∫
C2

dz
eiaz

2iz
−
∫

C2

dz
e−iaz

2iz

I had to move the contour away from the origin in anticipation of this splitting of the integrand because
I don’t want to try integrating through this singularity that appears in the last two integrals. In the first
form it doesn’t matter because there is no singularity at the origin and the contour can move anywhere
I want as long as the two points at ±∞ stay put. In the final two separated integrals it matters very
much.

C3 C4

Assume that a > 0. In this case, eiaz → 0 as z → +i∞. For the other exponential, it vanishes
toward −i∞. This implies that I can push the contour in the first integral toward +i∞ and the integral
over the contour at infinity will vanish. As there are no singularities in the way, that means that the
first integral is zero. For the second integral you have to push the contour toward −i∞, and that hangs
up on the pole at the origin. That integral is then

−
∫

C2

dz
e−iaz

2iz
= −

∫
C4

dz
e−iaz

2iz
= −(−2πi) Res

e−iaz

2iz
= π

The factor −2πi in front of the residue occurs because the integral is over a clockwise contour, thereby
changing its sign. Compare the result of problem 5.29(b).

Notice that the result is independent of a > 0. (And what if a < 0?) You can check this fact
by going to the original integral, Eq. (14.16), and making a change of variables. See problem 14.16.

Example 6
What is

∫∞
0 dx/(a2 + x2)2? The first observation I’ll make is that by dimensional analysis alone, I

expect the result to vary as 1/a3. Next: the integrand is even, so using the same methods as in the
previous examples, extend the integration limits to the whole axis (times 1/2).

1

2

∫
C1

dz
(a2 + z2)2

C1

As with Eq. (14.11), push the contour up and it is caught on the pole at z = ia. That’s curve C5

following that equation. This time however, the pole is second order, so it take a (little) more work to
evaluate the residue.
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1

2

1

(a2 + z2)2
=

1

2

1

(z − ia)2(z + ia)2
=

1

2

1

(z − ia)2(z − ia+ 2ia)2

=
1

2

1

(z − ia)2(2ia)2
[
1 + (z − ia)/2ia

]2
=

1

2

1

(z − ia)2(2ia)2

[
1− 2

(z − ia)

2ia
+ · · ·

]
=

1

2

1

(z − ia)2(2ia)2
+

1

2
(−2)

1

(z − ia)(2ia)3
+ · · ·

The residue is the coefficient of the 1/(z − ia) term, so the integral is∫ ∞
0

dx/(a2 + x2)2 = 2πi .(−1) . 1

(2ia)3
=

π
4a3

Is this plausible? The dimensions came out as expected, and to estimate the size of the coefficient,
π/4, look back at the result Eq. (14.12). Set a = 1 and compare the π there to the π/4 here. The
range of integration is half as big, so that accounts for a factor of two. The integrands are always less
than one, so in the second case, where the denominator is squared, the integrand is always less than
that of Eq. (14.12). The integral must be less, and it is. Why less by a factor of two? Dunno, but plot
a few points and sketch a graph to see if you believe it. (Or use parametric differentiation to relate the
two.)

Example 7
A trigonometric integral:

∫ 2π
0 dθ

/
(a+ b cos θ). The first observation is that unless |a| > |b| then this

denominator will go to zero somewhere in the range of integration (assuming that a and b are real).
Next, the result can’t depend on the relative sign of a and b, because the change of variables θ′ = θ+π
changes the coefficient of b while the periodicity of the cosine means that you can leave the limits alone.
I may as well assume that a and b are positive. The trick now is to use Euler’s formula and express the
cosine in terms of exponentials.

Let z = eiθ, then cos θ =
1

2

[
z +

1

z

]
and dz = i eiθdθ = iz dθ

As θ goes from 0 to 2π, the complex variable z goes around the unit circle. The integral is then∫ 2π

0
dθ

1

(a+ b cos θ)
=

∫
C

dz
iz

1

a+ b
(
z + 1

z

)
/2

The integrand obviously has some poles, so the first task is to locate them.

2az + bz2 + b = 0 has roots z =
−2a±

√
(2a)2 − 4b2

2b
= z±

Because a > b, the roots are real. The important question is: Are they inside or outside the unit circle?
The roots depend on the ratio a/b = λ.

z± =
[
−λ±

√
λ2 − 1

]
(14.17)
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As λ varies from 1 to ∞, the two roots travel from −1 → −∞ and from −1 → 0, so z+ stays inside
the unit circle (problem 14.19). The integral is then

−2i
b

∫
C

dz
z2 + 2λz + 1

= −2i
b

∫
C

dz
(z − z+)(z − z−)

= −2i
b

2πi Res
z=z+

= −2i
b

2πi
1

z+ − z−
=

2π

b
√
λ2 − 1

=
2π√
a2 − b2

14.7 Branch Points

Before looking at any more uses of the residue theorem, I have to return to the subject of branch
points. They are another type of singularity that an analytic function can have after poles and essential
singularities.

√
z provides the prototype.

The definition of the word function, as in section 12.1, requires that it be single-valued. The
function

√
z stubbornly refuses to conform to this. You can get around this in several ways: First,

ignore it. Second, change the definition of “function” to allow it to be multiple-valued. Third, change
the domain of the function.

You know I’m not going to ignore it. Changing the definition is not very fruitful. The third
method was pioneered by Riemann and is the right way to go.

The complex plane provides a geometric picture of complex numbers, but when you try to handle
square roots it becomes a hindrance. It isn’t adequate for the task. There are several ways to develop
the proper extension, and I’ll show a couple of them. The first is a sort of algebraic way, and the second
is a geometric interpretation of the first way. There are other, even more general methods, leading into
the theory of Riemann Surfaces and their topological structure, but I won’t go into those.

Pick a base point, say z0 = 1, from which to start. This will be a kind of fiduciary point near
which I know the values of the function. Every other point needs to be referred to this base point. If I
state that the square root of z0 is one, then I haven’t run into trouble yet. Take another point z = reiθ

and try to figure out the square root there.

√
z =

√
reiθ =

√
r eiθ/2 or

√
z =

√
rei(θ+2π) =

√
r eiθ/2eiπ

The key question: How do you get from z0 to z? What path did you select?

0 1 2 −3

z z z z

. In the picture, z appears to be at about 1.5e0.6i or so.

. On the path labeled 0, the angle θ starts at zero at z0 and increases to 0.6 radians, so
√
r eiθ/2 varies

continuously from 1 to about 1.25e0.3i.
. On the path labeled 1, angle θ again starts at zero and increases to 0.6 + 2π, so

√
r eiθ/2 varies

continuously from 1 to about 1.25e(π+0.3)i, which is minus the result along path #0.
. On the path labeled 2, angle θ goes from zero to 0.6+4π, and

√
r eiθ/2 varies from 1 to 1.25e(2π+0.3)i

and that is back to the same value as path #0.
. For the path labeled −3, the angle is 0.6− 6π, resulting in the same value as path #1.
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1

zThere are two classes of paths from z0 to z, those that go around the
origin an even number of times and those that go around an odd number of
times. The “winding number” w is the name given to the number of times that
a closed loop goes counterclockwise around a point (positive or negative), and
if I take the path #1 and move it slightly so that it passes through z0, you can
more easily see that the only difference between paths 0 and 1 is the single loop
around the origin. The value for the square root depends on two variables, z
and the winding number of the path. Actually less than this, because it depends only on whether the
winding number is even or odd:

√
z →

√
(z,w).

In this notation then z0 → (z0, 0) is the base point, and the square root of that is one. The
square root of (z0, 1) is then minus one. Because the sole relevant question about the winding number
is whether it is even or odd, it’s convenient simply to say that the second argument can take on the
values either 0 or 1 and be done with it.

Geometry of Branch Points
How do you picture such a structure? There’s a convenient artifice that lets you picture and manipulate
functions with branch points. In this square root example, picture two sheets and slice both along some
curve starting at the origin and going to infinity. As it’s a matter of convenience how you draw the cut
I may as well make it a straight line along the x-axis, but any other line (or simple curve) from the
origin will do. As these are mathematical planes I’ll use mathematical scissors, which have the elegant
property that as I cut starting from infinity on the right and proceeding down to the origin, the points
that are actually on the x-axis are placed on the right side of the cut and the left side of the cut is left
open. Indicate this with solid and dashed lines in the figure. (This is not an important point; don’t
worry about it.)

0 1

a

b a

b

Now sew the sheets together along these cuts. Specifically, sew the top edge from sheet #0 to
the bottom edge from sheet #1. I then sew the bottom edge of sheet #0 to the top edge of sheet #1.
This sort of structure is called a Riemann surface. How to do this? Do it the same way that you read
a map in an atlas of maps. If page 38 of the atlas shows a map with the outline of Brazil and page
27 shows a map with the outline of Bolivia, you can flip back and forth between the two pages and
understand that the two maps* represent countries that are touching each other along their common
border.

You can see where they fit even though the two countries are not drawn to the same scale. Brazil
is a whole lot larger than Bolivia, but where the images fit along the Western border of Brazil and the
Eastern border of Bolivia is clear. You are accustomed to doing this with maps, understanding that the
right edge of the map on page 27 is the same as the left edge of the map on page 38 — you probably
take it for granted. Now you get to do it with Riemann surfaces.

You have two cut planes (two maps), and certain edges are understood to be identified as
identical, just as two borders of a geographic map are understood to represent the same line on the
surface of the Earth. Unlike the maps above, you will usually draw both to the same scale, but you
won’t make the cut ragged (no pinking shears) so you need to use some notation to indicate what is
attached to what. That’s what the letters a and b are. Side a is the same as side a. The same for

* www.worldatlas.com

http://www.worldatlas.com/
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b. When you have more complicated surfaces, arising from more complicated functions of the complex
variable with many branch points, you will have a fine time sorting out the shape of the surface.

0
1

(z0, 1)

(z0, 0)

(z0, 0)

(z0, 1)

b

a

a

b

I drew three large disks on this Riemann surface. One is entirely within the first sheet (the first
map); a second is entirely within the second sheet. The third disk straddles the two, but is is nonetheless
a disk. On a political map this might be disputed territory. Going back to the original square root
example, I also indicated the initial point at which to define the value of the square root, (z0, 0), and
because a single dot would really be invisible I made it a little disk, which necessarily extends across
both sheets.

Here is a picture of a closed loop on this surface. I’ll probably not ask you to do contour integrals
along such curves though.

0 1

a

b

b

a

Other Functions
Cube Root Take the next simple step. What about the cube root? Answer: Do exactly the same
thing, except that you need three sheets to describe the whole . Again, I’ll draw a closed loop. As long
as you have a single branch point it’s no more complicated than this.

0 1 2

a

b

b
c

c
a
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Logarithm How about a logarithm? ln z = ln
(
reiθ

)
= ln r+ iθ. There’s a branch point at the origin,

but this time, as the angle keeps increasing you never come back to a previous value. This requires
an infinite number of sheets. That number isn’t any more difficult to handle — it’s just like two, only
bigger. In this case the whole winding number around the origin comes into play because every loop
around the origin, taking you to the next sheet of the surface, adds another 2πiw, and w is any integer
from −∞ to +∞. The picture of the surface is like that for the cube root, but with infinitely many
sheets instead of three. The complications start to come when you have several branch points.

Two Square Roots Take
√
z2 − 1 for an example. Many other functions will do just as well. Pick

a base point z0; I’ll take 2. (Not two base points, the number 2.) f(z0, 0) =
√

3. Now follow the
function around some loops. This repeats the development as for the single branch, but the number of
possible paths will be larger. Draw a closed loop starting at z0.

a

b

c

d

a
b

c

d

z0

Despite the two square roots, you still need only two sheets to map out this surface. I drew the
ab and cd cuts below to keep them out of the way, but they’re very flexible. Start the base point and
follow the path around the point +1; that takes you to the second sheet. You already know that if
you go around +1 again it takes you back to where you started, so explore a different path: go around
−1. Now observe that this function is the product of two square roots. Going around the first one
introduced a factor of −1 into the function and going around the second branch point will introduce a
second identical factor. As (−1)2 = +1, then when you you return to z0 the function is back at

√
3,

you have returned to the base point and this whole loop is closed. If this were the sum of two square
roots instead of their product, this wouldn’t work. You’ll need four sheets to map that surface. See
problem 14.22.

These cuts are rather awkward, and now that I know the general shape of the surface it’s possible
to arrange the maps into a more orderly atlas. Here are two better ways to draw the maps. They’re
much easier to work with.

0

1

a
b

b
a

c
d

d
c

or

0

1

e

f

f
e

I used the dash-dot line to indicate the cuts. In the right pair, the base point is on the right-hand
solid line of sheet #0. In the left pair, the base point is on the c part of sheet #0. See problem 14.20.

14.8 Other Integrals
There are many more integrals that you can do using the residue theorem, and some of these involve
branch points. In some cases, the integrand you’re trying to integrate has a branch point already built
into it. In other cases you can pull some tricks and artificially introduce a branch point to facilitate the
integration. That doesn’t sound likely, but it can happen.
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Example 8
The integral

∫∞
0 dxx/(a + x)3. You can do this by elementary methods (very easily in fact), but I’ll

use it to demonstrate a contour method. This integral is from zero to infinity and it isn’t even, so the
previous tricks don’t seem to apply. Instead, consider the integral (a > 0)∫ ∞

0
dx lnx

x
(a+ x)3

and you see that right away, I’m creating a branch point where there wasn’t one before.

C1

C2

The fact that the logarithm goes to infinity at the origin doesn’t matter because it is such a weak
singularity that any positive power, even x0.0001 times the logarithm, gives a finite limit as x→ 0. Take
advantage of the branch point that this integrand provides.∫

C1

dz ln z
z

(a+ z)3
=

∫
C2

dz ln z
z

(a+ z)3

On C1 the logarithm is real. After the contour is pushed into position C2, there are several distinct
pieces. A part of C2 is a large arc that I can take to be a circle of radius R. The size of the integrand
is only as big as (lnR)/R2, and when I multiply this by 2πR, the circumference of the arc, it will go
to zero as R→∞.
The next pieces of C2 to examine are the two straight lines between the origin and −a. The integrals
along here are in opposite directions, and there’s no branch point intervening, so these two segments
simply cancel each other.
What’s left is C3.∫ ∞

0
dx lnx

x
(a+ x)3

=

∫
C1

=

∫
C3

= 2πi Res
z=−a

+

∫ ∞
0

dx
(

lnx+ 2πi
) x

(a+ x)3

C3

Below the positive real axis, that is, below the cut, the logarithm differs from its original value by the
constant 2πi. Among all these integrals, the integral with the logarithm on the left side of the equation
appears on the right side too. These terms cancel and you’re left with

0 = 2πi Res
z=−a

+

∫ ∞
0

dx 2πi
x

(a+ x)3
or

∫ ∞
0

dx
x

(a+ x)3
= − Res

z=−a
ln z

z
(a+ z)3

This is a third-order pole, so it takes a bit of work. First expand the log around −a. Here it’s probably
easiest to plug into Taylor’s formula for the power series and compute the derivatives of ln z at −a.

ln z = ln(−a) + (z + a)
1

−a
+

(z + a)2

2!

−1

(−a)2
+ · · ·
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Which value of ln(−a) to take? That answer is dictated by how I arrived at the point −a when I pushed
the contour from C1 to C2. That is, lna+ iπ.

− ln z
z

(a+ z)3
= −

[
lna+ iπ − 1

a
(z + a)− 1

a2

(z + a)2

2
+ · · ·

] [
(z + a)− a

] 1

(z + a)3

I’m interested solely in the residue, so look only for the coefficient of the power 1/(z + a). That is

−
[
−1

a
− 1

2a2
(−a)

]
=

1

2a

Did you have to do all this work to get this answer? Absolutely not. This falls under the classic heading
of using a sledgehammer as a fly swatter. It does show the technique though, and in the process I had
an excuse to show that third-order poles needn’t be all that intimidating.

14.9 Other Results
Polynomials: There are some other consequences of looking in the complex plane that are very different
from any of the preceding. If you did problem 3.11, you realize that the function ez = 0 has no solutions,
even in the complex plane. You are used to finding roots of equations such as quadratics and maybe
you’ve encountered the cubic formula too. How do you know that every polynomial even has a root?
Maybe there’s an order-137 polynomial that has none. No, it doesn’t happen. That every polynomial
has a root (n of them in fact) is the Fundamental Theorem of Algebra. Gauss proved it, but after the
advent of complex variable theory it becomes an elementary exercise.

A polynomial is f(z) = anzn + an−1zn−1 + · · ·+ a0. Consider the integral∫
C
dz
f ′(z)

f(z)

around a large circle. f ′(z) = nanzn−1 + · · ·, so this is∫
C
dz
nanzn−1 + (n− 1)an−1zn−2 + · · ·
anzn + an−1zn−1 + · · ·+ a0

=

∫
C
dz
n
z

1 + (n−1)an−1

nanz
+ · · ·

1 + an−1

anz
+ · · ·

Take the radius of the circle large enough that only the first term in the numerator and the first term
in the denominator are important. That makes the integral∫

C
dz
n
z

= 2πin

It is certainly not zero, so that means that there is a pole inside the loop, and so a root of the
denominator.
Function Determined by its Boundary Values: If a function is analytic throughout a simply connected
domain and C is a simple closed curve in this domain, then the values of f inside C are determined by
the values of f on C. Let z be a point inside the contour then I will show

1

2πi

∫
C
dz

f(z′)
z′ − z

= f(z) (14.18)

Because f is analytic in this domain I can shrink the contour to be an arbitrarily small curve C1 around
z, and because f is continuous, I can make the curve close enough to z that f(z′) = f(z) to any
desired accuracy. That implies that the above integral is the same as

1

2πi
f(z)

∫
C1

dz′
1

z′ − z
= f(z)
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Eq. (14.18) is Cauchy’s integral formula, giving the analytic function in terms of its boundary values.
Derivatives: You can differentiate Cauchy’s formula any number of times.

dnf(z)

dzn
=

n!

2πi

∫
C
dz

f(z′)
(z′ − z)n+1

(14.19)

Entire Functions: An entire function is one that has no singularities anywhere. ez, polynomials, sines,
cosines are such. There’s a curious and sometimes useful result about such functions. A bounded entire
function is necessarily a constant. For a proof, take two points, z1 and z2 and apply Cauchy’s integral
theorem, Eq. (14.18).

f(z1)− f(z2) =
1

2πi

∫
C
dz f (z′)

[
1

z′ − z1
− 1

z′ − z2

]
=

1

2πi

∫
C
dz f (z′)

z1 − z2

(z′ − z1)(z′ − z2)

By assumption, f is bounded, |f(z)| ≤ M . A basic property of complex numbers is that |u + v| ≤
|u|+ |v| for any complex numbers u and v. This means that in the defining sum for an integral,∣∣∣∣∣∑

k

f(ζk)∆zk

∣∣∣∣∣ ≤∑
k

∣∣f(ζk)
∣∣∣∣∆zk∣∣, so

∣∣∣∣∫ f(z)dz

∣∣∣∣ ≤ ∫ |f(z)||dz| (14.20)

Apply this.

|f(z1)− f(z2)| ≤
∫
|dz||f(z′)|

∣∣∣∣ z1 − z2

(z′ − z1)(z′ − z2)

∣∣∣∣ ≤M |z1 − z2|
∫
|dz|

∣∣∣∣ 1

(z′ − z1)(z′ − z2)

∣∣∣∣
On a big enough circle of radius R, this becomes

|f(z1)− f(z2)| ≤M |z1 − z2|2πR
1

R2
−→ 0 as R→∞

The left side doesn’t depend on R, so f(z1) = f(z2).

Exercises

1 Describe the shape of the function ez of the complex variable z. That is, where in the complex plane
is this function big? small? oscillating? what is its phase? Make crude sketches to help explain how it
behaves as you move toward infinity in many and varied directions. Indicate not only the magnitude,
but something about the phase. Perhaps words can be better than pictures?

2 Same as the preceding but for eiz.

3 Describe the shape of the function z2. Not just magnitude, other pertinent properties too such as
phase, so you know how it behaves.

4 Describe the shape of i/z.

5 Describe the shape of 1/(a2 + z2). Here you need to show what it does for large distances from the
origin and for small. Also near the singularities.

6 Describe the shape of eiz
2
.

7 Describe the shape of cos z.

8 Describe the shape of eikz where k is a real parameter, −∞ < k <∞.

9 Describe the shape of the Bessel function J0(z). Look up for example Abramowitz and Stegun
chapter 9, sections 1 and 6. (I0(z) = J0(iz))
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Problems

14.1 Explicitly integrate zn dz around the circle of radius R centered at the origin, just as in Eq. (14.4).
The number n is any positive, negative, or zero integer.

14.2 Repeat the analysis of Eq. (14.3) but change it to the integral of z*dz.

14.3 For the real-valued function of a real variable,

f(x) =

{
e−1/x2 (x 6= 0)
0 (x = 0)

Work out all the derivatives at x = 0 and so find the Taylor series expansion about zero. Does it
converge? Does it converge to f? You did draw a careful graph didn’t you? Perhaps even put in some
numbers for moderately small x.

14.4 (a) The function 1/(z − a) has a singularity (pole) at z = a. Assume that |z| < |a|, and write
its series expansion in powers of z/a. Next assume that |z| > |a| and write the series expansion in
powers of a/z.
(b) In both cases, determine the set of z for which the series is absolutely convergent, replacing each
term by its absolute value. Also sketch these sets.
(c) Does your series expansion in a/z imply that this function has an essential singularity at z = 0?
Since you know that it doesn’t, what happened?

14.5 The function 1/(1 + z2) has a singularity at z = i. Write a Laurent series expansion about that
point. To do so, note that 1 + z2 = (z− i)(z+ i) = (z− i)(2i+ z− i) and use the binomial expansion
to produce the desired series. (Or you can find another, more difficult method.) Use the ratio test to
determine the domain of convergence of this series. Specifically, look for (and sketch) the set of z for
which the absolute values of the terms form a convergent series.
Ans: |z − i| < 2 OR |z − i| > 2 depending on which way you did the expansion. If you did one, find
the other. If you expanded in powers of (z − i), try expanding in powers of 1/(z − i).

14.6 What is
∫ i

0 dz/(1− z2)? Ans: iπ/4

14.7 (a) What is a Laurent series expansion about z = 0 with |z| < 1 to at least four terms for

sin z/z4 ez/z2(1− z)

(b) What is the residue at z = 0 for each function?
(c) Then assume |z| > 1 and find the Laurent series.
Ans: |z| > 1:

∑+∞
−∞ z

nf(n), where f(n) = −e if n < −3 and f(n) = −
∑∞
n+3 1/k! if n ≥ −3.

14.8 By explicit integration, evaluate the integrals around the counterclockwise loops:

∫
C1

z2 dz
∫

C2

z3 dz
C1

1 + i

1

C2

ib a+ ib

a
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14.9 Evaluate the integral along the straight line from a to a + i∞:
∫
eizdz. Take a to be real.

Ans: ieia

14.10 (a) Repeat the contour integral Eq. (14.11), but this time push the contour down, not up.
(b) What happens to the same integral if a is negative? And be sure to explain your answer in terms
of the contour integrals, even if you see an easier way to do it.

14.11 Carry out all the missing steps starting with Eq. (14.10) and leading to Eq. (14.15).

14.12 Sketch a graph of Eq. (14.15) and for k < 0 too. What is the behavior of this function in the
neighborhood of k = 0? (Careful!)

14.13 In the integration of Eq. (14.16) the contour C2 had a bump into the upper half-plane. What
happens if the bump is into the lower half-plane?

14.14 For the function in problem 14.7, ez/z2(1 − z), do the Laurent series expansion about z = 0,
but this time assume |z| > 1. What is the coefficient of 1/z now? You should have no trouble summing
the series that you get for this. Now explain why this result is as it is. Perhaps review problem 14.1.

14.15 In the integration of Eq. (14.16) the contour C2 had a bump into
the upper half-plane, but the original function had no singularity at the
origin, so you can instead start with this curve and carry out the analysis.
What answer do you get?

14.16 Use contour integration to evaluate Eq. (14.16) for the case that a < 0.
Next, independently of this, make a change of variables in the original integral Eq. (14.16) in order to
see if the answer is independent of a. In this part, consider two cases, a > 0 and a < 0.

14.17 Recalculate the residue done in Eq. (14.6), but economize your labor. If all that all you really
want is the coefficient of 1/z, keep only the terms that you need in order to get it.

14.18 What is the order of all the other poles of the function csc3 z, and what is the residue at each
pole?

14.19 Verify the location of the roots of Eq. (14.17).

14.20 Verify that the Riemann surfaces work as defined for the function
√
z2 − 1 using the alternative

maps in section 14.7.

14.21 Map out the Riemann surface for
√
z(z − 1)(z − 2). You will need four sheets.

14.22 Map out the Riemann surface for
√
z +
√
z − 1. You will need four sheets.

14.23 Evaluate ∫
C
dz e−zz−n

where C is a circle of radius R about the origin.

14.24 Evaluate ∫
C
dz tan z
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where C is a circle of radius πn about the origin. Ans: −4πin

14.25 Evaluate the residues of these functions at their singularities. a, b, and c are distinct. Six
answers: you should be able to do five of them in your head.

(a)
1

(z − a)(z − b)(z − c)
(b)

1

(z − a)(z − b)2
(c)

1

(z − a)3

14.26 Evaluate the residue at the origin for the function

1

z
ez+ 1

z

The result will be an infinite series, though if you want to express the answer in terms of a standard
function you will have to hunt. Ans: I0(2) = 2.2796, a modified Bessel function.

14.27 Evaluate
∫∞

0 dz/(a4 + x4), and to check, compare it to the result of Eq. (14.15).

14.28 Show that ∫ ∞
0

dx
cos bx
a2 + x2

=
π
2a
e−ab (a, b > 0)

14.29 Evaluate (a real) ∫ ∞
−∞

dx
sin2 ax
x2

Ans: |a|π

14.30 Evaluate ∫ ∞
−∞

dx
sin2 bx

x(a2 + x2)

14.31 Evaluate the integral
∫∞

0 dx
√
x/(a+x)2. Use the ideas of example 8, but without the logarithm.

(a > 0) Ans: π/2
√
a

14.32 Evaluate ∫ ∞
0

dx
lnx

a2 + x2

(What happens if you consider (lnx)2?) Ans: (π lna)/2a

14.33 Evaluate (λ > 1) by contour integration∫ 2π

0

dθ(
λ+ sin θ

)2
Ans: 2πλ/(λ2 − 1)3/2

14.34 Evaluate ∫ π

0
dθ sin2n θ

Recall Eq. (2.19). Ans: π 2nCn
/

22n−1 = π(2n− 1)!!/(2n)!!
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14.35 Evaluate the integral of problem 14.33 another way. Assume λ is large and expand the integrand
in a power series in 1/λ. Use the result of the preceding problem to evaluate the individual terms and

then sum the resulting infinite series. Will section 1.2 save you any work? Ans: Still 2πλ/(λ2 − 1)3/2

14.36 Evaluate∫ ∞
0

dx cosαx2 and

∫ ∞
0

dx sinαx2 by considering

∫ ∞
0

dx eiαx
2

Push the contour of integration toward the 45◦ line. Ans: 1
2

√
π/2α

14.37

f(z) =
1

z(z − 1)(z − 2)
− 1

z2(z − 1)2(z − 2)2

What is
∫

C dz f (z) about the circle x2 + y2 = 9?

14.38 Derive ∫ ∞
0

dx
1

a3 + x3
= 2π

√
3/9a2

14.39 Go back to problem 3.45 and find the branch points of the inverse sine function.

14.40 What is the Laurent series expansion of 1/(1 + z2) for small |z|? Again, for large |z|? What is
the domain of convergence in each case?

14.41 Examine the power series
∑∞

0 zn!. What is its radius of convergence? What is its behavior as

you move out from the origin along a radius at a rational angle? That is, z = reiπp/q for p and q
integers. This result is called a natural boundary.

14.42 Evaluate the integral Eq. (14.10) for the case k < 0. Combine this with the result in Eq. (14.15)
and determine if the overall function is even or odd in k (or neither).

14.43 At the end of section 14.1 several differentiation formulas are mentioned. Derive them.

14.44 Look at the criteria for the annulus of convergence of a Laurent series, Eqs. (14.7) and (14.8),
and write down an example of a Laurent series that converges nowhere.

14.45 Verify the integral of example 8 using elementary methods. It will probably take at least three
lines to do.

14.46 What is the power series representation for f(z) =
√
z about the point 1 + i? What is the

radius of convergence of this series? In the Riemann surface for this function as described in section
14.7, show the disk of convergence.



Fourier Analysis
.

Fourier series allow you to expand a function on a finite interval as an infinite series of trigonometric
functions. What if the interval is infinite? That’s the subject of this chapter. Instead of a sum over
frequencies, you will have an integral.

15.1 Fourier Transform
For the finite interval you have to specify the boundary conditions in order to determine the particular
basis that you’re going to use. On the infinite interval you don’t have this large set of choices. After
all, if the boundary is infinitely far away, how can it affect what you’re doing over a finite distance? But
see section 15.6.

In section 5.3 you have several boundary condition listed that you can use on the differential
equation u′′ = λu and that will lead to orthogonal functions on your interval. For the purposes here
the easiest approach is to assume periodic boundary conditions on the finite interval and then to take
the limit as the length of the interval approaches infinity. On −L < x < +L, the conditions on the
solutions of u′′ = λu are then u(−L) = u(+L) and u′(−L) = u′(+L). The solution to this is most
conveniently expressed as a complex exponential, Eq. (5.19)

u(x) = eikx, where u(−L) = e−ikL = u(L) = eikL

This implies e2ikL = 1, or 2kL = 2nπ, for integer n = 0, ±1, ±2, . . .. With these solutions, the other
condition, u′(−L) = u′(+L) is already satisfied. The basis functions are then

un(x) = eiknx = enπix/L, for n = 0, ±1, ±2, etc. (15.1)

On this interval you have the Fourier series expansion

f(x) =
∞∑
−∞

an un(x), and
〈
um, f

〉
=
〈
um,

∞∑
−∞

an un
〉

= am
〈
um, um

〉
(15.2)

In the basis of Eq. (15.1) this normalization is
〈
um, um

〉
= 2L.

Insert this into the series for f .

f(x) =

∞∑
n=−∞

〈
un, f

〉〈
un, un

〉un(x) =
1

2L

∞∑
n=−∞

〈
un, f

〉
un(x)

Now I have to express this in terms of the explicit basis functions in order to manipulate it. When you
use the explicit form you have to be careful not to use the same symbol (x) for two different things
in the same expression. Inside the

〈
un, f

〉
there is no “x” left over — it’s the dummy variable of

integration and it is not the same x that is in the un(x) at the end. Denote kn = πn/L.

f(x) =
1

2L

∞∑
n=−∞

∫ L

−L
dx′un(x′)*f(x′)un(x) =

1

2L

∞∑
n=−∞

∫ L

−L
dx′e−iknx

′
f(x′) eiknx

Now for some manipulation: As n changes by 1, kn changes by ∆kn = π/L.

f(x) =
1

2π

∞∑
n=−∞

π
L

∫ L

−L
dx′ e−iknx

′
f(x′) eiknx

=
1

2π

∞∑
n=−∞

eiknx ∆kn

∫ L

−L
dx′ e−iknx

′
f(x′) (15.3)

370
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For a given value of k, define the integral

g
L

(k) =

∫ L

−L
dx′e−ikx

′
f(x′)

If the function f vanishes sufficiently fast as x′ →∞, this integral will have a limit as L→∞. Call that
limit g(k). Look back at Eq. (15.3) and you see that for large L the last factor will be approximately
g(kn), where the approximation becomes exact as L→∞. Rewrite that expression as

f(x) ≈ 1

2π

∞∑
n=−∞

eiknx ∆kn g(kn) (15.4)

As L→∞, you have ∆kn → 0, and that turns Eq. (15.4) into an integral.

f(x) =

∫ ∞
−∞

dk
2π
eikxg(k), where g(k) =

∫ ∞
−∞

dx e−ikxf(x) (15.5)

The function g is called* the Fourier transform of f , and f is the inverse Fourier transform of g.

Examples
For an example, take the step function

f(x) =

{
1 (−a < x < a)
0 (elsewhere)

then

g(k) =

∫ a

−a
dx e−ikx 1

=
1

−ik

[
e−ika − e+ika

]
=

2 sinka
k

(15.6)

The first observation is of course that the dimensions check: If dx is a length then so is 1/k.
After that, there is only one parameter that you can vary, and that’s a. As a increases, obviously the
width of the function f increases, but now look at g. The first place where g(k) = 0 is at ka = π.
This value, π/a decreases as a increases. As f gets broader, g gets narrower (and taller). This is a
general property of these Fourier transform pairs.

Can you invert this Fourier transform, evaluating the integral of g to get back to f? Yes, using
the method of contour integration this is very easy. Without contour integration it would be extremely
difficult, and that is typically the case with these transforms; complex variable methods are essential
to get anywhere with them. The same statement holds with many other transforms (Laplace, Radon,
Mellin, Hilbert, etc. )

The inverse transform is

∫ ∞
−∞

dk
2π

eikx
2 sinka
k

=

∫
C1

dk
2π

eikx
eika − e−ika

ik

= −i
∫

C2

dk
2π

1

k

[
eik(x+a) − eik(x−a)

]
C1

C2

* Another common notation is to define g with an integral dx/
√

2π. That will require a cor-
responding dk/

√
2π in the inverse relation. It’s more symmetric that way, but I prefer the other

convention.
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1. If x > +a then both x+a and x−a are positive, which implies that both exponentials vanish rapidly
as k → +i∞. Push the contour C2 toward this direction and the integrand vanishes exponentially,
making the integral zero.
2. If −a < x < +a, then only x+ a is positive. The integral of the first term is then zero by exactly
the preceding reasoning, but the other term has an exponential that vanishes as k → −i∞ instead,
implying that you must push the contour down toward −i∞.

= i
∫

C3

dk
2π

1

k
eik(x−a) =

∫
C4

= +i
1

2π
(−1)2πiRes

k=0

eik(x−a)

k
= −i 1

2π
. 2πi = 1

C3

C4

The extra (−1) factor comes because the contour is clockwise.
3. In the third domain, x < −a, both exponentials have the form e−ik, requiring you to push the
contour toward −i∞. The integrand now has both exponentials, so it is analytic at zero and there
is zero residue. The integral vanishes and the whole analysis takes you back to the original function,
Eq. (15.6).

Another example of a Fourier transform, one that shows up often in quantum mechanics

f(x) = e−x
2/σ2

, so g(k) =

∫ ∞
−∞

dx e−ikxe−x
2/σ2

=

∫ ∞
−∞

dx e−ikx−x
2/σ2

The trick to doing this integral is to complete the square inside the exponent.

−ikx− x2/σ2 =
−1

σ2

[
x2 + σ2ikx− σ4k2/4 + σ4k2/4

]
=
−1

σ2

[
(x+ ikσ2/2)2 + σ4k2/4

]
The integral of f is now

g(k) = e−σ
2k2/4

∫ ∞
−∞

dx′e−x
′2/σ2

where x′ = x+ ikσ/2

The change of variables makes this a standard integral, Eq. (1.10), and the other factor, with the
exponential of k2, comes outside the integral. The result is

g(k) = σ
√
π e−σ

2k2/4 (15.7)

This has the curious result that the Fourier transform of a Gaussian is* a Gaussian.

15.2 Convolution Theorem
What is the Fourier transform of the product of two functions? It is a convolution of the individual
transforms. What that means will come out of the computation. Take two functions f1 and f2 with
Fourier transforms g1 and g2.∫ ∞

−∞
dx f1(x)f2(x)e−ikx =

∫
dx
∫
dk′

2π
g1(k′ )eik

′xf2(x)e−ikx

* Another function has this property: the hyperbolic secant. Look up the quantum mechanical
harmonic oscillator solution for an infinite number of others.
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=

∫
dk′

2π
g1(k′ )

∫
dx eik

′xf2(x)e−ikx

=

∫
dk′

2π
g1(k′ )

∫
dx f2(x)e−i(k−k

′)x

=

∫ ∞
−∞

dk′

2π
g1(k′ )g2(k − k′) (15.8)

The last expression (except for the 2π) is called the convolution of g1 and g2.∫ ∞
−∞

dx f1(x)f2(x)e−ikx =
1

2π
(g1 ∗ g2)(k) (15.9)

The last line shows a common notation for the convolution of g1 and g2.
What is the integral of |f |2 over the whole line?∫ ∞

−∞
dx f *(x)f(x) =

∫
dx f *(x)

∫
dk
2π
g(k)eikx

=

∫
dk
2π
g(k)

∫
dx f *(x)eikx

=

∫
dk
2π
g(k)

[∫
dx f(x)e−ikx

]
*

=

∫ ∞
−∞

dk
2π
g(k)g*(k) (15.10)

This is Parseval’s identity for Fourier transforms. There is an extension to it in problem 15.10.

15.3 Time-Series Analysis
Fourier analysis isn’t restricted to functions of x, sort of implying position. They’re probably more
often used in analyzing functions of time. If you’re presented with a complicated function of time, how
do you analyze it? What information is present in it? If that function of time is a sound wave you
may choose to analyze it with your ears, and if it is music, the frequency content is just what you will
be listening for. That’s Fourier analysis. The Fourier transform of the signal tells you its frequency
content, and sometimes subtle periodicities will show up in the transformed function even though they
aren’t apparent in the original signal.

A function of time is f(t) and its Fourier transform is

g(ω) =

∫ ∞
−∞

dt f(t) eiωt with f(t) =

∫ ∞
−∞

dω
2π

g(ω) e−iωt

The sign convention in these equations appear backwards from the one in Eq. (15.5), and it is. One
convention is as good as the other, but in the physics literature you’ll find this pairing more common
because of the importance of waves. A function ei(kx−ωt) represents a wave with (phase) velocity ω/k,
and so moving to the right. You form a general wave by taking linear combinations of these waves,
usually an integral.

Example
When you hear a musical note you will perceive it as having a particular frequency. It doesn’t, and
if the note has a very short duration it becomes hard to tell its* pitch. Only if its duration is long

* Think of a hemisemidemiquaver played at tempo prestissimo.
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enough do you have a real chance to discern what note you’re hearing. This is a reflection of the facts
of Fourier transforms.

If you hear what you think of as a single note, it will not last forever. It starts and it ends. Say
it lasts from t = −T to t = +T , and in that interval it maintains the frequency ω0.

f(t) = Ae−iω0t (−T < t < T ) (15.11)

The frequency analysis comes from the Fourier transform.

g(ω) =

∫ T

−T
dt eiωtAe−iω0t = A

ei(ω−ω0)T − e−i(ω−ω0)T

i(ω − ω0)
= 2A

sin(ω − ω0)T
(ω − ω0)

This is like the function of Eq. (15.6) except that its center is shifted. It has a peak at ω = ω0 instead
of at the origin as in that case. The width of the function g is determined by the time interval T . As T
is large, g is narrow and high, with a sharp localization near ω0. In the reverse case of a short pulse, the
range of frequencies that constitute the note is spread over a wide range of frequencies, and you will
find it difficult to tell by listening to it just what the main pitch is supposed to be. This figure shows
the frequency spectrum for two notes having the same nominal pitch, but one of them lasts three times
as long as the other before being cut off. It therefore has a narrower spread of frequencies.

←− T larger

T smaller −→

ω

Example
Though you can do these integrals numerically, and when you are dealing with real data you will have
to, it’s nice to have some analytic examples to play with. I’ve already shown, Eq. (15.7), how the
Fourier transform of a Gaussian is simple, so start from there.

If g(ω) = e−(ω−ω0)2/σ2
then f(t) =

σ

2
√
π
e−iω0te−σ

2t2/4

If there are several frequencies, the result is a sum.

g(ω) =
∑
n

An e
−(ω−ωn)2/σ2

n ⇐⇒ f(t) =
∑
n

An
σn

2
√
π
e−iωnte−σ

2
nt

2/4

In a more common circumstance you will have the time series, f(t), and will want to obtain the frequency
decomposition, g(ω), though for this example I worked backwards. The function of time is real, but
the transformed function g is complex. Because f is real, it follows that g satisfies g(−ω) = g*(ω).
See problem 15.13.

f

Real
Imag

g
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This example has four main peaks in the frequency spectrum. The real part of g is an even
function and the imaginary part is odd.

f

Real

Imagg

This is another example with four main peaks.
In either case, if you simply look at the function of time on the left it isn’t obvious what sort of

frequencies are present. That’s why there are standard, well-developed computer programs to do the
Fourier analysis.

15.4 Derivatives
There are a few simple, but important relations involving differentiation. What is the Fourier transform
of the derivative of a function? Do some partial integration.

F(ḟ) =

∫
dt eiωt

df
dt

= eiωtf(t)
∣∣∣∞
−∞
− iω

∫
dt eiωtf(t) = −iωF(f) (15.12)

Here I’ve introduced the occasionally useful notation that F(f) is the Fourier transform of f . The
boundary terms in the partial integration will go to zero if you assume that the function f approaches
zero at infinity.

The nth time derivative simply give you more factors: (−iω)n on the transformed function.

15.5 Green’s Functions
This technique showed up in the chapter on ordinary differential equations, section 4.6, as a method to
solve the forced harmonic oscillator. In that instance I said that you can look at a force as a succession
of impulses, as if you’re looking at the atomic level and visualizing a force as many tiny collisions by
atoms. Here I’ll get to the same sort of result as an application of transform methods. The basic
technique is to Fourier transform everything in sight.

The damped, forced harmonic oscillator differential equation is

m
d2x
dt2

+ b
dx
dt

+ kx = F0(t) (15.13)

Multiply by eiωt and integrate over all time. You do the transforms of the derivatives by partial
integration as in Eq. (15.12).∫ ∞

−∞
dt eiωt [Eq. (15.13)] = −mω2x̃− ibωx̃+ kx̃ = F̃0, where x̃(ω) =

∫ ∞
−∞

dt eiωtx(t)

This is an algebraic equation that is easy to solve for the function x̃(ω).

x̃(ω) =
F̃0(ω)

−mω2 − ibω + k

Now use the inverse transform to recover the function x(t).

x(t) =

∫ ∞
−∞

dω
2π
e−iωtx̃(ω) =

∫
dω
2π
e−iωt

F̃0(ω)

−mω2 − ibω + k

=

∫
dω
2π

e−iωt

−mω2 − ibω + k

∫
dt′ F0(t′ )eiωt

′

=

∫
dt′ F0(t′ )

∫
dω
2π

e−iωt

−mω2 − ibω + k
eiωt

′
(15.14)
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In the last line I interchanged the order of integration, and in the preceding line I had to be sure to use
another symbol t′ in the second integral, not t. Now do the ω integral.∫ ∞

−∞

dω
2π

e−iωt

−mω2 − ibω + k
eiωt

′
=

∫ ∞
−∞

dω
2π

e−iω(t−t′)

−mω2 − ibω + k
(15.15)

To do this, use contour integration. The singularities of the integrand are at the roots of the denomi-
nator, −mω2 − ibω + k = 0. They are

ω =
−ib±

√
−b2 + 4km
2m

= ω±

C1

C2

Both of these poles are in the lower half complex plane. The contour integral C1 is along the real axis,
and now I have to decide where to push the contour in order to use the residue theorem. This will be
governed by the exponential, e−iω(t−t′).

First take the case t < t′, then e−iω(t−t′) is of the form e+iω, so in the complex ω-plane its
behavior in the ±i directions is as a decaying exponential toward +i (∝ e−|ω|). It is a rising exponential
toward −i (∝ e+|ω|). This means that pushing the contour C1 up toward C2 and beyond will make
this integral go to zero. I’ve crossed no singularities, so that means that Eq. (15.15) is zero for t < t′.

Next, the case that t > t′. Now e−iω(t−t′) is of the form e−iω, so its behavior is reversed from
that of the preceding paragraph. It dies off rapidly toward −i∞ and rises in the opposite direction.
That means that I must push the contour in the opposite direction, down to C3 and to C4. Because
of the decaying exponential, the large arc of the contour that is pushed down to −i∞ gives zero for its
integral; the two lines that parallel the i-axis cancel each other; only the two residues remain.

∫ ∞
−∞

dω
2π

e−iω(t−t′)

−mω2 − ibω + k
= −2πi

∑
ω±

Res

C3

C4

(15.16)

The denominator in Eq. (15.15) is −m(ω − ω+)(ω − ω−). Use this form to compute the residues.
Leave the 1/2π aside for the moment and you have

e−iω(t−t′)

−mω2 − ibω + k
=

e−iω(t−t′)

−m(ω − ω+)(ω − ω−)

The residues of this at ω± are the coefficients of these first order poles.

at ω+:
e−iω+(t−t′)

−m(ω+ − ω−)
and at ω−:

e−iω−(t−t′)

−m(ω− − ω+)
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The explicit values of ω± are

ω+ =
−ib+

√
−b2 + 4km
2m

and ω− =
−ib−

√
−b2 + 4km
2m

Let ω′ =

√
−b2 + 4km

2m
and γ =

b
2m

The difference that appears in the preceding equation is then

ω+ − ω− = (ω′ − iγ)− (−ω′ − iγ) = 2ω′

Eq. (15.16) is then∫ ∞
−∞

dω
2π

. e−iω(t−t′)

−mω2 − ibω + k
= −i

[
e−i(ω

′−iγ)(t−t′)

−2mω′
+
e−i(−ω

′−iγ)(t−t′)

+2mω′

]

=
−i

2mω′
e−γ(t−t′)[− e−iω′(t−t′) + e+iω′(t−t′)]

=
1

mω′
e−γ(t−t′) sin

(
ω′(t− t′)

)
Put this back into Eq. (15.14) and you have

x(t) =

∫ t

−∞
dt′ F0(t′)G(t− t′), where G(t− t′) =

1

mω′
e−γ(t−t′) sin

(
ω′(t− t′)

)
(15.17)

If you eliminate the damping term, setting b = 0, this is exactly the same as Eq. (4.34). The integral
stops at t′ = t because the Green’s function vanishes beyond there. The motion at time t is determined
by the force that was applied in the past, not the future.

Example
Apply a constant external force to a damped harmonic oscillator, starting it at time t = 0 and keeping
it on. What is the resulting motion?

F0(t) =

{
0 (t < 0)
F1 (t > 0)

where F1 is a constant. The equation (15.17) says that the solution is (t > 0)

x(t) =

∫ t

−∞
dt′ F0(t′)G(t− t′) =

∫ t

0
dt′ F1G(t− t′)

= F1

∫ t

0
dt′

1

mω′
e−γ(t−t′) sin

(
ω′(t− t′)

)
=

F1

2imω′

∫ t

0
dt′e−γ(t−t′)[eiω′(t−t′) − e−iω′(t−t′)]

=
F1

2imω′

[
1

γ − iω′
e(−γ+iω′)(t−t′) − 1

γ + iω′
e(−γ−iω′)(t−t′)

]t′=t
t′=0

=
F1

2imω′

[
2iω′

γ2 + ω′2
− e−γt

γ2 + ω′2
[
2iγ sinω′t+ 2iω′ cosω′t

]]
=

F1

m(γ2 + ω′2)

[
1− e−γt

[
cosω′t+

γ
ω′

sinω′t
]]

Check the answer. If t = 0 it is correct; x(0) = 0 as it should.
If t→∞, x(t) goes to F1/

(
m(γ2 +ω′2)

)
; is this correct? Check it out! And maybe simplify the result

in the process. Is the small time behavior correct?
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15.6 Sine and Cosine Transforms
Return to the first section of this chapter and look again at the derivation of the Fourier transform. It
started with the Fourier series on the interval −L < x < L and used periodic boundary conditions to
define which series to use. Then the limit as L→∞ led to the transform.

What if you know the function only for positive values of its argument? If you want to write
f(x) as a series when you know it only for 0 < x < L, it doesn’t make much sense to start the way
I did in section 15.1. Instead, pick the boundary condition at x = 0 carefully because this time the
boundary won’t go away in the limit that L→∞. The two common choices to define the basis are

u(0) = 0 = u(L), and u′(0) = 0 = u′(L) (15.18)

Start with the first, then un(x) = sin(nπx/L) for positive n. The equation (15.2) is unchanged, save
for the limits.

f(x) =
∞∑
1

an un(x), and
〈
um, f

〉
=
〈
um,

∞∑
n=1

an un
〉

= am
〈
um, um

〉
In this basis,

〈
um, um

〉
= L/2, so

f(x) =
∞∑
n=1

〈
un, f

〉〈
un, un

〉un(x) =
2

L

∞∑
n=1

〈
un, f

〉
un(x)

Now explicitly use the sine functions to finish the manipulation, and as in the work leading up to
Eq. (15.3), denote kn = πn/L, and the difference ∆kn = π/L.

f(x) =
2

L

∞∑
1

∫ L

0
dx′f(x′) sin

nπx′

L
sin

nπx
L

=
2

π

∞∑
1

sin
nπx
L

∆kn

∫ L

0
dx′f(x′) sinnπx′/L (15.19)

For a given value of k, define the integral

g
L

(k) =

∫ L

0
dx′ sin(kx′)f(x′)

If the function f vanishes sufficiently fast as x′ →∞, this integral will have a limit as L→∞. Call that
limit g(k). Look back at Eq. (15.19) and you see that for large L the last factor will be approximately
g(kn), where the approximation becomes exact as L→∞. Rewrite that expression as

f(x) ≈ 2

π

∞∑
1

sin(knx)∆kn g(kn) (15.20)

As L→∞, you have ∆kn → 0, and that turns Eq. (15.20) into an integral.

f(x) =
2

π

∫ ∞
0

dk sinkx g(k), where g(k) =

∫ ∞
0

dx sinkxf (x) (15.21)
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This is the Fourier Sine transform. For a parallel calculation leading to the Cosine transform, see
problem 15.22, where you will find that the equations are the same except for changing sine to cosine.

f(x) =
2

π

∫ ∞
0

dk cos kx g(k), where g(k) =

∫ ∞
0

dx cos kxf (x) (15.22)

What is the sine transform of a derivative? Integrate by parts, remembering that f has to
approach zero at infinity for any of this to make sense.∫ ∞

0
dx sin kxf ′(x) = sinkxf(x)

∣∣∣∣∞
0

− k
∫ ∞

0
dx cos kxf (x) = −k

∫ ∞
0

dx cos kxf (x)

For the second derivative, repeat the process.∫ ∞
0

dx sinkxf ′′(x) = kf(0)− k2

∫ ∞
0

dx sinkxf (x) (15.23)

15.7 Wiener-Khinchine Theorem
If a function of time represents the pressure amplitude of a sound wave or the electric field of an
electromagnetic wave the power received is proportional to the amplitude squared. By Parseval’s identity,
the absolute square of the Fourier transform has an integral proportional to the integral of this power.
This leads to the interpretation of the transform squared as some sort of power density in frequency.
|g(ω)|2dω is then a power received in this frequency interval. When this energy interpretation isn’t
appropriate, |g(ω)|2 is called the “spectral density.” A useful result appears by looking at the Fourier
transform of this function.∫

dω
2π
|g(ω)|2e−iωt =

∫
dω
2π
g*(ω)e−iωt

∫
dt′ f(t′)eiωt

′

=

∫
dt′ f(t′)

∫
dω
2π
g*(ω)eiωt

′
e−iωt

=

∫
dt′ f(t′)

[∫
dω
2π
g(ω)e−iω(t′−t)

]
*

=

∫
dt′ f(t′)f(t′ − t)* (15.24)

When you’re dealing with a real f , this last integral is called the autocorrelation function. It tells you
in some average way how closely related a signal is to the same signal at some other time. If the signal
that you are examining is just noise then what happens now will be unrelated to what happened a few
milliseconds ago and this autocorrelation function will be close to zero. If there is structure in the signal
then this function gives a lot of information about it.

The left side of this whole equation involves two Fourier transforms ( f → g, then |g|2 to it’s
transform). The right side of this theorem seems to be easier and more direct to compute than the left,
so why is this relation useful? It is because of the existence of the FFT, the “Fast Fourier Transform,”
an algorithm that makes the process of Fourier transforming a set of data far more efficient than doing
it by straight-forward numerical integration methods — faster by factors that reach into the thousands
for large data sets.
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Problems

15.1 Invert the Fourier transform, g, in Eq. (15.7).

15.2 What is the Fourier transform of eik0x−x
2/σ2

? Ans: A translation of the k0 = 0 case

15.3 What is the Fourier transform of xe−x
2/σ2

?

15.4 What is the square of the Fourier transform operator? That is, what is the Fourier transform of
the Fourier transform?

15.5 A function is defined to be

f(x) =

{
1 (−a < x < a)
0 (elsewhere)

What is the convolution of f with itself? (f ∗ f)(x) And graph it of course. Start by graphing both
f(x′) and the other factor that goes into the convolution integral.
Ans: (2a− |x|) for (−2a < x < +2a), and zero elsewhere.

15.6 Two functions are

f1(x) =

{
1 (a < x < b)
0 (elsewhere)

and f2(x) =

{
1 (A < x < B)
0 (elsewhere)

What is the convolution of f1 with f2? And graph it.

15.7 Derive these properties of the convolution:
(a) f ∗g = g∗f (b) f ∗(g∗h) = (f ∗g)∗h (c) δ(f ∗g) = f ∗δg+g∗δf where δf (t) = tf(t),
δg(t) = tg(t), etc. (d) What are δ2(f ∗ g) and δ3(f ∗ g)?

15.8 Show that you can rewrite Eq. (15.9) as

F(f ∗ g) = F(f) .F(g)

where the shorthand notation F(f) is the Fourier transform of f .

15.9 Derive Eq. (15.10) from Eq. (15.9).

15.10 What is the analog of Eq. (15.10) for two different functions? That is, relate the scalar product
of two functions, 〈

f1, f2

〉
=

∫ ∞
−∞

f *
1 (x)f2(x)

to their Fourier transforms. Ans:
∫
g*

1(k)g2(k) dk/2π

15.11 In the derivation of the harmonic oscillator Green’s function, and starting with Eq. (15.15), I
assumed that the oscillator is underdamped: that b2 < 4km. Now assume the reverse, the overdamped
case, and repeat the calculation.

15.12 Repeat the preceding problem, but now do the critically damped case, for which b2 = 4km.
Compare your result to the result that you get by taking the limit of critical damping in the preceding
problem and in Eq. (15.17).
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15.13 Show that if f(t) is real then the Fourier transform satisfies g(−ω) = g*(ω).
What are the properties of g if f is respectively even or odd?

15.14 Evaluate the Fourier transform of

f(x) =

{
A
(
a− |x|

)
(−a < x < a)

0 (otherwise)

How do the properties of the transform vary as the parameter a varies?
Ans: 2A(1− cos ka)

/
k2

15.15 Evaluate the Fourier transform of Ae−α|x|. Invert the transform to verify that it takes you back
to the original function. Ans: 2α/(α2 + k2)

15.16 Given that the Fourier transform of f(x) is g(k), what is the Fourier transform of the function
translated a distance a to the right, f1(x) = f(x− a)?

15.17 Schroedinger’s equation is

−ih̄∂ψ
∂t

= − h̄
2

2m
∂2ψ
∂x2

+ V (x)ψ

Fourier transform the whole equation with respect to x, and find the equation for Φ(k, t), the Fourier
transform of ψ(x, t). The result will not be a differential equation.
Ans: −ih̄∂Φ(k, t)/∂t = (h̄2k2/2m)Φ + (v ∗ Φ)/2π

15.18 Take the Green’s function solution to Eq. (15.13) as found in Eq. (15.17) and take the limit
as both k and b go to zero. Verify that the resulting single integral satisfies the original second order
differential equation.

15.19 (a) In problem 15.18 you have the result that a double integral (undoing two derivatives) can
be written as a single integral. Now solve the equation

d3x
dt3

= F (t)
C

directly, using the same method as for Eq. (15.13). You will get a pole at the origin and how do
you handle this, where the contour of integration goes straight through the origin? Answer: Push the
contour up as in the figure. Why? This is what’s called the “retarded solution” for which the value
of x(t) depends on only those values of F (t′) in the past. If you try any other contour to define the
integral you will not get this property. (And sometimes there’s a reason to make another choice.)
(b) Pick a fairly simple F and verify that this gives the right answer.

Ans: 1
2

∫ t
−∞ dt

′ F (t′)(t− t′)2

15.20 Repeat the preceding problem for the fourth derivative. Would you care to conjecture what 31/2
integrals might be? Then perhaps an arbitrary non-integer order?

Ans: 1
6

∫ t
−∞ dt

′ F (t′)(t− t′)3

15.21 What is the Fourier transform of xf(x)? Ans: ig′(k)
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15.22 Repeat the calculations leading to Eq. (15.21), but for the boundary conditions u′(0) = 0 =
u′(L), leading to the Fourier cosine transform.

15.23 For both the sine and cosine transforms, the original function f(x) was defined for positive x
only. Each of these transforms define an extension of f to negative x. This happens because you
compute g(k) and from it get an inverse transform. Nothing stops you from putting a negative value
of x into the answer. What are the results?

15.24 What are the sine and cosine transforms of e−αx. In each case evaluate the inverse transform.

15.25 What is the sine transform of f(x) = 1 for 0 < x < L and f(x) = 0 otherwise. Evaluate the
inverse transform.

15.26 Repeat the preceding calculation for the cosine transform. Graph the two transforms and com-
pare them, including their dependence on L.

15.27 Choose any different way around the pole in problem 15.19, and compute the difference between
the result with your new contour and the result with the old one. Note: Plan ahead before you start
computing.



Calculus of Variations
.

The biggest step from derivatives with one variable to derivatives with many variables is from
one to two. After that, going from two to three was just more algebra and more complicated pictures.
Now the step will be from a finite number of variables to an infinite number. That will require a new
set of tools, yet in many ways the techniques are not very different from those you know.

If you’ve never read chapter 19 of volume II of the Feynman Lectures in Physics, now would be a
good time. It’s a classic introduction to the area. For a deeper look at the subject, pick up MacCluer’s
book referred to in the Bibliography at the beginning of this book.

16.1 Examples

What line provides the shortest distance between two points? A straight line of course, no surprise
there. But not so fast, with a few twists on the question the result won’t be nearly as obvious. How
do I measure the length of a curved (or even straight) line? Typically with a ruler. For the curved
line I have to do successive approximations, breaking the curve into small pieces and adding the finite
number of lengths, eventually taking a limit to express the answer as an integral. Even with a straight
line I will do the same thing if my ruler isn’t long enough.

Put this in terms of how you do the measurement: Go to a local store and purchase a ruler.
It’s made out of some real material, say brass. The curve you’re measuring has been laid out on the
ground, and you move along it, counting the number of times that you use the ruler to go from one
point on the curve to another. If the ruler measures in decimeters and you lay it down 100 times along
the curve, you have your first estimate for the length, 10.0 meters. Do it again, but use a centimeter
length and you need 1008 such lengths: 10.08 meters.

That’s tedious, but simple. Now do it again for another curve and compare their lengths.
Here comes the twist: The ground is not at a uniform temperature. Perhaps you’re making these
measurements over a not-fully-cooled lava flow in Hawaii. Brass will expand when you heat it, so if the
curve whose length you’re measuring passes over a hot spot, then the ruler will expand when you place
it down, and you will need to place it down fewer times to get to the end of the curve. You will measure
the curve as shorter. Now it is not so clear which curve will have the shortest (measured) length. If
you take the straight line and push it over so that it passes through a hotter region, then you may get
a smaller result.

Let the coefficient of expansion of the ruler be α, assumed constant. For modest temperature
changes, the length of the ruler is `′ = (1 +α∆T )`. The length of a curve as measured with this ruler
is ∫

d`
1 + αT

(16.1)

Here I’m taking T = 0 as the base temperature for the ruler and d` is the length you would use if
everything stayed at this temperature. With this measure for length, it becomes an interesting problem
to discover which path has the shortest “length.” The formal term for the path of shortest length is
geodesic.

In section 13.1 you saw integrals that looked very much like this, though applied to a different
problem. There I looked at the time it takes a particle to slide down a curve under gravity. That time is
the integral of dt = d`/v, where v is the particle’s speed, a function of position along the path. Using

383
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conservation of energy, the expression for the time to slide down a curve was Eq. (13.6).

x

y

∫
dt =

∫
d`√

(2E/m) + 2gy
(16.2)

In that chapter I didn’t attempt to answer the question about which curve provides the quickest route to
the end, but in this chapter I will. Even qualitatively you can see a parallel between these two problems.
You get a shorter length by pushing the curve into a region of higher temperature. You get a shorter
time by pushing the curve lower, (larger y). In the latter case, this means that you drop fast to pick
up speed quickly. In both cases the denominator in the integral is larger. You can overdo it of course.
Push the curve too far and the value of

∫
d` itself can become too big. It’s a balance.

In problems 2.35 and 2.39 you looked at the amount of time it takes light to travel from one
point to another along various paths. Is the time a minimum, a maximum, or neither? In these special
cases, you saw that this is related to the focus of the lens or of the mirror. This is a very general
property of optical systems, and is an extension of some of the ideas in the first two examples above.

These questions are sometimes pretty and elegant, but are they related to anything else? Yes.
Newton’s classical mechanics can be reformulated in this language and it leads to powerful methods to
set up the equations of motion in complicated problems. The same ideas lead to useful approximation
techniques in electromagnetism, allowing you to obtain high-accuracy solutions to problems for which
there is no solution by other means.

16.2 Functional Derivatives
It is time to get specific and to implement* these concepts. All the preceding examples can be expressed
in the same general form. In a standard x-y rectangular coordinate system,

d` =
√
dx2 + dy2 = dx

√
1 +

(
dy
dx

)2

= dx
√

1 + y′2

Then Eq. (16.1) is ∫ b

a
dx

√
1 + y′2

1 + αT (x, y)
(16.3)

This measured length depends on the path, and I’ve assumed that I can express the path with y as a
function of x. No loops. You can allow more general paths by using another parametrization: x(t) and
y(t). Then the same integral becomes

∫ t2

t1
dt

√
ẋ2 + ẏ2

1 + αT
(
x(t), y(t)

) (16.4)

The equation (16.2) has the same form

∫ b

a
dx

√
1 + y′2√

(2E/m) + 2gy

* If you find the methods used in this section confusing, you may prefer to look at an alternate
approach to the subject as described in section 16.6. Then return here.
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And the travel time for light through an optical system is∫
dt =

∫
d`
v

=

∫ b

a
dx

√
1 + y′2

v(x, y)

where the speed of light is some known function of the position.
In all of these cases the output of the integral depends on the path taken. It is a functional of

the path, a scalar-valued function of a function variable. Denote the argument by square brackets.

I[y] =

∫ b

a
dxF

(
x, y(x), y′(x)

)
(16.5)

The specific F varies from problem to problem, but the preceding examples all have this general form,
even when expressed in the parametrized variables of Eq. (16.4).

The idea of differential calculus is that you can get information about a function if you try chang-
ing the independent variable by a small amount. Do the same thing here. Now however the independent
variable is the whole path, so I’ll change that path by some small amount and see what happens to the
value of the integral I . This approach to the subject is due to Lagrange. The development in section
16.6 comes from Euler.

δy

y

y + δy

∆I = I[y + δy]− I[y]

=

∫ b+∆b

a+∆a
dxF

(
x, y(x) + δy(x), y′(x) + δy′(x)

)
−
∫ b

a
dxF

(
x, y(x), y′(x)

) (16.6)

The (small) function δy(x) is the vertical displacement of the path in this coordinate system.
To keep life simple for the first attack on this problem, I’ll take the special case for which the endpoints
of the path are fixed. That is,

∆a = 0, ∆b = 0, δy(a) = 0, δy(b) = 0

δy

y

y + δy

To compute the value of Eq. (16.6) use the power series expansion of F , as in section 2.5.

F (x+ ∆x, y + ∆y, z + ∆z) = F (x, y, z) +
∂F
∂x

∆x+
∂F
∂y

∆y +
∂F
∂z

∆z

+
∂2F
∂x2

(∆x)2

2
+
∂2F
∂x∂y

∆x∆y + · · ·

For now look at just the lowest order terms, linear in the changes, so ignore the second order terms. In
this application, there is no ∆x.

F (x, y + δy, y′ + δy′) = F (x, y, y′) +
∂F
∂y

δy +
∂F
∂y′

δy′
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plus terms of higher order in δy and δy′.
Put this into Eq. (16.6), and

δI =

∫ b

a
dx

[
∂F
∂y

δy +
∂F
∂y′

δy′
]

(16.7)

For example, Let F = x2 + y2 + y′ 2 on the interval 0 ≤ x ≤ 1. Take a base path to be a straight
line from (0, 0) to (1, 1). Choose for the change in the path δy(x) = εx(1− x). This is simple and it
satisfies the boundary conditions.

I[y] =

∫ 1

0
dx
[
x2 + y2 + y′2

]
=

∫ 1

0
dx
[
x2 + x2 + 12

]
=

5

3

I[y + δy] =

∫ 1

0

[
x2 +

(
x+ εx(1− x)

)2
+
(
1 + ε(1− 2x)

)2]
=

5

3
+

1

6
ε+

11

30
ε2

(16.8)

The value of Eq. (16.7) is

δI =

∫ 1

0
dx
[
2yδy + 2y′δy′

]
=

∫ 1

0
dx [2xεx(1− x) + 2ε(1− 2x)] =

1

6
ε

Return to the general case of Eq. (16.7) and you will see that I’ve explicitly used only part of the
assumption that the endpoint of the path hasn’t moved, ∆a = ∆b = 0. There’s nothing in the body
of the integral itself that constrains the change in the y-direction, and I had to choose the function δy
by hand so that this constraint held. In order to use the equations δy(a) = δy(b) = 0 more generally,
there is a standard trick: integrate by parts. You’ll always integrate by parts in these calculations.∫ b

a
dx

∂F
∂y′

δy′ =
∫ b

a
dx

∂F
∂y′

d δy
dx

=
∂F
∂y′

δy

∣∣∣∣b
a
−
∫ b

a
dx

d
dx

(
∂F
∂y′

)
δy(x)

This expression allows you to use the information that the path hasn’t moved at its endpoints in the y
direction either. The boundary term from this partial integration is

∂F
∂y′

δy

∣∣∣∣b
a

=
∂F
∂y′
(
b, y(b)

)
δy(b)− ∂F

∂y′
(
a, y(a)

)
δy(a) = 0

Put the last two equations back into the expression for δI , Eq. (16.7) and the result is

δI =

∫ b

a
dx

[
∂F
∂y
− d
dx

(
∂F
∂y′

)]
δy (16.9)

Use this expression for the same example F = x2 + y2 + y′ 2 with y(x) = x and you have

δI =

∫ 1

0
dx

[
2y − d

dx
2y′
]
δy =

∫ 1

0
dx [2x− 0] εx(1− x) =

1

6
ε

This is sort of like Eq. (8.16),

df = ~G . d~r = grad f . d~r = ∇f . d~r =
∂f
∂xk

dxk =
∂f
∂x1

dx1 +
∂f
∂x2

dx2 + · · ·
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The differential change in the function depends linearly on the change d~r in the coordinates. It is a sum
over the terms with dx1, dx2, . . . . This is a precise parallel to Eq. (16.9), except that the sum over
discrete index k is now an integral over the continuous index x. The change in I is a linear functional of
the change δy in the independent variable y; this δy corresponds to the change d~r in the independent
variable ~r in the other case. The coefficient of the change, instead of being called the gradient, is called
the “functional derivative” though it’s essentially the same thing.

δI
δy

=
∂F
∂y
− d
dx

(
∂F
∂y′

)
, δI[y, δy] =

∫
dx

δI
δy

(
x, y(x), y′(x)

)
δy(x) (16.10)

and for a change, I’ve indicated explicitly the dependence of δI on the two functions y and δy. This
parallels the equation (8.13). The statement that this functional derivative vanishes is called the Euler-
Lagrange equation.

Return to the example F = x2 + y2 + y′2, then

δI
δy

=
δ
δy

∫ 1

0
dx
[
x2 + y2 + y′2

]
= 2y − d

dx
2y′ = 2y − 2y′′

What is the minimum value of I? Set this derivative to zero.

y′′ − y = 0 =⇒ y(x) = A coshx+B sinhx

The boundary conditions y(0) = 0 and y(1) = 1 imply y = B sinhx where B = 1/ sinh 1. The value
of I at this point is

I[B sinhx] =

∫ 1

0
dx
[
x2 +B2 sinh2 x+B2 cosh2 x

]
=

1

3
+ coth 1 (16.11)

Is it a minimum? Yes, but just as with the ordinary derivative, you have to look at the next order
terms to determine that. Compare this value of I[y] = 1.64637 to the value 5/3 found for the nearby
function y(x) = x, evaluated in Eq. (16.8).

Return to one of the examples in the introduction. What is the shortest distance between two
points, but for now assume that there’s no temperature variation. Write the length of a path for a
function y between fixed endpoints, take the derivative, and set that equal to zero.

L[y] =

∫ b

a
dx
√

1 + y′2, so

δL
δy

= − d
dx

y′√
1 + y′2

= − y′′√
1 + y′2

+
y′2 y′′(

1 + y′2
)3/2

=
−y′′(

1 + y′2
)3/2

= 0

For a minimum length then, y′′ = 0, and that’s a straight line. Surprise!
Do you really have to work through this mildly messy manipulation? Sometimes, but not here.

Just notice that the derivative is in the form

δL
δy

= − d
dx
f(y′) = 0 (16.12)

so it doesn’t matter what the particular f is and you get a straight line. f(y′) is a constant so y′ must
be constant too. Not so fast! See section 16.9 for another opinion.
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16.3 Brachistochrone
Now for a tougher example, again from the introduction. In Eq. (16.2), which of all the paths between
fixed initial and final points provides the path of least time for a particle sliding along it under gravity.
Such a path is called a brachistochrone. This problem was first proposed by Bernoulli (one of them), and
was solved by several people including Newton, though it’s unlikely that he used the methods developed
here, as the general structure we now call the calculus of variations was decades in the future.

Assume that the particle starts from rest so that E = 0, then

T [y] =

∫ x0

0
dx

√
1 + y′2√

2gy
(16.13)

For the minimum time, compute the derivative and set it to zero.

√
2g
δT
δy

= −
√

1 + y′2

2y3/2
− d
dx

y′

2
√
y
√

1 + y′2
= 0

This is starting to look intimidating, leading to an impossibly* messy differential equation. Is there
another way? Yes. Why must x be the independent variable? What about using y? In the general
setup leading to Eq. (16.10) nothing changes except the symbols, and you have

I[x] =

∫
dy F (y, x, x′) −→ δI

δx
=
∂F
∂x
− d
dy

(
∂F
∂x′

)
(16.14)

Equation (16.13) becomes

T [x] =

∫ y0

0
dy

√
1 + x′2√

2gy
(16.15)

The function x does not appear explicitly in this integral, just its derivative x′ = dx/dy. This simplifies
the functional derivative, and the minimum time now comes from the equation

δI
δx

= 0− d
dy

(
∂F
∂x′

)
= 0 (16.16)

This is much easier. d()/dy = 0 means that the object in parentheses is a constant.

∂F
∂x′

= C =
1√
2gy

x′√
1 + x′2

Solve this for x′ and you get (let K = C
√

2g)

x′ =
dx
dy

=

√
K2y

1−K2y
, so x(y) =

∫
dy

√
K2y

1−K2y

This is an elementary integral. Let 2a = 1/K2

x(y) =

∫
dy

y√
2ay − y2

=

∫
dy

y√
a2 − a2 + 2ay − y2

=

∫
dy

(y − a) + a√
a2 − (y − a)2

* Only improbably. See problem 16.12.
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Make the substitution (y − a)2 = z in the first half of the integral and (y − a) = a sin θ in the second
half.

x(y) =
1

2

∫
dz

1√
a2 − z

+

∫
a2 cos θdθ√
a2 − a2 sin2 θ

= −
√
a2 − z + aθ = −

√
a2 − (y − a)2 + a sin−1

(
y − a
a

)
+C ′

The boundary condition that x(0) = 0 determinesC ′ = aπ/2, and the other end of the curve determines
a: x(y0) = x0. You can rewrite this as

x(y) = −
√

2ay − y2 + a cos−1

(
a− y
a

)
(16.17)

This is a cycloid. What’s a cycloid and why does this equation describe one? See problem 16.2.

x-independent
In Eqs. (16.15) and (16.16) there was a special case for which the dependent variable was missing from
F . That made the equation much simpler. What if the independent variable is missing? Does that
provide a comparable simplification? Yes, but it’s trickier to find.

I[y] =

∫
dxF (x, y, y′) −→ δI

δy
=
∂F
∂y
− d
dx

(
∂F
∂y′

)
= 0 (16.18)

Use the chain rule to differentiate F with respect to x.

dF
dx

=
∂F
∂x

+
dy
dx
∂F
∂y

+
dy′

dx
∂F
∂y′

(16.19)

Multiply the Lagrange equation (16.18) by y′ to get

y′
∂F
∂y
− y′ d

dx
∂F
∂y′

= 0

Now substitute the term y′(∂F/∂y) from the preceding equation (16.19).

dF
dx
− ∂F
∂x
− dy

′

dx
∂F
∂y′
− y′ d

dx
∂F
∂y′

= 0

The last two terms are the derivative of a product.

dF
dx
− ∂F
∂x
− d
dx

[
y′
∂F
∂y′

]
= 0 (16.20)

If the function F has no explicit x in it, the second term is zero, and the equation is now a derivative

d
dx

[
F − y′∂F

∂y′

]
= 0 and y′

∂F
∂y′
− F = C (16.21)

This is already down to a first order differential equation. The combination y′Fy′ −F that appears on
the left of the second equation is important. It’s called the Hamiltonian.
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16.4 Fermat’s Principle
Fermat’s principle of least time provides a formulation of geometrical optics. When you don’t know
about the wave nature of light, or if you ignore that aspect of the subject, it seems that light travels in
straight lines — at least until it hits something. Of course this isn’t fully correct, because when light
hits a piece of glass it refracts and its path bends and follows Snell’s equation. All of these properties
of light can be described by Fermat’s statement that the path light follows will be that path that takes
the least* time.

T =

∫
dt =

∫
d`
v

=
1

c

∫
nd` (16.22)

The total travel time is the integral of the distance d` over the speed (itself a function of position).
The index of refraction is n = c/v, where c is the speed of light in vacuum, so I can rewrite the travel
time in the above form using n. The integral

∫
nd` is called the optical path.

From this idea it is very easy to derive the rule for reflection at a surface: angle of incidence
equals angle of reflection. It is equally easy to derive Snell’s law. (See problem 16.5.) I’ll look at an
example that would be difficult to do by any means other than Fermat’s principle: Do you remember
what an asphalt road looks like on a very hot day? If you are driving a car on a black colored road
you may see the road in the distance appear to be covered by what looks like water. It has a sort
of mirror-like sheen that is always receding from you — the “hot road mirage”. You can never catch
up to it. This happens because the road is very hot and it heats the air next to it, causing a strong
temperature gradient near the surface. The density of the air decreases with rising temperature because
the pressure is constant. That in turn means that the index of refraction will decrease with the rising
temperature near the surface. The index will then be an increasing function of the distance above
ground level, n = f(y), and the travel time of light will depend on the path taken.∫

nd` =

∫
f(y) d` =

∫
f(y)

√
1 + x′2 dy =

∫
f(y)

√
1 + y′2 dx (16.23)

What is f(y)? I’ll leave that for a moment and then after carrying the calculation through for a while
I can pick an f that is both plausible and easy to manipulate.

road x

y

Should x be the independent variable, or y? Either should work, and I chose y because it seemed
likely to be easier. (See problem 16.6 however.) The integrand then does not contain the dependent
variable x.

minimize

∫
nd` =

∫
f(y)

√
1 + x′2 dy =⇒ d

dy
∂
∂x′

[
f(y)

√
1 + x′2

]
= 0

f(y)
x′√

1 + x′2
= C

Solve for x′ to get

f(y)2x′2 = C2
(
1 + x′2

)
so x′ =

dx
dy

=
C√

f(y)2 −C2
(16.24)

* Not always least. This just requires the first derivative to be zero; the second derivative is
addressed in section 16.10. “Fermat’s principle of stationary time” may be more accurate, but “Fermat’s
principle of least time” is entrenched in the literature.
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At this point pick a form for the index of refraction that will make the integral easy and will still plausibly
represent reality. The index increases gradually above the road surface, and the simplest function works:
f(y) = n0(1 + αy). The index increases linearly above the surface.

x(y) =

∫
C√

n2
0(1 + αy)2 −C2

dy =
C
αn0

∫
dy

1√
(y + 1/α)2 −C2/α2n2

0

This is an elementary integral. Let u = y + 1/α, then u = (C/αn0) cosh θ.

x =
C
αn0

∫
dθ ⇒ θ =

αn0

C
(x− x0) ⇒ y = − 1

α
+

C
αn0

cosh
(
(αn0/C)(x− x0)

)
C and x0 are arbitrary constants, and x0 is obviously the center of symmetry of the path. You can
relate the other constant to the y-coordinate at that same point: C = n0(αy0 + 1).

Because the value of α is small for any real roadway, look at the series expansion of this hyperbolic
function to the lowest order in α.

y ≈ y0 + α(x− x0)2/2 (16.25)

When you look down at the road you can be looking at an image of the sky. The light comes from
the sky near the horizon down toward the road at an angle of only a degree or two. It then curves up
so that it can enter your eye as you look along the road. The shimmering surface is a reflection of the
distant sky or in this case an automobile — a mirage.

*

16.5 Electric Fields
The energy density in an electric field is ε0E2/2. For the static case, this electric field is the gradient

of a potential, ~E = −∇φ. Its total energy in a volume is then

W =
ε0
2

∫
dV (∇φ)2 (16.26)

What is the minimum value of this energy? Zero of course, if φ is a constant. That question is too
loosely stated to be much use, but keep with it for a while and it will be possible to turn it into
something more precise and more useful. As with any other derivative taken to find a minimum, change
the independent variable by a small amount. This time the variable is the function φ, so really this
quantity W can more fully be written as a functional W [φ] to indicate its dependence on the potential
function.

W [φ+ δφ]−W [φ] =
ε0
2

∫
dV
(
∇(φ+ δφ)

)2 − ε0
2

∫
dV (∇φ)2

=
ε0
2

∫
dV
(
2∇φ .∇δφ+ (∇δφ)2

)
* Donald Collins, Warren Wilson College
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Now pull out a vector identity from problem 9.36,

∇ .
(
f~g
)

= ∇f .~g + f∇ .~g

and apply it to the previous line with f = δφ and ~g = ∇φ.

W [φ+ δφ]−W [φ] = ε0

∫
dV

[
∇ .(δφ∇φ)− δφ∇2φ

]
+
ε0
2

∫
dV (∇δφ)2

The divergence term is set up to use Gauss’s theorem; this is the vector version of integration by parts.

W [φ+ δφ]−W [φ] = ε0

∮
d ~A .(∇φ)δφ− ε0

∫
dV δφ∇2φ+

ε0
2

∫
dV (∇δφ)2 (16.27)

If the value of the potential φ is specified everywhere on the boundary, then I’m not allowed to change
it in the process of finding the change in W . That means that δφ vanishes on the boundary. That

makes the boundary term, the d ~A integral, vanish. Its integrand is zero everywhere on the surface of
integration.

In looking for a minimum energy I want to set the first derivative to zero, and that’s the coefficient
of the term linear in δφ.

δW
δφ

= −ε0∇2φ = 0

The function that produces the minimum value of the total energy (with these fixed boundary conditions)
is the one that satisfies Laplace’s equation. Is it really a minimum? Yes. In this instance it’s very easy
to see that. The extra term in the change of W is

∫
dV (∇δφ)2. That is positive no matter what δφ

is.

That the correct potential function is the one having the minimum energy allows for an efficient
approximate method to solve electrostatic problems. I’ll illustrate this using an example borrowed from
the Feynman Lectures in Physics and that you can also solve exactly: What is the capacitance of a
length of coaxial cable? (Neglect the edge effects at the ends of the cable of course.) Let the inner
and outer radii be a and b, and the length L. A charge density λ is on the inner conductor (and
therefore −λ on the inside of the outer conductor). It creates a radial electric field of size λ/2πε0r.
The potential difference between the conductors is

∆V =

∫ b

a
dr

λ
2πε0r

=
λ ln(b/a)

2πε0
(16.28)

The charge on the inner conductor is λL, so C = Q/∆V = 2πε0L
/

ln(b/a), where ∆V = Vb − Va.

The total energy satisfies W = C∆V 2/2, so for the given potential difference, knowing the
energy is the same as knowing the capacitance.

This exact solution provides a laboratory to test the efficacy of a variational approximation for
the same problem. The idea behind this method is that you assume a form for the solution φ(r). This
assumed form must satisfy the boundary conditions, but it need not satisfy Laplace’s equation. It should
also have one or more free parameters, the more the better up to the limits of your patience. Now
compute the total energy that this trial function implies and then use the free parameters to minimize
it. This function with minimum energy is the best approximation to the correct potential among all
those with your assumed trial function.
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Let the potential at r = a be Va and at r = b it is Vb. An example function that satisfies these
conditions is

φ(r) = Va + (Vb − Va)
r − a
b− a

(16.29)

The electric field implied by this is ~E = −∇φ = r̂ (Va − Vb)/(b − a), a constant radial component.
From (16.26), the energy is

ε0
2

∫ b

a
L 2πr dr

(
dφ
dr

)2

=
ε0
2

∫ b

a
L 2πr dr

(
Vb − Va
b− a

)2

=
1

2
πLε0

b+ a
b− a

∆V 2

Set this to C∆V 2/2 to get C and you have

Capprox = πLε0
b+ a
b− a

How does this compare to the exact answer, 2πε0L/ ln(b/a)? Let x = b/a.

Capprox

C
=

1

2

b+ a
b− a

ln(b/a) =
1

2

x+ 1

x− 1
lnx

x: 1.1 1.2 1.5 2.0 3.0 10.0
ratio: 1.0007 1.003 1.014 1.04 1.10 1.41

Assuming a constant magnitude electric field in the region between the two cylinders is clearly
not correct, but this estimate of the capacitance gives a remarkable good result even when the ratio
of the radii is two or three. This is true even though I didn’t even put in a parameter with which to
minimize the energy. How much better will the result be if I do?

Instead of a linear approximation for the potential, use a quadratic.

φ(r) = Va + α(r − a) + β(r − a)2, with φ(b) = Vb

Solve for α in terms of β and you have, after a little manipulation,

φ(r) = Va + ∆V
r − a
b− a

+ β(r − a)(r − b) (16.30)

Compute the energy from this.

W =
ε0
2

∫ b

a
L 2πr dr

[
∆V
b− a

+ β(2r − a− b)
]2

Rearrange this for easier manipulation by defining 2β = γ∆V/(b− a) and c = (a+ b)/2 then

W =
ε0
2

2Lπ

(
∆V
b− a

)2 ∫ (
(r − c) + c

)
dr
[
1 + γ(r − c)

]2
=
ε0
2

2Lπ

(
∆V
b− a

)2 [
c(b− a) + γ(b− a)3/6 + cγ2(b− a)3/12

]
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γ is a free parameter in this calculation, replacing the original β. To minimize this energy, set the
derivative dW/dγ = 0, resulting in the value γ = −1/c. At this value of γ the energy is

W =
ε0
2

2Lπ

(
∆V
b− a

)2 [1

2

(
b2 − a2

)
− (b− a)3

6(b+ a)

]
(16.31)

Except for the factor of ∆V 2/2 this is the new estimate of the capacitance, and to see how good it is,
again take the ratio of this estimate to the exact value and let x = b/a.

C ′approx
C

= lnx
1

2

x+ 1

x− 1

[
1− (x− 1)2

3(x+ 1)2

]
(16.32)

x: 1.1 1.2 1.5 2.0 3.0 10.0
ratio: 1.00000046 1.000006 1.00015 1.0012 1.0071 1.093

For only a one parameter adjustment, this provides very high accuracy. This sort of technique is the
basis for many similar procedures in this and other contexts, especially in quantum mechanics.

16.6 Discrete Version
There is another way to find the functional derivative, one that more closely parallels the ordinary partial
derivative. It is due to Euler, and he found it first, before Lagrange’s discovery of the treatment that I’ve
spent all this time on. Euler’s method is perhaps more intuitive than Lagrange’s, but it is not as easy
to extend it to more than one dimension and it doesn’t easily lend itself to the powerful manipulative
tools that Lagrange’s method does. This alternate method starts by noting that an integral is the limit
of a sum. Go back to the sum and perform the derivative on it, finally taking a limit to get an integral.
This turns the problem into a finite-dimensional one with ordinary partial derivatives. You have to
decide which form of numerical integration to use, and I’ll pick the trapezoidal rule, Eq. (11.15), with a
constant interval. Other choices work too, but I think this entails less fuss. You don’t see this approach
as often as Lagrange’s because it is harder to manipulate the equations with Euler’s method, and
the notation can become quite cumbersome. The trapezoidal rule for an integral is just the following
picture, and all that you have to handle with any care are the endpoints of the integral.

xk xk+1

yk
yk+1

xk = a+ k∆, 0 ≤ k ≤ N where
b− a
N

= ∆∫ b

a
dx f(x) = lim

[
1

2
f(a) +

N−1∑
1

f(xk) +
1

2
f(b)

]
∆

The integral Eq. (16.5) involves y′, so in the same spirit, approximate this by the centered difference.

y′k = y′(xk) ≈
(
y(xk+1)− y(xk−1)

)
/2∆

This evaluates the derivative at each of the coordinates {xk} instead of between them.
The discrete form of (16.5) is now

Idiscrete =
∆

2
F
(
a, y(a), y′(a)

)
+
N−1∑

1

F
(
xk, y(xk), (y(xk+1)− y(xk−1))/2∆

)
∆ +

∆

2
F
(
b, y(b), y′(b)

)
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Not quite yet. What about y′(a) and y′(b)? The endpoints y(a) and y(b) aren’t changing, but that
doesn’t mean that the slope there is fixed. At these two points, I can’t use the centered difference
scheme for the derivative, I’ll have to use an asymmetric form to give

Idiscrete =
∆

2
F
(
a, y(a), (y(x1)− y(x0))/∆

)
+

∆

2
F
(
b, y(b), (y(xN )− y(xN−1))/∆

)
+
N−1∑

1

F
(
xk, y(xk), (y(xk+1)− y(xk−1))/2∆

)
∆

(16.33)

When you keep the endpoints fixed, this is a function of N − 1 variables, {yk = y(xk)} for
1 ≤ k ≤ N − 1, and to find the minimum or maximum you simply take the partial derivative with
respect to each of them. It is not a function of any of the {xk} because those are defined and fixed by
the partition xk = a+ k∆. The clumsy part is keeping track of the notation. When you differentiate
with respect to a particular y`, most of the terms in the sum (16.33) don’t contain it. There are only
three terms in the sum that contribute: ` and ` ± 1. In the figure N = 5, and the ` = 2 coordinate
(y2) is being changed. For all the indices ` except the two next to the endpoints (1 and N − 1), this is

∂
∂y`

Idiscrete =
∂
∂y`

[
F
(
x`−1, y`−1, (y` − y`−2)/2∆

)
+

F
(
x`, y`, (y`+1 − y`−1)/2∆

)
+

F
(
x`+1, y`+1, (y`+2 − y`)/2∆

)]
∆ 0 1 2 3 4 5

An alternate standard notation for partial derivatives will help to keep track of the manipulations:

D1F is the derivative with respect to the first argument

The above derivative is then[
D2F

(
x`, y`, (y`+1 − y`−1)/2∆

)
+

1

2∆

[
D3F

(
x`−1, y`−1, (y` − y`−2)/2∆

)
−D3F

(
x`+1, y`+1, (y`+2 − y`)/2∆

)]]
∆

(16.34)

There is no D1F because the x` is essentially an index.
If you now take the limit ∆ → 0, the third argument in each function returns to the derivative

y′ evaluated at various xks:[
D2F

(
x`, y`, y

′
`

)
+

1

2∆

[
D3F

(
x`−1, y`−1, y

′
`−1

)
−D3F

(
x`+1, y`+1, y

′
`+1

)]]
∆

=
[
D2F

(
x`, y(x`), y

′(x`)
)

(16.35)

+
1

2∆

[
D3F

(
x`−1, y(x`−1), y′(x`−1)

)
−D3F

(
x`+1, y(x`+1), y′(x`+1)

)]]
∆

Now take the limit that ∆ → 0, and the last part is precisely the definition of (minus) the derivative
with respect to x. This then becomes

1

∆

∂
∂y`

Idisc → D2F
(
x`, y`, y

′
`

)
− d
dx
D3F

(
x`, y`, y

′
`

)
(16.36)
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Translate this into the notation that I’ve been using and you have Eq. (16.10). Why did I divide by
∆ in the final step? That’s the equivalent of looking for the coefficient of both the dx and the δy in
Eq. (16.10). It can be useful to retain the discrete approximation of Eq. (16.34) or (16.35) to the end
of the calculation. This allows you to do numerical calculations in cases where the analytic equations
are too hard to manipulate.

Again, not quite yet. The two cases ` = 1 and ` = N − 1 have to be handled separately. You
need to go back to Eq. (16.33) to see how they work out. The factors show up in different places, but
the final answer is the same. See problem 16.15.

It is curious that when formulating the problem this way, you don’t seem to need a partial
integration. The result came out automatically. Would that be true with some integration method
other other than the trapezoidal rule? See problem 16.16.

16.7 Classical Mechanics
The calculus of variations provides a way to reformulate Newton’s equations of mechanics. The results
produce efficient techniques to set up complex problems and they give insights into the symmetries of
the systems. They also provide alternate directions in which to generalize the original equations.

Start with one particle subject to a force, and the force has a potential energy function U .
Following the traditions of the subject, denote the particle’s kinetic energy by T . Picture this first in
rectangular coordinates, where T = m~v 2/2 and the potential energy is U(x1, x2, x3). The functional
S depends on the path [x1(t), x2(t), x3(t)] from the initial to the final point. The integrand is the
Lagrangian, L = T − U .

S[~r ] =

∫ t2

t1
L
(
~r, ~̇r

)
dt, where L = T − U =

m
2

(
ẋ2

1 + ẋ2
2 + ẋ2

3

)
− U(x1, x2, x3) (16.37)

The statement that the functional derivative is zero is

δS
δxk

=
∂L
∂xk

− d
dt

(
∂L
∂ẋk

)
= − ∂U

∂xk
− d
dt

(
mẋk

)
Set this to zero and you have

mẍk = − ∂U
∂xk

, or m
d2~r
dt2

= ~F (16.38)

That this integral of Ldt has a zero derivative is ~F = m~a. Now what? This may be elegant, but
does it accomplish anything? The first observation is that when you state the problem in terms of this
integral it is independent of the coordinate system. If you specify a path in space, giving the velocity at
each point along the path, the kinetic energy and the potential energy are well-defined at each point on
the path and the integral S is too. You can now pick whatever bizarre coordinate system that you want

in order to do the computation of the functional derivative. Can’t you do this with ~F = m~a ? Yes, but
computing an acceleration in an odd coordinate system is a lot more work than computing a velocity.
A second advantage will be that it’s easier to handle constraints by this method. The technique of
Lagrange multipliers from section 8.12 will apply here too.

Do the simplest example: plane polar coordinates. The kinetic energy is

T =
m
2

(
ṙ2 + r2φ̇2

)
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The potential energy is a function U of r and φ. With the of the Lagrangian defined as T − U , the
variational derivative determines the equations of motion to be

S[r, φ] =

∫ t2

t1
L
(
r(t), φ(t)

)
dt→

δS
δr

=
∂L
∂r
− d
dt
∂L
∂ṙ

= mrφ̇2 − ∂U
∂r
−mr̈ = 0

δS
δφ

=
∂L
∂φ
− d
dt
∂L

∂φ̇
= −∂U

∂φ
−m d

dt

(
r2φ̇
)

= 0

These are the components of ~F = m~a in polar coordinates. If the potential energy is independent of
φ, the second equation says that angular momentum is conserved: mr2φ̇.

What do the discrete approximate equations (16.34) or (16.35) look like in this context? Look
at the case of one-dimensional motion to understand an example. The Lagrangian is

L =
m
2
ẋ2 − U(x)

Take the expression in Eq. (16.34) and set it to zero.

−dU
dx

(x`) +
1

2∆

[
m(x` − x`−2)/2∆−m(x`+2 − x`)/2∆

]
= 0

or m
x`+2 − 2x` + x`−2

(2∆)2
= −dU

dx
(x`) (16.39)

This is the discrete approximation to the second derivative, as in Eq. (11.12).

16.8 Endpoint Variation
Following Eq. (16.6) I restricted the variation of the path so that the endpoints are kept fixed. What
if you don’t? As before, keep terms to the first order, so that for example ∆tb δy is out. Because the
most common application of this method involves integrals with respect to time, I’ll use that integration
variable

∆S =

∫ tb+∆tb

ta+∆ta
dtL

(
t, y(t) + δy(t), ẏ(t) + δẏ(t)

)
−
∫ tb

ta
dtL

(
t, y(t), ẏ(t)

)
=

∫ tb+∆tb

ta+∆ta
dt

[
L(t, y, ẏ) +

∂L
∂y
δy +

∂L
∂ẏ
δẏ

]
−
∫ tb

ta
dtL

(
t, y(t), ẏ(x)

)
=

[∫ tb+∆tb

tb

−
∫ ta+∆ta

ta

]
dtL(t, y, ẏ) +

∫ tb

ta
dt

[
∂L
∂y
δy +

∂L
∂ẏ
δẏ

]
Drop quadratic terms in the second line: anything involving (δy)2 or δyδẏ or (δẏ)2. Similarly, drop
terms such as ∆ta δy in going to the third line. Do a partial integration on the last term∫ tb

ta
dt
∂L
∂ẏ

d δy
dt

=
∂L
∂ẏ
δy

∣∣∣∣tb
ta

−
∫ tb

ta
dt

d
dt

(
∂L
∂ẏ

)
δy(t) (16.40)

The first two terms, with the ∆ta and ∆tb, are to first order[∫ tb+∆tb

tb

−
∫ ta+∆ta

ta

]
dtL(t, y, ẏ) = L

(
(tb, y(tb), ẏ(tb)

)
∆tb − L

(
(ta, y(ta), ẏ(ta)

)
∆ta
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This produces an expression for ∆S

∆S =L
(
(tb, y(tb), ẏ(tb)

)
∆tb − L

(
(ta, y(ta), ẏ(ta)

)
∆ta

+
∂L
∂ẏ

(tb)δy(tb)−
∂L
∂ẏ

(ta)δy(ta) +

∫ tb

ta
dt

[
∂L
∂y
− d
dt

(
∂L
∂ẏ

)]
δy

(16.41)

Up to this point the manipulation was straight-forward, though you had to keep all the algebra
in good order. Now there are some rearrangements needed that are not all that easy to anticipate,
adding and subtracting some terms.

Start by looking at the two terms involving ∆tb and δy(tb) — the first and third terms. The
change in the position of this endpoint is not simply δy(tb). Even if δy is identically zero the endpoint
will change in both the t-direction and in the y-direction because of the slope of the curve (ẏ) and the
change in the value of t at the endpoint (∆tb).

The total movement of the endpoint at tb is horizontal by the amount ∆tb, and it is vertical by
the amount

(
δy + ẏ∆tb

)
. To incorporate this, add and subtract this second term, ẏ∆t, in order to

produce this combination as a coefficient.

y

t
a b

y(t)

y + δy δy
ẏ∆tb

∆tb

L
(
(tb, y(tb), ẏ(tb)

)
∆tb +

∂L
∂ẏ

(tb)δy(tb)

=

[
L(tb)∆tb −

∂L
∂ẏ

(tb)ẏ(tb)∆tb

]
+

[
∂L
∂ẏ

(tb)ẏ(tb)∆tb +
∂L
∂ẏ

(tb)δy(tb)

]
=

[
L− ∂L

∂ẏ
ẏ

]
∆tb +

∂L
∂ẏ

[
ẏ∆tb + δy

]
(16.42)

Do the same thing at ta, keeping the appropriate signs. Then denote

p =
∂L
∂ẏ
, H = pẏ − L, ∆y = δy + ẏ∆t

H is the Hamiltonian and Eq. (16.41) becomes Noether’s theorem.

∆S =

[
p∆y −H∆t

]tb
ta

+

∫ tb

ta
dt

[
∂L
∂y
− d
dt

(
∂L
∂ẏ

)]
δy (16.43)

If the equations of motion are satisfied, the argument of the last integral is zero. The change in S then
comes only from the translation of the endpoint in either the time or space direction. If ∆t is zero, and
∆y is the same at the two ends, you are translating the curve in space — vertically in the graph. Then

∆S = p∆y

∣∣∣∣tb
ta

=
[
p(tb)− p(ta)

]
∆y = 0
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If the physical phenomenon described by this equation is invariant under spacial translation, then
momentum is conserved.

If you do a translation in time instead of space and S is invariant, then ∆t is the same at the
start and finish, and

∆S =
[
−H(tb) +H(ta)

]
∆t = 0

This is conservation of energy. Write out what H is for the case of Eq. (16.37).
If you write this theorem in three dimensions and require that the system is invariant under

rotations, you get conservation of angular momentum. In more complicated system, especially in field
theory, there are other symmetries, and they in turn lead to conservation laws. For example conservation
of charge is associated with a symmetry called “gauge symmetry” in quantum mechanical systems.

The equation (16.10), in which the variation δy had the endpoints fixed, is much like a directional
derivative in multivariable calculus. For a directional derivative you find how a function changes as the
independent variable moves along some specified direction, and in the variational case the direction was
specified to be with functions that were tied down at the endpoints. The development of the present
section is in the spirit of finding the derivative in all possible directions, not just a special set.

16.9 Kinks
In all the preceding analysis of minimizing solutions to variational problems, I assumed that everything
is differentiable and that all the derivatives are continuous. That’s not always so, and it is quite possible
for a solution to one of these problems to have a discontinuous derivative somewhere in the middle.
These are more complicated to handle, but just because of some extra algebra. An integral such as
Eq. (16.5) is perfectly well defined if the integrand has a few discontinuities, but the partial integrations
leading to the Euler-Lagrange equations are not. You can apply the Euler-Lagrange equations only in
the intervals between any kinks.

If you’re dealing with a problem of the standard form I[x] =
∫ b
a dtL(t, x, ẋ) and you want to

determine whether there is a kink along the path, there are some internal boundary conditions that have
to hold. Roughly speaking they are conservation of momentum and conservation of energy, Eq. (16.44),
and you can show this using the results of the preceding section on endpoint variations.

S =

∫ tb

ta
dtL(t, x, ẋ) =

∫ tm

ta
dtL+

∫ tb

tm
dtL

ta tm tb
Assume there is a discontinuity in the derivative ẋ at a point in the middle, tm. The equation to solve is
still δS/δx = 0, and for variations of the path that leave the endpoints and the middle point alone you
have to satisfy the standard Euler-Lagrange differential equations on the two segments. Now however
you also have to set the variation to zero for paths that leave the endpoints alone but move the middle
point.

ta tm tb

∆t

ta tm tb

∆x

Apply Eq. (16.43) to each of the two segments, and assume that the differential equations are
already satisfied in the two halves. For the sort of variation described in the last two figures, look at
the endpoint variations of the two segments. They produce

δS =
[
p∆x−H∆t

]tm
ta

+
[
p∆x−H∆t

]tb
tm

=
[
p∆x−H∆t

]
(t−m)−

[
p∆x−H∆t

]
(t+m) = 0
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These represent the contributions to the variation just above tm and just below it. This has to vanish
for arbitrary ∆t and ∆x, so it says

p(t−m) = p(t+m) and H(t−m) = H(t+m) (16.44)

These equations, called the Weierstrass-Erdmann conditions, are two equations for the values of the
derivative, ẋ, on the two side of tm. The two equations for the two unknowns may tell you that there
is no discontinuity in the derivative, or if there is then it will dictate the algebraic equations that the
two values of ẋ must satisfy. More dimensions means more equations of course.

There is a class of problems in geometry coming under the general
heading of Plateau’s Problem. What is the minimal surface that spans a
given curve? Here the functional is

∫
dA, giving the area as a function of

the function describing the surface. If the curve is a circle in the plane, then
the minimum surface is the spanning disk. What if you twist the circle so
that it does not quite lie in a plane? Now it’s a tough problem. What if you
have two parallel circles? Is the appropriate surface a cylinder? (No.) This
subject is nothing more than the mathematical question of trying to describe
soap bubbles. They’re not all spheres.

Do kinks happen often? They are rare in problems that usually come up in physics, and it seems
to be of more concern to those who apply these techniques in engineering. For an example that you
can verify for yourself however, construct a wire frame in the shape of a cube. You can bend wire or
you can make it out of solder, which is much easier to manipulate. Attach a handle to one corner so
that you can hold it. Now make a soap solution that you can use to blow bubbles. (A trick to make it
work better is to add some glycerine.) Now dip the wire cube into the soap and see what sort of soap
film will result, filling in the surfaces among the wires. It is not what you expect, and has several faces
that meet at surprising angles. There is a square in the middle. This surface has minimum area among
surfaces that span the cube.

Example
In Eq. (16.12), looking at the shortest distance between two points in a plane, I jumped to a conclusion.

To minimize the integral
∫ b
a f(y′)dx, use the Euler-Lagrange differential equation:

∂f
∂y
− d
dx

∂f
∂y′

= f ′(y′)y′′ = 0

This seems to say that f(y′) is a constant or that y′′ = 0, implying either way that y = Ax + B, a
straight line. Now that you know that solutions can have kinks, you have to look more closely. Take
the particular example

f(y′) = αy′4 − βy′2, with y(0) = 0, and y(a) = b (16.45)

One solution corresponds to y′′ = 0 and y(x) = bx/a. Can there be others?
Apply the conditions of Eq. (16.44) at some point between 0 and a. Call it xm, and assume

that the derivative is not continuous. Call the derivatives on the left and right (y′−) and (y′+). The
first equation is

p =
∂L
∂y′

= 4αy′3 − 2βy′, and p(x−m) = p(x+
m)

4α(y′−)3 − 2β(y′−) = 4α(y′+)3 − 2β(y′+)[
(y′−)− (y′+)

][
(y′+)2 + (y′+)(y′−) + (y′−)2 − β/2α

]
= 0
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If the slope is not continuous, the second factor must vanish.

(y′+)2 + (y′+)(y′−) + (y′−)2 − β/2α = 0

This is one equation for the two unknown slopes. For the second equation, use the second condition,
the one on H .

H = y′
∂f
∂y′
− f, and H(x−m) = H(x+

m)

H = y′
[
4αy′3 − 2βy′

]
−
[
αy′4 − βy′2

]
= 3αy′4 − βy′2[

(y′−)− (y′+)
][

(y′+)3 + (y′+)2(y′−) + (y′+)(y′−)2 + (y′−)3 − β
(
(y′+) + (y′−)

)
/3α

]
= 0

Again, if the slope is not continuous this is

(y′+)3 + (y′+)2(y′−) + (y′+)(y′−)2 + (y′−)3 − β
(
(y′+) + (y′−)

)
/3α = 0

These are two equations in the two unknown slopes. It looks messy, but look back at H itself first. It’s
even. That means that its continuity will always hold if the slope simply changes sign.

(y′+) = −(y′−)

Can this work in the other (momentum) equation?

(y′+)2 + (y′+)(y′−) + (y′−)2 − β/2α = 0 is now (y′+)2 = β/2α

As long as α and β have the same sign, this has the solution

(y′+) = ±
√
β/2α, (y′−) = ∓

√
β/2α (16.46)

The boundary conditions on the original problem were y(0) = 0 and y(a) = b. Denote γ = ±
√
β/2α,

and x1 = a/2 + b/2γ, then

y =

{
γx (0 < x < x1)
b− γ(x− a) (x1 < x < b)

y

x

b

a

0

1

2

(16.47)

The paths labeled 0, 1, and 2 are three solutions that make the variational functional derivative vanish.
Which is smallest? Does that answer depend on the choice of the parameters? See problem 16.19.

Are there any other solutions? After all, once you’ve found three, you
should wonder if it stops there. Yes, there are many — infinitely many in
this example. They are characterized by the same slopes, ±γ, but they switch
back and forth several times before coming to the endpoint. The same internal
boundary conditions (p and H) apply at each corner, and there’s nothing in
their solutions saying that there is only one such kink.

Do you encounter such weird behavior often, with an infinite number of solutions? No, but you
see from this example that it doesn’t take a very complicated integrand to produce such a pathology.
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16.10 Second Order

Except for a couple of problems in optics in chapter two, 2.35 and 2.39, I’ve mostly ignored the question
about minimum versus maximum.
• Does it matter in classical mechanics whether the integral,

∫
Ldt is minimum or not in determining

the equations of motion? No.
• In geometric optics, does it matter whether Fermat’s principle of least time for the path of the light
ray is really minimum? Yes, in this case it does, because it provides information about the focus.
• In the calculation of minimum energy electric potentials in a capacitor does it matter? No, but only
because it’s always a minimum.
• In problems in quantum mechanics similar to the electric potential problem, the fact that you’re
dealing sometimes with a minimum and sometimes not leads to some serious technical difficulties.

How do you address this question? The same way you do in ordinary calculus: See what happens
to the second order terms in your expansions. Take the same general form as before and keep terms
through second order. Assume that the endpoints are fixed.

I[y] =

∫ b

a
dxF

(
x, y(x), y′(x)

)
∆I = I[y + δy]− I[y]

=

∫ b

a
dxF

(
x, y(x) + δy(x), y′(x) + δy′(x)

)
−
∫ b

a
dxF

(
x, y(x), y′(x)

)
=

∫ b

a
dx

[
∂F
∂y

δy +
∂F
∂y′

δy′ +
∂2F
∂y2

(
δy
)2

+ 2
∂2F
∂y∂y′

δyδy′ +
∂2F
∂y′2

(
δy′
)2]

(16.48)

If the first two terms combine to zero, this says the first derivative is zero. Now for the next terms.

Recall the similar question that arose in section 8.11. How can you tell if a function of two
variables has a minimum, a maximum, or neither? The answer required looking at the matrix of all the
second derivatives of the function — the Hessian. Now, instead of a 2× 2 matrix as in Eq. (8.31) you
have an integral. 〈

d~r,H d~r
〉

= (dx dy )

(
fxx fxy
fyx fyy

)(
dx
dy

)
−→

∫ b

a
dx ( δy δy′ )

(
Fyy Fyy′
Fy′y Fy′y′

)(
δy
δy′

)
In the two dimensional case ∇f = 0 defines a minimum if the product

〈
d~r,H d~r

〉
is positive for all

possible directions d~r. For this new case the “directions” are the possible functions δy and its derivative
δy′.

The direction to look first is where δy′ is big. The reason is that I can have a very small δy that
has a very big δy′: 10−3 sin

(
106x

)
. If ∆I is to be positive in every direction, it has to be positive in

this one. That requires Fy′y′ > 0.

δy

y + δy
y
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Is it really that simple? No. First the δy terms can be important too, and second y can itself have
several components. Look at the latter first. The final term in Eq. (16.48) should be∫ b

a
dx

∂2F
∂y′m∂y′n

δy′mδy
′
n

This set of partial derivatives of F is at each point along the curve a Hessian. At each point it has a set
of eigenvalues and eigenvectors, and if all along the path all the eigenvalues are always positive, it meets
the first, necessary conditions for the original functional to be a minimum. If you look at an example
from mechanics, for which the independent variable is time, these y′n terms are then ẋn instead. Terms
such as these typically represent kinetic energy and you expect that to be positive.

An example:

S[~r ] =

∫ T

0
dtL(x, y, ẋ, ẏ, t) =

∫ T

0
dt

1

2

[
ẋ2 + ẏ2 + 2γtẋẏ − x2 − y2

]
This is the action for a particle moving in two dimensions (x, y) with the specified Lagrangian. The
equation of motion are

δS
δx

= −x− ẍ− γ(tÿ + ẏ) = 0

δS
δy

= −y − ÿ − γ(tẍ+ ẋ) = 0

If γ = 0 you have two independent harmonic oscillators.
The matrix of derivatives of L with respect to ẋ = ẏ1 and ẏ = ẏ2 is

∂2L
∂ẏm∂ẏn

=

(
1 γt
γt 1

)

The eigenvalues of this matrix are 1 ± γt, with corresponding eigenvectors

(
1
1

)
and

(
1
−1

)
. This

Hessian then says that S should be a minimum up to the time t = 1/γ, but not after that. This is also
a singular point of the differential equations for x and y.

Focus
When the Hessian made from the δy′2 terms has only positive eigenvalues everywhere, the preceding
analysis might lead you to believe that the functional is always a minimum. Not so. That condition is
necessary; it is not sufficient. It says that the functional is a minimum with respect to rapidly oscillating
δy. It does not say what happens if δy changes gradually over the course of the integral. If this
happens, and if the length of the interval of integration is long enough, the δy′ terms may be the small
ones and the (δy)2 may then dominate over the whole length of the integral. This is exactly what
happens in the problems 2.35, 2.39, and 16.17.

When this happens in an optical system, where the functional T =
∫
d`/v is the travel time

along the path, it signals something important. You have a focus. An ordinary light ray obeys Fermat’s
principle that T is stationary with respect to small changes in the path. It is a minimum if the path is
short enough. A focus occurs when light can go from one point to another by many different paths,
and for still longer paths the path is neither minimum nor maximum.
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In the integral for T , where the starting point and the ending point are the source and image points,
the second order variation will be zero for these long, gradual changes in the path. The straight-line
path through the center of the lens takes least time if its starting point and ending point are closer
than this source and image. The same path will be a saddle (neither maximum nor minimum) if the
points are farther apart than this. This sort of observation led to the development of the mathematical
subject called “Morse Theory,” a topic that has had applications in studying such diverse subjects as
nuclear fission and the gravitational lensing of light from quasars.

Thin Lens
This provides a simple way to understand the basic equation for a thin lens. Let its thickness be t and
its radius r.

p q

t

rn

Light that passes through this lens along the straight line through the center moves more slowly as it
passes through the thickness of the lens, and takes a time

T1 =
1

c
(p+ q − t) +

n
c
t

Light that take a longer path through the edge of the lens encounters no glass along the way, and it
takes a time

T2 =
1

c

[√
p2 + r2 +

√
q2 + r2

]
If p and q represent the positions of a source and the position of its image at a focus, these two times
should be equal. At least they should be equal in the approximation that the lens is thin and when you
keep terms only to the second order in the variation of the path.

T2 =
1

c

[
p
√

1 + r2/p2 + q
√

1 + r2/q2
]

=
1

c

[
p
(
1 + r2/2p2

)
+ q
(
1 + r2/2q2

)]
Equate T1 and T2.

(p+ q − t) + nt =
[
p
(
1 + r2/2p2

)
+ q
(
1 + r2/2q2

)]
(n− 1)t =

r2

2p
+
r2

2q
1

p
+

1

q
=

2(n− 1)t
r2

=
1

f
(16.49)

This is the standard equation describing the focusing properties of thin lenses as described in every
elementary physics text that even mentions lenses. The focal length of the lens is then f = r2/2(n−1)t.
That is not the expression you usually see, but it is the same. See problem 16.21. Notice that this

equation for the focus applies whether the lens is double convex or plano-convex or meniscus: . If you
allow the thickness t to be negative (equivalent to saying that there’s an extra time delay at the edges
instead of in the center), then this result still works for a diverging lens, though the analysis leading up
to it requires more thought.
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Exercises

1 For the functional F [x] = x(0) +
∫ π

0 dt
(
x(t)2 + ẋ(t)2

)
and the function x(t) = 1 + t2, evaluate

F [x].

2 For the functional F [x] =
∫ 1

0 dt x(t)2 with the boundary conditions x(0) = 0 and x(1) = 1, what
is the minimum value of F and what function x gives it? Start by drawing graphs of various x that
satisfy these boundary conditions. Is there any reason to require that x be a continuous function of t?

3 With the functional F of the preceding exercise, what is the functional derivative δF/δx?
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Problems

16.1 You are near the edge of a lake and see someone in the water needing help. What path do you
take to get there in the shortest time? You can run at a speed v1 on the shore and swim at a probably
slower speed v2 in the water. Assume that the edge of the water forms a straight line, and express your
result in a way that’s easy to interpret, not as the solution to some quartic equation. Ans: Snell’s Law.

16.2 The cycloid is the locus of a point that is on the edge of a circle that is itself rolling along a
straight line — a pebble caught in the tread of a tire. Use the angle of rotation as a parameter and
find the parametric equations for x(θ) and y(θ) describing this curve. Show that it is Eq. (16.17).

16.3 In Eq. (16.17), describing the shortest-time slide of a particle, what is the behavior of the function
for y � a? In figuring out the series expansion of w = cos−1(1− t), you may find it useful to take the
cosine of both sides. Then you should be able to find that the two lowest order terms in this expansion
are w =

√
2t− t3/2/12

√
2. You will need both terms. Ans: x =

√
2y3/a /3

16.4 The dimensions of an ordinary derivative such as dx/dt is the quotient of the dimensions of
the numerator and the denominator (here L/T). Does the same statement apply to the functional
derivative?

h1

h2x

L

n

16.5 Use Fermat’s principle to derive both Snell’s law and the law of reflection at
a plane surface. Assume two straight line segments from the starting point to the
ending point and minimize the total travel time of the light. The drawing applies
to Snell’s law, and you can compute the travel time of the light as a function of
the coordinate x at which the light hits the surface and enters the higher index
medium.

16.6 Analyze the path of light over a roadway starting from Eq. (16.23) but using x as the independent
variable instead of y.

16.7 (a) Fill in the steps leading to Eq. (16.31). And do you understand the point of the rearrangements
that I did just preceding it? Also, can you explain why the form of the function Eq. (16.30) should have
been obvious without solving any extra boundary conditions? (b) When you can explain that in a few
words, then what general cubic polynomial can you use to get a still better result?

16.8 For the function F (x, y, y′) = x2 + y2 + y′2, explicitly carry through the manipulations leading
to Eq. (16.41).

16.9 Use the explicit variation in Eq. (16.8) and find the minimum of that function of ε. Compare that
minimum to the value found in Eq. (16.11). Ans: 1.64773

16.10 Do either of the functions, Eqs. (16.29) or (16.30), satisfy Laplace’s equation?

16.11 For the function F (x, y, y′) = x2 + y2 + y′2, repeat the calculation of δI only now keep all the
higher order terms in δy and δy′. Show that the solution Eq. (16.11) is a minimum.

16.12 Use the techniques leading to Eq. (16.21) in order to solve the brachistochrone problem
Eq. (16.13) again. This time use x as the independent variable instead of y.
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16.13 On a right circular cylinder, find the path that represents the shortest distance between two
points. d`2 = dz2 +R2dφ2.

16.14 Put two circular loops of wire in a soap solution and draw them out, keeping their
planes parallel. If they are fairly close you will have a soap film that goes from one ring
to the other, and the minimum energy solution is the one with the smallest area. What is
the shape of this surface? Use cylindrical coordinates to describe the surface. It is called
a catenoid, and its equation involves a hyperbolic cosine.

16.15 There is one part of the derivation going from Eq. (16.33) to (16.36) that I omitted:
the special cases of ` = 1 and ` = N − 1. Go back and finish that detail, showing that
you get the same result even in this case.

16.16 Section 16.6 used the trapezoidal rule for numerical integration and the two-point centered
difference for differentiation. What happens to the derivation if (a) you use Simpson’s rule for integration
or if (b) you use an asymmetric differentiation formula such as y′(0) ≈ [y(h)− y(0)]/h?

16.17 For the simple harmonic oscillator, L = mẋ2/2−mω2x2/2. Use the time interval 0 < t < T so

that S =
∫ T

0 Ldt, and find the equation of motion from δS/δx = 0. When the independent variable x
is changed to x+ δx, keep the second order terms in computing δS this time and also make an explicit
choice of

δx(t) = ε sin(nπt/T )

For integer n = 1, 2 . . . this satisfies the boundary conditions that δx(0) = δx(T ) = 0. Evaluate the
change is S through second order in ε (that is, do it exactly). Find the conditions on the interval T so
that the solution to δS/δx = 0 is in fact a minimum. Then find the conditions when it isn’t, and what
is special about the T for which S[x] changes its structure? Note: This T is defined independently
from ω. It’s specifies an arbitrary time interval for the integral.

16.18 Eq. (16.37) describes a particle with a specified potential energy. For a charge in an electro-
magnetic field let U = qV (x1, x2, x3, t) where V is the electric potential. Now how do you include

magnetic effects? Add another term to L of the form C~̇r . ~A(x1, x2, x3, t). Figure out what the
Lagrange equations are, making δS/δxk = 0. What value must C have in order that this matches
~F = q( ~E +~v× ~B ) = m~a with ~B = ∇× ~A? What is ~E in terms of V and ~A? Don’t forget the chain

rule. Ans: C = q and then ~E = −∇V − ∂ ~A/∂t

16.19 (a) For the solutions that spring from Eq. (16.46), which of the three results shown have the
largest and smallest values of

∫
fdx? Draw a graph of f(y′) and see where the characteristic slope of

Eq. (16.46) is with respect to the graph.
(b) There are circumstances for which these kinked solutions, Eq. (16.47) do and do not occur; find
them and explain them.

16.20 What are the Euler-Lagrange equations for I[y] =
∫ b
a dxF (x, y, y′, y′′)?

16.21 The equation for the focal length of a thin lens, Eq. (16.49), is not the traditional one found in
most texts. That is usually expressed in terms of the radii of curvature of the lens surfaces. Show that
this is the same. Also note that Eq. (16.49) is independent of the optics sign conventions for curvature.
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16.22 The equation (16.25) is an approximate solution to the path for light above a hot road. Is there
a function n = f(y) representing the index of refraction above the road surface such that this equation
would be its exact solution?

16.23 On the first page of this chapter, you see the temperature dependence of length measurements.
(a) Take a metal disk of radius a and place it centered on a block of ice. Assume that the metal
reaches an equilibrium temperature distribution T (r) = T0(r2/a2 − 1). The temperature at the edge
is T = 0, and the ruler is calibrated there. The disk itself remains flat. Measure the distance from the
origin straight out to the radial coordinate r. Call this measured radius s. Measure the circumference
of the circle at this radius and then express this circumference in terms of the measured radius s.
(b) On a sphere of radius R (constant temperature) start at the pole (θ = 0) and write the distance
along the arc at constant φ down to the angle θ. Now go around the circle at this constant θ and write
its circumference. Express this circumference in terms of the distance you just wrote for the “radius”
of this circle.
(c) Show that the geometry you found in (a) is the same as that in (b) and find the radius of the
sphere that this “heat metric” expresses. Ans: R = a/2

√
αT0(1− αT0) ≈ a/2

√
αT0

16.24 Using the same techniques as in section 16.5, apply these methods to two concentric spheres.
Again, use a linear and then a quadratic approximation. Before you do this, go back to Eq. (16.30)
and see if you can arrive at that form directly, without going through all the manipulations of solving
for α and β. That is, determine how you could have gotten to (16.30) easily. Check some numbers
against the exact answer.

16.25 For the variational problem Eq. (16.45) one solution is y = bx/a. Assume that α, β > 0 and
determine if this is a minimum or maximum or neither. Do this also for the other solution, Eq. (16.47).

Ans: The first is min if b/a >
√
β/6α. The kinked solution is always a minimum.

16.26 If you can construct glass with a variable index of refraction, you can make
a flat lens with an index that varies with distance from the axis. What function
of distance must the index n(r) be in order that this flat cylinder of glass of
thickness t has a focal length f? All small angles and thin lenses of course.
Ans: n(r) = n(0)− r2/2ft.



Densities and Distributions
.

Back in section 12.1 I presented a careful and full definition of the word “function.” This is
useful even though you should already have a pretty good idea of what the word means. If you haven’t
read that section, now would be a good time. The reason to review it is that this definition doesn’t
handle all the cases that naturally occur. This will lead to the idea of a “generalized function.”

There are (at least) two approaches to this subject. One that relates it to the ideas of functionals
as you saw them in the calculus of variations, and one that is more intuitive and is good enough for
most purposes. The latter appears in section 17.5, and if you want to jump there first, I can’t stop you.

17.1 Density
What is density? If the answer is “mass per unit volume” then what does that mean? It clearly doesn’t
mean what it says, because you aren’t required* to use a cubic meter.

It’s a derivative. Pick a volume ∆V and find the mass in that volume to be ∆m. The average
volume-mass-density in that volume is ∆m/∆V . If the volume is the room that you’re sitting in, the
mass includes you and the air and everything else in the room. Just as in defining the concept of
velocity (instantaneous velocity), you have to take a limit. Here the limit is

lim
∆V→0

∆m
∆V

=
dm
dV

(17.1)

Even this isn’t quite right, because the volume could as easily shrink to zero by approaching a line, and
that’s not what you want. It has to shrink to a point, but the standard notation doesn’t let me say
that without introducing more symbols than I want.

Of course there are other densities. If you want to talk about paper or sheet metal you may
find area-mass-density to be more useful, replacing the volume ∆V by an area ∆A. Maybe even linear
mass density if you are describing wires, so that the denominator is ∆`. And why is the numerator a
mass? Maybe you are describing volume-charge-density or even population density (people per area).
This last would appear in mathematical notation as dN/dA.

This last example manifests a subtlety in all of these definitions. In the real world, you can’t take
the limit as ∆A → 0. When you count the number of people in an area you can’t very well let the
area shrink to zero. When you describe mass, remember that the world is made of atoms. If you let
the volume shrink too much you’ll either be between or inside the atoms. Maybe you will hit a nucleus;
maybe not. This sort of problem means that you have to stop short of the mathematical limit and let
the volume shrink to some size that still contains many atoms, but that is small enough so the quotient
∆m/∆V isn’t significantly affected by further changing ∆V . Fortunately, this fine point seldom gets
in the way, and if it does, you’ll know it fast. I’ll ignore it. If you’re bothered by it remember that
you are accustomed to doing the same thing when you approximate a sum by an integral. The world is
made of atoms, and any common computation about a physical system will really involve a sum over all
the atoms in the system (e.g. find the center of mass). You never do this, preferring to do an integral
instead even though this is an approximation to the sum over atoms.

If you know the density — when the word is used unqualified it commonly means volume-mass-
density — you find mass by integration over the volume you have specified.

m =

∫
V
ρ dV (17.2)

* even by the panjandrums of the Système International d’Unités
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You can even think of this as a new kind of function m(V ): input a specification for a volume of space;
output a mass. That’s really what density provides, a prescription to go from a volume specification to
the amount of mass within that volume.

For the moment, I’ll restrict the subject to linear mass density, and so that you simply need the
coordinate along a straight line,

λ(x) =
dm
dx

(x), and m =

∫ b

a
λ(x) dx (17.3)

If λ represents a function such as Ax2 (0 < x < L), a bullwhip perhaps, then this is elementary,
and mtotal = AL3/3. I want to look at the reverse specification. Given an interval, I will specify the
amount of mass in that interval and work backwards. The first example will be simple. The interval
x1 ≤ x ≤ x2 is denoted [x1, x2]. The function m has this interval for its argument.*

m
(
[x1, x2]

)
=



0 (x1 ≤ x2 ≤ 0)
Ax3

2/3 (x1 ≤ 0 ≤ x2 ≤ L)
AL3/3 (x1 ≤ 0 ≤ L ≤ x2)
A
(
x3

2 − x3
1

)
/3 (0 ≤ x1 ≤ x2 ≤ L)

A
(
L3 − x3

1

)
/3 (0 ≤ x1 ≤ L ≤ x2)

0 (L ≤ x1 ≤ x2)

(17.4)

The density Ax2 (0 < x < L) is of course a much easier way to describe the same distribution of mass.
This distribution function, m

(
[x1, x2]

)
, comes from integrating the density function λ(x) = Ax2 on

the interval [x1, x2].
Another example is a variation on the same theme. It is slightly more involved, but still not too

bad.

m
(
[x1, x2]

)
=



0 (x1 ≤ x2 ≤ 0)
Ax3

2/3 (x1 ≤ 0 ≤ x2 < L/2)
Ax3

2/3 +m0 (x1 ≤ 0 < L/2 ≤ x2 ≤ L)
AL3/3 +m0 (x1 ≤ 0 < L ≤ x2)
A
(
x3

2 − x3
1

)
/3 (0 ≤ x1 ≤ x2 < L/2)

A
(
x3

2 − x3
1

)
/3 +m0 (0 ≤ x1 < L/2 ≤ x2 ≤ L)

A
(
L3 − x3

1

)
/3 +m0 (0 ≤ x1 ≤ L/2 < Ll2)

A
(
x3

2 − x3
1

)
/3 (L/2 < x1 ≤ x2 ≤ L)

A
(
L3 − x3

1

)
/3 (L/2 < x1 ≤ L ≤ x2)

0 (L ≤ x1 ≤ x2)

(17.5)

If you read through all these cases, you will see that the sole thing that I’ve added to the first example
is a point mass m0 at the point L/2. What density function λ will produce this distribution? Answer:
No function will do this. That’s why the concept of a “generalized function” appeared. I could state
this distribution function in words by saying

“Take Eq. (17.4) and if [x1, x2] contains the point L/2 then add m0.”

That there’s no density function λ that will do this is inconvenient but not disastrous. When the very
idea of a density was defined in Eq. (17.1), it started with the distribution function, the mass within
the volume, and only arrived at the definition of a density by some manipulations. The density is a
type of derivative and not all functions are differentiable. The function m

(
[x1, x2]

)
or m

(
V
)

is more
fundamental (if less convenient) than is the density function.

* I’m abusing the notation here. In (17.2) m is a number. In (17.4) m is a function. You’re used
to this, and physicists do it all the time despite reproving glances from mathematicians.
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17.2 Functionals

F [φ] =

∫ ∞
−∞

dx f(x)φ(x)

defines a scalar-valued function of a function variable. Given any (reasonable) function φ as input, it
returns a scalar. That is a functional. This one is a linear functional because it satisfies the equations

F [aφ] = aF [φ] and F [φ1 + φ2] = F [φ1] + F [φ2] (17.6)

This isn’t a new idea, it’s just a restatement of a familiar idea in another language. The mass density
can define a useful functional (linear density for now). Given dm/dx = λ(x) what is the total mass?∫ ∞

−∞
dxλ(x)1 = Mtotal

Where is the center of mass?
1

Mtotal

∫ ∞
−∞

dxλ(x)x = xcm

Restated in the language of functionals,

F [φ] =

∫ ∞
−∞

dxλ(x)φ(x) then Mtotal = F [1], xcm =
1

Mtotal
F [x]

If, instead of mass density, you are describing the distribution of grades in a large class or the
distribution of the speed of molecules in a gas, there are still other ways to use this sort of functional.
If dN/dg = f(g) is the grade density in a class (number of students per grade interval), then with
F [φ] =

∫
dg f(g)φ(g)

Nstudents = F [1], mean grade = ḡ =
1

Nstudents
F [g], (17.7)

variance = σ2 =
1

Nstudents
F [(g − ḡ)2], skewness =

1

Nstudentsσ3
F [(g − ḡ)3]

kurtosis excess =
1

Nstudentsσ4
F [(g − ḡ)4]− 3

Unless you’ve studied some statistics, you will probably never have heard of skewness and kurtosis
excess. They are ways to describe the shape of the density function, and for a Gaussian both these
numbers are zero. If it’s skewed to one side the skewness is non-zero. [Did I really say that?] The
kurtosis excess compares the flatness of the density function to that of a Gaussian.

The Maxwell-Boltzmann function describing the speeds of molecules in an ideal gas is at tem-
perature T

fMB(v) =
( m

2πkT

)3/2
4πv2e−mv

2/2kT (17.8)

dN/dv is the number of molecules per speed interval, but this function FMB is normalized differently.
It is instead (dN/dv)/Ntotal. It is the fraction of the molecules per speed interval. That saves carrying
along a factor specifying the total number of molecules in the gas. I could have done the same thing in
the preceding example of student grades, defining the functional F1 = F/Nstudents. Then the equations
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(17.7) would have a simpler appearance, such as ḡ = F1[g]. For the present case of molecular speeds,
with F [φ] =

∫∞
0 dv fMB(v)φ(v),

F [1] = 1, F [v] = v̄ =

√
8kT
πm

, F [mv2/2] = K.E. =
3

2
kT (17.9)

Notice that the mean kinetic energy is not the kinetic energy that corresponds to the mean speed.
Look back again to section 12.1 and you’ll see not only a definition of “function” but a definition

of “functional.” It looks different from what I’ve been using here, but look again and you will see that
when you view it in the proper light, that of chapter six, they are the same. Equations (12.3)–(12.5)
involved vectors, but remember that when you look at them as elements of a vector space, functions
are vectors too.

Functional Derivatives
In section 16.2, equations (16.6) through (16.10), you saw a development of the functional derivative.
What does that do in this case?

F [φ] =

∫
dx f(x)φ(x), so F [φ+ δφ]− F [φ] =

∫
dx f(x)δφ(x)

The functional derivative is the coefficient of δφ and dx, so it is

δF
δφ

= f (17.10)

That means that the functional derivative of m
(
[x1, x2]

)
in Eq. (17.4) is the linear mass density, λ(x) =

Ax2, (0 < x < L). There are more interesting functional derivatives in chapter 16, e.g. Eq. (16.10).
Is there such a thing as a functional integral? Yes, but not here, as it goes well beyond the scope of
this chapter. Its development is central in quantum field theory.

17.3 Generalization
Given a function f , I can create a linear functional F using it as part of an integral. What sort of linear
functional arises from f ′? Integrate by parts to find out. Here I’m going to have to assume that f or
φ or both vanish at infinity, or the development here won’t work.

F [φ] =

∫ ∞
−∞

dx f(x)φ(x), then∫ ∞
−∞

dxf ′(x)φ(x) = f(x)φ(x)
∣∣∣∞
−∞
−
∫ ∞
−∞

dx f(x)φ′(x) = −F [φ′] (17.11)

In the same way, you can relate higher derivatives of f to the functional F . There’s another restriction
you need to make: For this functional −F [φ′] to make sense, the function φ has to be differentiable.
If you want higher derivatives of f , then φ needs to have still higher derivatives.

f

φn

If you know everything about F , what can you determine about f?
If you assume that all the functions you’re dealing with are smooth, having
as many derivatives as you need, then the answer is simple: everything. If
I have a rule by which to get a number F [φ] for every (smooth) φ, then
I can take a special case for φ and use it to find f . Use a φ that drops
to zero very rapidly away from some given point; for example if n is large
this function drops off rapidly away from the point x0.

φn(x) =

√
n
π
e−n(x−x0)2



17—Densities and Distributions 413

I’ve arranged it so that the integral of φn over all x is one. If I want the value of f at x0 I can
do an integral and take a limit.

F [φn] =

∫ ∞
−∞

dx f(x)φn(x) =

∫ ∞
−∞

dx f(x)

√
n
π
e−n(x−x0)2

As n increases to infinity, all that matters for f is its value at x0. The integral becomes

lim
n→∞

∫ ∞
−∞

dx f(x0)

√
n
π
e−n(x−x0)2 = f(x0) (17.12)

This means that I can reconstruct the function f if I know everything about the functional F . To get
the value of the derivative f ′(x0) instead, simply use the function −φ′n and take the same limit. This
construction is another way to look at the functional derivative. The equations (17.10) and (17.12)
produce the same answer.

You say that this doesn’t sound very practical? That it is an awfully difficult and roundabout
way to do something? Not really. It goes back to the ideas of section 17.1. To define a density you
have to know how much mass is contained in an arbitrarily specified volume. That’s a functional. It
didn’t look like a functional there, but it is. You just have to rephrase it to see that it’s the same thing.

As before, do the case of linear mass density. λ(x) is the density, and the functional F [φ] =∫∞
−∞ dxλ(x)φ(x). Then as in Eq. (17.4), m

(
[x1, x2]

)
is that mass contained in the interval from x1

to x2 and you can in turn write it as a functional.

Let χ be the step function χ(x) =

{
1 (x1 ≤ x ≤ x2)
0 (otherwise)

}
then

∫ x2

x1
dxλ(x) = F [χ] = m

(
[x1, x2]

)
What happens if the function f is itself not differentiable? I can still define the original functional.

Then I’ll see what implications I can draw from the functional itself. The first and most important
example of this is for f a step function.

f(x) = θ(x) =

{
1 (x ≥ 0)
0 (x < 0)

F [φ] =

∫ ∞
−∞

dx θ(x)φ(x) (17.13)

θ has a step at the origin, so of course it’s not differentiable there, but if it were possible in some way
to define its derivative, then when you look at its related functional, it should give the answer −F [φ′]
as in Eq. (17.11), just as for any other function. What then is −F [φ′]?

−F [φ′] = −
∫ ∞
−∞

dx θ(x)φ′(x) = −
∫ ∞

0
dxφ′(x) = −φ(x)

∣∣∣∞
0

= φ(0) (17.14)

This defines a perfectly respectable linear functional. Input the function φ and output the value of the
function at zero. It easily satisfies Eq. (17.6), but there is no function f that when integrated against
φ will yield this result. Still, it is so useful to be able to do these manipulations as if such a function
exists that the notation of a “delta function” was invented. This is where the idea of a generalized
function enters.
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Green’s functions
In the discussion of the Green’s function solution to a differential equation in section 4.6, I started with
the differential equation

mẍ+ kx = F (t)

and found a general solution in Eq. (4.34). This approach pictured the external force as a series of
small impulses and added the results from each.

x

t′

impulse

t

x(t) =

∫ ∞
−∞

dt′G(t− t′)F (t′) where G(t) =

{
1

mω0
sinω0t (t ≥ 0)

0 (t < 0)
(17.15)

I wrote it a little differently there, but it’s the same. Can you verify that this is a solution to the stated
differential equation? Simply plug in, do a couple of derivatives and see what happens. One derivative
at a time:

dx
dt

=

∫ ∞
−∞

dt′ Ġ(t− t′)F (t′) where Ġ(t) =

{
1
m cosω0t (t ≥ 0)
0 (t < 0)

(17.16)

Now for the second derivative. Oops. I can’t differentiate Ġ. It has a step at t = 0.
This looks like something you saw in a few paragraphs back, where there was a step in the

function θ. I’m going to handle this difficulty now by something of a kludge. In the next section you’ll
see the notation that makes this manipulation easy and transparent. For now I will subtract and add
the discontinuity from Ġ by using the same step function θ.

Ġ(t) =

{
1
m

[
cosω0t− 1 + 1

]
(t ≥ 0)

0 (t < 0)

=

{
1
m

[
cosω0t− 1

]
(t ≥ 0)

0 (t < 0)

}
+

1

m
θ(t) = Ġ0(t) +

1

m
θ(t) (17.17)

The (temporary) notation here is that Ġ0 is the part of Ġ that doesn’t have the discontinuity at t = 0.

That part is differentiable. The expression for dx/dt now has two terms, one from the Ġ0 and one
from the θ. Do the first one:

d
dt

∫ ∞
−∞

dt′ Ġ0(t− t′)F (t′) =

∫ ∞
−∞

dt′
d
dt
Ġ0(t− t′)F (t′)

and
d
dt
Ġ0(t) =

{
1
m [−ω0 sinω0t] (t ≥ 0)
0 (t < 0)

The original differential equation involved mẍ+ kx. The Ġ0 part of this is

m
∫ ∞
−∞

dt′
{

1
m [−ω0 sinω0(t− t′)] (t ≥ t′)
0 (t < t′)

}
F (t′)

+ k
∫ ∞
−∞

dt′
{

1
mω0

sinω0(t− t′) (t ≥ t′)
0 (t < t′)

}
F (t′)
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Use k = mω2
0 , and this is zero.

Now go back to the extra term in θ. The kx terms doesn’t have it, so all that’s needed is

mẍ+ kx = m
d
dt

∫ ∞
−∞

dt′
1

m
θ(t− t′)F (t′) =

d
dt

∫ t

−∞
dt′ F (t′) = F (t)

This verifies yet again that this Green’s function solution works.

17.4 Delta-function Notation
Recognizing that it would be convenient to be able to differentiate non-differentiable functions, that it
would make manipulations easier if you could talk about the density of a point mass (m/0 =?), and
that the impulsive force that appears in setting up Green’s functions for the harmonic oscillator isn’t a
function, what do you do? If you’re Dirac, you invent a notation that works.

Two functionals are equal to each other if they give the same result for all arguments. Does that
apply to the functions that go into defining them? If∫ ∞

−∞
dx f1(x)φ(x) =

∫ ∞
−∞

dx f2(x)φ(x)

for all test functions φ (smooth, infinitely differentiable, going to zero at infinity, whatever constraints
we find expedient), does it mean that f1 = f2? Well, no. Suppose that I change the value of f1 at
exactly one point, adding 1 there and calling the result f2. These functions aren’t equal, but underneath
an integral sign you can’t tell the difference. In terms of the functionals they define, they are essentially
equal: “equal in the sense of distributions.”

Extend this to the generalized functions
The equation (17.14) leads to specifying the functional

δ[φ] = φ(0) (17.18)

This delta-functional isn’t a help in doing manipulations, so define the notation∫ ∞
−∞

dx δ(x)φ(x) = δ[φ] = φ(0) (17.19)

This notation isn’t an integral in the sense of something like section 1.6, and δ(x) isn’t a function,
but the notation allows you effect manipulations just as if they were. Note: the symbol δ here is not
the same as the δ in the functional derivative. We’re just stuck with using the same symbol for two
different things. Blame history and look at problem 17.10.

You can treat the step function as differentiable, with θ′ = δ, and this notation leads you
smoothly to the right answer.

Let θx0(x) =

{
1 (x ≥ x0)
0 (x < x0)

= θ(x− x0), then

∫ ∞
−∞

dx θx0(x)φ(x) =

∫ ∞
x0

dxφ(x)

The derivative of this function is
d
dx
θx0(x) = δ(x− x0)

You show this by∫ ∞
−∞

dx
dθx0(x)

dx
φ(x) = −

∫ ∞
−∞

dx θx0(x)φ′(x) = −
∫ ∞
x0

dxφ′(x) = φ(x0)
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The idea of a generalized function is that you can manipulate it as if it were an ordinary function
provided that you put the end results of your manipulations under an integral.

The manipulations for the harmonic oscillator in the previous section, translated to this language
become

mG̈+ kG = δ(t) for G(t) =

{
1

mω0
sinω0t (t ≥ 0)

0 (t < 0)

Then the solution for a forcing function F (t) is

x(t) =

∫ ∞
−∞

G(t− t′)F (t′) dt′

because

mẍ+ kx =

∫ ∞
−∞

(
mG̈+ kG

)
F (t′) dt′ =

∫ ∞
−∞

δ(t− t′)F (t′) dt′ = F (t)

This is a lot simpler. Is it legal? Yes, though it took some serious mathematicians (Schwartz, Sobolev)
some serious effort to develop the logical underpinnings for this subject. The result of their work is: It’s
o.k.

17.5 Alternate Approach
This delta-function method is so valuable that it’s useful to examine it from more than one vantage.
Here is a very different way to understand delta functions, one that avoids an explicit discussion of
functionals. Picture a sequence of smooth functions that get narrower and taller as the parameter n
gets bigger. Examples are√

n
π
e−nx

2
,

n
π

1

1 + n2x2
,

1

π
sinnx
x

,
n
π

sechnx (17.20)

Pick any one such sequence and call it δn(x). (A “delta sequence”) The factors in each case are
arranged so that ∫ ∞

−∞
dx δn(x) = 1

As n grows, each function closes in around x = 0 and becomes very large there. Because these are
perfectly smooth functions there’s no question about integrating them.∫ ∞

−∞
dx δn(x)φ(x) (17.21)

makes sense as long as φ doesn’t cause trouble. You will typically have to assume that the φ behave
nicely at infinity, going to zero fast enough, and this is satisfied in the physics applications that we
need. For large n any of these functions looks like a very narrow spike. If you multiply one of these
δns by a mass m, you have a linear mass density that is (for large n) concentrated near to a point:
λ(x) = mδn(x). Of course you can’t take the limit as n → ∞ because this doesn’t have a limit. If
you could, then that would be the density for a point mass: mδ(x).

δn

φ

What happens to (17.21) as n→∞? For large n any of these delta-
sequences approaches zero everywhere except at the origin. Near the origin
φ(x) is very close to φ(0), and the function δn is non-zero in only the tiny
region around zero. If the function φ is simply continuous at the origin you
have

lim
n→∞

∫ ∞
−∞

dx δn(x)φ(x) = φ(0) . lim
n→∞

∫ ∞
−∞

dx δn(x) = φ(0) (17.22)
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At this point I can introduce a notation:

“

∫ ∞
−∞

dx δ(x)φ(x)” MEANS lim
n→∞

∫ ∞
−∞

dx δn(x)φ(x) (17.23)

In this approach to distributions the collection of symbols on the left has for its definition the collection
of symbols on the right. In turn, the definition of

∫
goes back to the fundamentals of calculus, as

in section 1.6. You cannot move the limit in this last integral under the integral sign. You can’t
interchange these limits because the limit of δn is not a function.

In this development you say that the delta function is a notation, not for a function, but for a
process (but then, so is the integral sign). That means that the underlying idea always goes back to a
familiar, standard manipulation of ordinary calculus. If you have an equation involving such a function,
say

θ′(x) = δ(x), then this means θ′n(x) = δn(x) and that

lim
n→∞

∫ ∞
−∞

dx θ′n(x)φ(x) = lim
n→∞

∫ ∞
−∞

dx δn(x)φ(x) = φ(0) (17.24)

How can you tell if this equation is true? Remember now that in this interpretation these are sequences
of ordinary, well-behaved functions, so you can do ordinary manipulations such as partial integration.
The functions θn are smooth and they rise from zero to one as x goes from −∞ to +∞. As n becomes
large, the interval over which this rise occurs will become narrower and narrower. In the end these θn
will approach the step function θ(x) of Eq. (17.13).∫ ∞

−∞
dx θ′n(x)φ(x) = θn(x)φ(x)

∣∣∣∣∞
−∞
−
∫ ∞
−∞

dx θn(x)φ′(x)

The functions φ go to zero at infinity — they’re “test functions” — and that kills the boundary terms,
leaving the last integral standing by itself. Take the limit as n→∞ on it. You can take the limit inside
the integral now, because the limit of θn is a perfectly good function, even if it is discontinuous.

− lim
n

∫ ∞
−∞

dx θn(x)φ′(x) = −
∫ ∞
−∞

dx θ(x)φ′(x) = −
∫ ∞

0
dxφ′(x) = −φ(x)

∣∣∣∣∞
0

= φ(0)

This is precisely what the second integral in Eq. (17.24) is. This is the proof that θ′ = δ. Any proof of
an equation involving such generalized functions requires you to integrate the equation against a test
function and to determine if the resulting integral becomes an identity as n → ∞. This implies that
it now makes sense to differentiate a discontinuous function — as long as you mean differentiation “in
the sense of distributions.” That’s the jargon you encounter here. An equation such as θ′ = δ makes
sense only when it is under an integral sign and is interpreted in the way that you just saw.

In these manipulations, where did I use the particular form of the delta sequence? Never. A
particular combination such as

θn(x) =
1

2

[
1 +

2

π
tan−1 nx

]
, and δn(x) =

n
π

1

1 + n2x2
(17.25)

never appeared. Any of the other sequences would have done just as well, and all that I needed was the
properties of the sequence, not its particular representation. You can even use a delta sequence that
doesn’t look like any of the functions in Eq. (17.20).

δn(x) = 2

√
2n
π
einx

2
(17.26)
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This turns out to have all the properties that you need, though again, you don’t have to invoke its
explicit form.

What is δ(ax)? Integrate δn(ax) with a test function.

lim
n

∫ ∞
−∞

dx δn(ax)φ(x) = lim
n

∫ ∞
−∞

dy
a
δn(y)φ(y/a)

where y = ax. Actually, this isn’t quite right. If a > 0 it is fine, but if a is negative, then when
x → −∞ you have y → +∞. You have to change the limits to put it in the standard form. You can
carry out that case for yourself and verify that the expression covering both cases is

lim
n

∫ ∞
−∞

dx δn(ax)φ(x) = lim
n

∫ ∞
−∞

dy
|a|

δn(y)φ(y/a) =
1

|a|
φ(0)

Translate this into the language of delta functions and it is

δ(ax) =
1

|a|
δ(x) (17.27)

You can prove other relations in the same way. For example

δ(x2 − a2) =
1

2|a|
[
δ(x− a) + δ(x+ a)

]
or δ

(
f(x)

)
=
∑
k

1

|f ′(xk)|
δ(x− xk) (17.28)

In the latter equation, xk is a root of f , and you sum over all roots. Notice that it doesn’t make any
sense if you have a double root. Just try to see what δ(x2) would mean. The last of these identities
contains the others as special cases. Eq. (17.27) implies that δ is even.

17.6 Differential Equations
Where do you use these delta functions? Start with differential equations. I’ll pick one that has the
smallest number of technical questions associated with it. I want to solve the equation

d2f
dx2
− k2f = F (x) (17.29)

subject to conditions that f(x) should approach zero for large magnitude x. I’ll assume that the given
function F has this property too.

But first: Let k and y be constants, then solve

d2g
dx2
− k2g = δ(x− y) (17.30)

I want a solution that is well-behaved at infinity, staying finite there. This equality is “in the sense of
distributions” recall, and I’ll derive it a couple of different ways, here and in the next section.

First way: Treat the δ as simply a spike at x = y. Everywhere else on the x-axis it is zero. Solve
the equation for two cases then, x < y and x > y. In both cases the form is the same.

g′′ − k2g = 0, so g(x) = Aekx +Be−kx

For x < y, I want g(x) to go to zero far away, so that requires the coefficient of e−kx to be zero. For
x > 0, the reverse is true and only the e−kx can be present.

g(x) =

{
Aekx (x < y)
Be−kx (x > y)
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Now I have to make g satisfy Eq. (17.30) at x = y.
Compute dg/dx. But wait. This is impossible unless the function is at least continuous. If it

isn’t then I’d be differentiating a step function and I don’t want to do that (at least not yet). That is

g(y−) = Aeky = g(y+) = Be−ky (17.31)

This is one equation in the two unknowns A and B. Now differentiate.

dg
dx

=

{
Akekx (x < y)
−Bke−kx (x > y)

(17.32)

This is in turn differentiable everywhere except at x = y. There it has a step

discontinuity in g′ = g′(y+)− g′(y−) = −Bke−ky −Akeky

This means that (17.32) is the sum of two things, one differentiable, and the other a step, a multiple
of θ.

dg
dx

= differentiable stuff +
(
−Bke−ky −Akeky

)
θ(x− y)

The differentiable stuff satisfies the differential equation g′′−k2g = 0. For the rest, Compute d2g/dx2

(
−Bke−ky −Akeky

) d
dx
θ(x− y) =

(
−Bke−ky −Akeky

)
δ(x− y)

Put this together and remember the equation you’re solving, Eq. (17.30).

g′′ − k2g = 0 (from the differentiable stuff)

+
(
−Bke−ky −Akeky

)
δ(x− y) = δ(x− y)

Now there are two equations for A and B, this one and Eq. (17.31).

Aeky = Be−ky

−Bke−ky −Akeky = 1
solve these to get

A = −e−ky/2k

B = −eky/2k

Finally, back to g.

g(x) =

{
−ek(x−y)/2k (x < y)

−e−k(x−y)/2k (x > y)
(17.33)

When you get a fairly simple form of solution such as this, you have to see if you could have saved
some work, perhaps replacing brute labor with insight? Of course. The original differential equation
(17.30) is symmetric around the point y. It’s plausible to look for a solution that behaves the same
way, using (x− y) as the variable instead of x. Either that or you could do the special case y = 0 and
then change variables at the end to move the delta function over to y. See problem 17.11.

There is standard notation for this function; it is a Green’s function.

G(x, y) =

{
−ek(x−y)/2k (x < y)

−e−k(x−y)/2k (x > y)

}
= −e−k|x−y|/2k (17.34)
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Now to solve the original differential equation, Eq. (17.29). Substitute into this equation the
function ∫ ∞

−∞
dyG(x, y)F (y)

[
d2

dx2
− k2

] ∫ ∞
−∞

dyG(x, y)F (y) =

∫ ∞
−∞

dy

[
d2G(x, y)

dx2
− k2G(x, y)

]
F (y)

=

∫ ∞
−∞

dy δ(x− y)F (y) = F (x)

This is the whole point of delta functions. They make this sort of manipulation as easy as dealing with
an ordinary function. Easier, once you’re used to them.

For example, if F (x) = F0 between −x0 and +x0 and zero elsewhere, then the solution for f is∫
dyG(x, y)F (y) = −

∫ x0

−x0
dy F0e

−k|x−y|/2k

= −F0

2k


∫ x0
−x0 dy e

−k(x−y) (x > x0)∫ x
−x0 dy e

−k(x−y) +
∫ x0
x dy e−k(y−x) (−x0 < x < x0)∫ x0

−x0 dy e
−k(y−x) (x < −x0)

= −F0

k2

 e
−kx sinhkx0 (x > x0)

[1− e−kx0 cosh kx] (−x0 < x < x0)
ekx sinhkx0 (x < −x0)

(17.35)

You can see that this resulting solution is an even function of x, necessarily so because the original
differential equation is even in x, the function F (x) is even in x, and the boundary conditions are even
in x.

Other Differential Equations
Can you apply this method to other equations? Yes, many. Try the simplest first order equation:

dG
dx

= δ(x) −→ G(x) = θ(x)

df
dx

= g(x) −→ f(x) =

∫ ∞
−∞

dx′G(x− x′)g(x′) =

∫ x

−∞
dx′ g(x′)

which clearly satisfies df/dx = g.
If you try d2G/dx2 = δ(x) you explain the origin of problem 1.48.
Take the same equation d2G/dx2 = δ(x − x′) but in the domain 0 < x < L and with the

boundary conditions G(0) = 0 = G(L). The result is

G(x) =

{
x(x′ − L)/L (0 < x < x′)
x′(x− L)/L (x′ < x < L)

0 x′ L (17.36)

17.7 Using Fourier Transforms
Solve Eq. (17.30) another way. Fourier transform everything in sight.

d2g
dx2
− k2g = δ(x− y) →

∫ ∞
−∞

dx

[
d2g
dx2
− k2g

]
e−iqx =

∫ ∞
−∞

dx δ(x− y)e−iqx (17.37)
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The right side is designed to be easy. For the left side, do some partial integrations. I’m looking for a
solution that goes to zero at infinity, so the boundary terms will vanish. See Eq. (15.12).∫ ∞

−∞
dx
[
− q2 − k2

]
g(x)e−iqx = e−iqy (17.38)

The left side involves only the Fourier transform of g. Call it g̃.

[
− q2 − k2

]
g̃(q) = e−iqy, so g̃(q) = − e−iqy

q2 + k2

Now invert the transform.

g(x) =

∫ ∞
−∞

dq
2π

g̃(q)eiqx = −
∫ ∞
−∞

dq
2π

eiq(x−y)

q2 + k2

Do this by contour integration, where the integrand has singularities at q = ±ik.

− 1

2π

∫
C1

dq
eiq(x−y)

k2 + q2

C1

The poles are at ±ik, and the exponential dominates the behavior of the integrand at large |q|, so
there are two cases: x > y and x < y. Pick the first of these, then the integrand vanishes rapidly as
q → +i∞.

C2 C3 C4 C5

∫
C1

=

∫
C5

=
−2πi

2π
Res
q=ik

eiq(x−y)

k2 + q2

Compute the residue.
eiq(x−y)

k2 + q2
=

eiq(x−y)

(q − ik)(q + ik)
≈ eiq(x−y)

(q − ik)(2ik)

The coefficient of 1/(q − ik) is the residue, so

g(x) = −e
−k(x−y)

2k
(x > y) (17.39)

in agreement with Eq. (17.33). The x < y case is yours.

17.8 More Dimensions
How do you handle problems in three dimensions? δ(~r ) = δ(x)δ(y)δ(z). For example I can describe
the charge density of a point charge, dq/dV as qδ(~r − ~r0). The integral of this is∫

qδ(~r − ~r0) d3r = q
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as long as the position ~r0 is inside the volume of integration. For an example that uses this, look at
the potential of a point charge, satisfying Poisson’s equation.

∇2V = −ρ/ε0

What is the potential for a specified charge density? Start by finding the Green’s function.

∇2G = δ(~r ), or instead do: ∇2G− k2G = δ(~r ) (17.40)

The reason for starting with the latter equation is that you run into some problems with the first form.
It’s too singular. I’ll solve the second one and then take the limit as k → 0. The Fourier transform
method is simpler, so use that. ∫

d3r
[
∇2G− k2G

]
e−i~q

.~r = 1

When you integrate by parts (twice) along each of the three integration directions dx, dy, and dz, you
pull down a factor of −q2 = −q2

x − q2
y − q2

z just as in one dimension.∫
d3r
[
− q2G− k2G

]
e−i~q

.~r = 1 or G̃(~q ) =
−1

q2 + k2

where G̃ is, as before, the Fourier transform of G.
Now invert the transform. Each dimension picks up a factor of 1/2π.

G(~r ) = −
∫

d3q
(2π)3

ei~q
.~r

q2 + k2

This is a three dimensional integral, and the coordinate system to choose is spherical. q2 doesn’t
depend on the direction of ~q, and the single place that this direction matters is in the dot product in
the exponent. The coordinates are q, θ, φ for the vector ~q, and since I can pick my coordinate system
any way I want, I will pick the coordinate axis along the direction of the vector ~r. Remember that in
this integral ~r is just some constant.

G = − 1

(2π)3

∫
q2 dq sin θ dθ dφ

eiqr cos θ

q2 + k2

The integral dφ becomes a factor 2π. Let u = cos θ, and that integral becomes easy. All that is left is
the dq integral.

G = − 1

(2π)2

∫ ∞
0

q2 dq
q2 + k2

1

iqr

[
eiqr − e−iqr

]
More contour integrals: There are poles in the q-plane at q = ±ik. The q2 factors are even.

The q in the denominator would make the integrand odd except that the combination of exponentials
in brackets are also odd. The integrand as a whole is even. I will then extend the limits to ±∞ and
divide by 2.

G = − 1

8π2ir

∫ ∞
−∞

q dq
q2 + k2

[
eiqr − e−iqr

]
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There are two terms; start with the first one. r > 0, so eiqr → 0 as q → +i∞. The contour is along
the real axis, so push it toward i∞ and pick up the residue at +ik.

− 1

8π2ir

∫
= − 1

8π2ir
2πi Res

q=ik

q
(q − ik)(q + ik)

eiqr = − 1

8π2ir
2πi

ik
2ik

e−kr (17.41)

For the second term, see problem 17.15. Combine it with the preceding result to get

G = − 1

4πr
e−kr (17.42)

This is the solution to Eq. (17.40), and if I now let k go to zero, it is G = −1/4πr.
Just as in one dimension, once you have the Green’s function, you can write down the solution

to the original equation.

∇2V = −ρ/ε0 =⇒ V = − 1

ε0

∫
d3r′G(~r,~r ′)ρ(~r ′) =

1

4πε0

∫
d3r′

ρ(~r ′)
|~r − ~r ′|

(17.43)

State this equation in English, and it says that the potential of a single point charge is q/4πε0r
and that the total potential is the sum over the contributions of all the charges. Of course this
development also provides the Green’s function for the more complicated equation (17.42).

Applications to Potentials
Let a charge density be qδ(~r ). This satisfies

∫
d3r ρ = q. The potential it generates is that of a point

charge at the origin. This just reproduces the Green’s function.

φ =
1

4πε0

∫
d3r′ q δ(~r ′)

1

|~r − ~r ′|
=

q
4πε0r

(17.44)

What if ρ(~r ) = −p ∂δ(~r )/∂z? [Why −p? Patience.] At least you can say that the dimensions
of the constant p are charge times length. Now use the Green’s function to compute the potential it
generates.

φ =
1

4πε0

∫
d3r′ (−p)

∂δ(~r ′)
∂z′

1

|~r − ~r ′|
=

p
4πε0

∫
d3r′ δ(~r ′)

∂
∂z′

1

|~r − ~r ′|

=
p

4πε0

∂
∂z′

1

|~r − ~r ′|

∣∣∣∣
~r ′=0

(17.45)

This is awkward, so I’ll use a little trick. Make a change of variables in (17.45) ~u = ~r − ~r ′, then

∂
∂z′

→ − ∂
∂uz

,
p

4πε0

∂
∂z′

1

|~r − ~r ′|

∣∣∣∣
~r ′=0

= − p
4πε0

∂
∂uz

1

u
(17.46)

(See also problem 17.19.) Cutting through the notation, this last expression is just

φ =
−p

4πε0

∂
∂z

1

r
=
−p

4πε0

∂
∂z

1√
x2 + y2 + z2

=
p

4πε0

z(
x2 + y2 + z2

)3/2

=
p

4πε0

z
r3

=
p

4πε0

cos θ
r2

(17.47)
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The expression −∂(1/r)/∂z is such a simple way to compute this, the potential of an electric
dipole, that it is worth trying to understand why it works. And in the process, why is this an electric
dipole? The charge density, the source of the potential is a derivative, and a derivative is (the limit of)
a difference quotient. This density is just that of two charges, and they produce potentials just as in
Eq. (17.44). There are two point charges, with delta-function densities, one at the origin the other at
−ẑ∆z.

ρ =
−p
∆z

[
δ(~r + ẑ∆z)− δ(~r )

]
gives potential

−p
4πε0∆z

[
1

|~r + ẑ∆z|
− 1

r

]
(17.48)

P

r1 = r

r2
q

−q

q r1

r2

P2

P1

(a) (b)

The picture of the potential that arises from this pair of charges is (a). A negative charge (−q =
−p/∆z) at −ẑ∆z and a corresponding positive charge +q at the origin. This picture explains why this
charge density, ρ(~r ) = −p ∂δ(~r )/∂z, represent an electric dipole. Specifically it represents a dipole
whose vector representation points toward +ẑ, from the negative charge to the positive one. It even
explains why the result (17.47) has the sign that it does: The potential φ is positive along the positive
z-axis and negative below. That’s because a point on the positive z-axis is closer to the positive charge
than it is to the negative charge.

Now the problem is to understand why the potential of this dipole ends up with a result as simple
as the derivative (−p/4πε0)∂(1/r)/∂z: The potential at the point P in the figure (a) comes from the
two charges at the two distances r1 and r2. Construct figure (b) by moving the line r2 upward so that
it starts at the origin. Imagine a new charge configuration consisting of only one charge, q = p/∆z at
the origin. Now evaluate the potentials that this single charge produces at two different points P1 and
P2 that are a distance ∆z apart. Then subtract them.

φ(P2)− φ(P1) =
q

4πε0

[
1

r2
− 1

r1

]
In the notation of the preceding equations this is

φ(P2)− φ(P1) =
q

4πε0

[
1

|~r + ẑ∆z|
− 1

r

]
=

p
4πε0∆z

[
1

|~r + ẑ∆z|
− 1

r

]
Except for a factor of (−1), this is Eq. (17.48), and it explains why the potential caused by an ideal
electric dipole at the origin can be found by taking the potential of a point charge and differentiating
it.

φpoint charge =
q

4πε0r
φdipole = −a ∂

∂z
φpoint charge

Here, the electric dipole strength is qa.
Can you repeat this process? Yes. Instead of two opposite point charges near each other, you

can place two opposite point dipoles near each other.

φlinear quadrupole = −a ∂
∂z
φdipole (17.49)



17—Densities and Distributions 425

This is the potential from the charge density ρ = +Q∂2δ(~r)/∂z2, where Q = qa2. [What about
∂2/∂x∂y?]

Exercises

1 What is the analog of Eq. (17.4) for the linear mass density λ(x) = C (a constant) for 0 < x < L
and zero otherwise?

2 Take the preceding mass density and add a point mass m0 at x = L/2. What is the distribution
m([x1, x2]) now?

3 Use the λ from the first exercise and define the functional F [φ] =
∫∞
−∞ dxλ(x)φ(x). What is the

total mass, F [1] = M? What is the mean position of the mass, F [x]/M?

4 As in the preceding exercise, what are the variance, the skewness, and the kurtosis excess?

5 What is
∫ 1

0 dx δ(x− x0)?

6 Pick any two of Eq. (17.20) and show that they are valid delta sequences.

7 What is
∫ x
−∞ dt δ(t)?

8 In Eq. (17.12) the function φn(x) appeared. Sketch a graph of it and of −φ′n(x), which is needed
in Eq. (17.11).
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Problems

17.1 Calculate the mean, the variance, the skewness, and the kurtosis excess for a Gaussian: f(g) =

Ae−B(g−g0)2 (−∞ < g <∞). Assume that this function is normalized the same way that Eq. (17.8)
is, so that its integral is one.

17.2 Calculate the mean, variance, skewness, and the kurtosis excess for a flat distribution, f(g) = con-
stant, (0 < g < gmax). Ans: Var = g2

m/12 kurt. exc. = −6/5

17.3 Derive the results stated in Eq. (17.9). Compare mv̄2/2 to K.E. Compare this to the results of
problem 2.48.

17.4 Show that you can rewrite Eq. (17.16) as an integral
∫ t
−∞ dt

′ 1
m cosω0(t− t′)F (t′) and differen-

tiate this directly, showing yet again that (17.15) satisfies the differential equation.

17.5 What are the units of a delta function?

17.6 Show that
δ
(
f(x)

)
= δ(x− x0)/|f ′(x0)|

where x0 is the root of f . Assume just one root for now, and the extension to many roots will turn
this into a sum as in Eq. (17.28).

17.7 Show that

(a)xδ′(x) = −δ(x) (b)xδ(x) = 0

(c) δ′(−x) = −δ′(x) (d) f(x)δ(x− a) = f(a)δ(x− a)

17.8 Verify that the functions in Eq. (17.20) satisfy the requirements for a delta sequence. Are they
normalized to have an integral of one? Sketch each. Sketch Eq. (17.26). It is complex, so sketch both
parts. How can a delta sequence be complex? Verify that the imaginary part of this function doesn’t
contribute.

17.9 What is the analog of Eq. (17.25) if δn is a sequence of Gaussians:
√
n/π e−nx

2
?

Ans: θn(x) = 1
2

[
1 + erf

(
x
√
n
)]

17.10 Interpret the functional derivative of the functional in Eq. (17.18): δ δ[φ]
/
δφ. Despite appear-

ances, this actually makes sense. Ans: δ(x)

17.11 Repeat the derivation of Eq. (17.33) but with less labor, selecting the form of the function g to
simplify the work. In the discussion following this equation, reread the comments on this subject.

17.12 Verify the derivation of Eq. (17.35). Also examine this solution for the cases that x0 is very
large and that it is very small.

17.13 Fill in the steps in section 17.7 leading to the Green’s function for g′′ − k2g = δ.

17.14 Derive the analog of Eq. (17.39) for the case x < y.

17.15 Calculate the contribution of the second exponential factor leading to Eq. (17.41).
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17.16 Starting with the formulation in Eq. (17.23), what is the result of δ′ and of δ′′ on a test function?
Draw sketches of a typical δn, δ′n, and δ′′n.

17.17 If ρ(~r ) = qa2 ∂2δ(~r )/∂z2, compute the potential and sketch the charge density. You should
express your answer in spherical coordinates as well as rectangular, perhaps commenting on the nature
of the results and relating it to functions you have encountered before. You can do this calculation in
either rectangular or spherical coordinates.
Ans: (2qa2/4πε0)P2(cos θ)/r3

17.18 What is a picture of the charge density ρ(~r ) = qa2 ∂2δ(~r )/∂x∂y?
(Planar quadrupole) What is the potential for this case?

17.19 In Eq. (17.46) I was not at all explicit about which variables are kept constant in each partial
derivative. Sort this out for both ∂/∂z′ and for ∂/∂uz.

17.20 Use the results of the problem 17.16, showing graphs of δn and its derivatives. Look again at
the statements leading up to Eq. (17.31), that g is continuous, and ask what would happen if it is not.
Think of the right hand side of Eq. (17.30) as a δn too in this case, and draw a graph of the left side
of the same equation if gn is assumed to change very fast, approaching a discontinuous function as
n→∞. Demonstrate by looking at the graphs of the left and right side of the equation that this can’t
be a solution and so that g must be continuous as claimed.

17.21 Calculate the mean, variance, skewness, and the kurtosis excess for the density f(g) = A[δ(g)+
δ(g − g0) + δ(g − xg0)]. See how these results vary with the parameter x.

Ans: skewness = 2−3/2(1 + x)(x− 2)(2x− 1)/
(
1− x+ x2

)
kurt. excess = −3 + 3

4

(
1 + x4 + (1− x)4

)
/
(
1− x+ x2

)2
17.22 Calculate the potential of a linear quadrupole as in Eq. (17.49). Also, what is the potential of
the planar array mentioned there? You should be able to express the first of these in terms of familiar
objects.

17.23 (If this seems out of place, it’s used in the next problems.) The unit square, 0 < x < 1 and
0 < y < 1, has area

∫
dxdy = 1 over the limits of x and y. Now change the variables to

u = 1
2(x+ y) and v = x− y

and evaluate the integral,
∫
dudv over the square, showing that you get the same answer. You have

only to work out all the limits. Draw a picture. This is a special example of how to change multiple
variables of integration. The single variable integral generalizes

from

∫
f(x) dx =

∫
f(x)

dx
du
du to

∫
f(x, y) dxdy =

∫
f(x, y)

∂(x, y)

∂(u, v)
dudv

where
∂(x, y)

∂(u, v)
= det

(
∂x/∂u ∂x/∂v
∂y/∂u ∂y/∂v

)
For the given change from x, y to u, v show that this Jacobian determinant is one. A discussion of the
Jacobian appears in many advanced calculus texts.

17.24 Problem 17.1 asked for the mean and variance for a Gaussian, f(g) = Ae−B(g−g0)2 . Interpreting
this as a distribution of grades in a class, what is the resulting distribution of the average of any two
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students? That is, given this function for all students, what is the resulting distribution of (g1 +g2)/2?
What is the mean of this and what is the root-mean-square deviation from the mean? How do these
compare to the original distribution? To do this, note that f(g)dg is the fraction of students in the
interval g to g + dg, so f(g1)f(g2)dg1 dg2 is the fraction for both. Now make the change of variables

x =
1

2
(g1 + g2) and y = g1 − g2

then the fraction of these coordinates between x and x+ dx and y and y + dy is

f(g1)f(g2)dxdy = f(x+ y/2)f(x− y/2)dxdy

Note where the result of the preceding problem is used here. For fixed x, integrate over all y in order
to give you the fraction between x and x + dx. That is the distribution function for (g1 + g2)/2.
[Complete the square.] Ans: Another Gaussian with the same mean and with rms deviation from the
mean decreased by a factor

√
2.

17.25 Same problem as the preceding one, but the initial function is

f(g) =
a/π

a2 + g2
(−∞ < g <∞)

In this case however, you don’t have to evaluate the mean and the rms deviation. Show why not.

Ans: The result reproduces the original f(g) exactly, with no change in the spread. These two problems
illustrate examples of “stable distributions,” for which the distribution of the average of two variables
has the same form as the original distribution, changing at most the widths. There are an infinite
number of other stable distributions, but there are precisely three that have simple and explicit forms.
These examples show two of them. The Residue Theorem helps here.

17.26 Same problem as the preceding two, but the initial function is

(a) f(g) = 1/gmax for 0 < g < gmax (b) f(g) =
1

2

[
δ(g − g1) + δ(g − g2)

]
17.27 In the same way as defined in Eq. (17.10), what is the functional derivative of Eq. (17.5)?

17.28 Rederive Eq. (17.27) by choosing an explicit delta sequence, δn(x).

17.29 Verify the result in Eq. (17.36).
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charged rings, 41
Chebyshev polynomial, 141
checkerboard, 258
chemistry, 142
circuit, 81, 121
circulation density, 331
clarinet, 109
Coast and Geodetic Survey, 187
coaxial cable, 392
coefficient of expansion, 383
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combinatorial factor, 31, 46
commutative law, 124
commutator, 176
commute, 155
comparison test, 26–28
complete, 135
complete the square, 29, 372, 428
complex variable, 347–365, 371
complex:

conjugate, 56, 105, 130, 131, 348
exponential 54, 61, 63, 64, 69, 105, 112
integral 349
logarithm 58
mapping 59, 65
number 52, 359
polar form 54, 56
square root 53, 57
trigonometry 55

component, 101, 114, 127–128, 137, 143, 149,
298–320

not 314
operator 146–169

composition, 152, 153, 161, 322
conductivity, 242, 243, 262, 297
conservative field, 333
constraint, 196, 198, 199
continuity condition, 228, 238
contour integral, 349, 352, 353, 371, 376, 421,

422
examples 354–359, 363

contour map, 187
contravariant, 308–317, 319
convergence, 134

absolute 29
non 270
speed 118, 245, 263, 270
test 27

convolution, 373, 380
coordinate, 224, 312–320

cylindrical 259
cylindrical 189, 192, 221, 225
non-orthogonal 314, 316
polar 188
rectangular 188, 219
spherical 189, 192, 222, 225

correlation matrix, 285
cosh, 2, 55, 95, 107, 244, 387, 391
cosine transform, 378
Court of Appeals, 132
covariant, 308–319
critical damping, 94

cross product, 231
cross section, 200–204

absorption 201
scattering 201

crystal, 145, 296, 308
curl, 217, 222, 232, 334, 337, 338

components 223, 224
current density, 230
cyclic permutation, 232
cycloid, 389, 406
•
d3r, 190
data compression, 283
daughter, 95
∇, 188, 194, 220, 221, 223, 387

components 224
identities 225

∇2, 228, 259
∇i, 232
δ(x), 415
δij , 132, 153, 174, 239
delta function, 413, 417
delta sequence, 416
delta-functional, 415
density, 409
derivative, 8, 146, 335, 347

numerical 270–272
determinant, 84–87, 156–164, 172, 304

of composition 161
diagonal, 161
diagonalize, 196
diamonds, 210
dielectric tensor, 302
difference equation, 281
differential, 183–186, 193, 387
differential equation, 26, 414

Greens’ function 419
inhomogeneous 418
constant coefficient 67, 281
eigenvector 164
Fourier 105, 112
Green’s function 78
indicial equation 75
inhomogeneous 70
linear, homogeneous 67
matrix 168
numerical solution 277–281
ordinary 67–87
partial 242–259, 287–289
separation of variables 80
series solution 73
simultaneous 85, 164



Index 431

singular point 73
trigonometry 77, 95
vector space 129

differential operator, 220
differentiation, 349, 375, 385
diffraction, 36, 48, 62
dimension, 127, 146, 153
dimensional analysis, 38, 357
dipole moment density, 303
Dirac, 415
direct basis, 308, 315, 323
directional derivative, 399
Dirichlet, 111
disaster, 279
dispersion, 204, 210, 288, 292
dissipation, 288, 289, 292
distribution, 415
divergence, 217–232, 243, 323

components 219
cylindrical coordinates 221, 225
integral form 219
theorem 329

dog-catcher, 50
domain, 15, 146, 295
Doppler effect, 48
drumhead, 125, 131, 188, 207
dry friction, 68, 96
dumbbell, 149, 173
dx, 183
•
eigenvalue, 106, 162, 170, 285
eigenvector, 162, 168, 169, 170, 175, 285, 305
electric circuit, 80
electric dipole, 47, 208, 240
electric field, 42, 43, 146, 187, 235, 236, 254,

260, 264, 320, 391
electron mass, 237
electrostatic potential, 254
electrostatics, 41, 191, 259, 392
ellipse, 341
ellipsoid, 218
elliptic integral, 341
EMF, 337
endpoint variation, 397
energy density, 236, 237, 302
entire function, 365
εijk, 174
equal tempered, 109
equilateral triangle, 66
equipotential, 187, 197

erf, 6–8, 19, 22, 46, 51, 290, 426
error function, 6, 19, 46
essential singularity, 351, 366
Euclidean fit, 283, 293
Euler, 385, 394

constant 20
formula 55, 358
method 277, 278, 287, 293

Euler-Lagrange, 387, 399
extrapolation, 290
•
Faraday, 337
Fast Fourier Transform, 379
Fermat, 390, 402
Feynman Lectures, 383
filter circuit, 121
Flat Earth Society, 230
Florida, 246
fluid:

equilibrium, 237
expansion 217, 219
flow 216, 217
flow rate 213, 214, 230
rotating 217

flute, 109
focal length, 404
focus, 384, 403
focus of lens, 49
focus of mirror, 49
Fourier series, 26, 100, 102–114, 127, 132,

137, 171, 244–259, 370
basis 105, 132
best fit 195
does it work? 111
fundamental theorem 106
sound of 109
square wave 103

Fourier sine, cosine, 378
Fourier transform, 370–371, 377, 420, 422
frames, 127
frequency, 373
Frobenius series, 26, 30, 74–76, 94
function, 174, 295, 311, 312, 322, 353

df 183, 184
addition 124
composition 322
definition of 126, 295
elementary 6, 7, 24
linear 146
operator 143
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functional, 296–309, 385, 411–415
derivative 412
integral 412
3-linear 302
bilinear 297, 298, 300, 302
derivative 387, 394, 396
multilinear 297
n-linear 297
representation 296, 300, 309

fundamental theorem of calculus, 11
fussy, 297
•
Gamma function, 6, 7, 20, 31
Gauss, 282, 364
Gauss elimination, 159, 176, 177
Gauss reduction, 157
Gauss’s Theorem, 225, 329, 392
Gaussian, 31, 34, 372, 374, 411, 426

integrals 4–6, 19, 32
integration 275–276, 292
quadrature 276
integration 290

generalized function, 413, 417
generating function, 97
geodesic, 383, 387
geometric optics, 202, 204
geometric series, 24, 30, 35
Gibbs phenomenon, 103, 115
glycerine, 400
Google, 169
grade density, 411
gradient, 186–188, 193, 224, 237, 315, 316,

329, 332, 338, 387
covariant components 315
cylindrical coordinates 193
spherical coordinates 194

Gram-Schmidt, 133, 137, 141
graphs, 15–17
grating, 62
gravitational:

energy, 238
field 193, 207, 225, 236
lensing 404
potential 187, 208, 227, 254

Green’s function, 78–79, 95, 97, 375, 414, 422
•
half-life, 95
Hamiltonian, 389, 398
harmonic, 109
harmonic oscillator, 67–68, 73, 246, 259

Green’s function 414
critical 94, 168

damped 68, 96
energy 70
forced 70, 71, 111
Green’s function 78, 95
Greens’ function 375
resonance 112

harmonic resonance, 113
Hawaii, 383
heads, 7
heat equation, 242
heat flow, 242–254
heat flow vector, 243
heat metric, 408
heat wave, 247
heat, minimum, 206, 209
heated disk, 185
Helmholtz Decomposition, 338
Helmholtz-Hodge, 340
hemisemidemiquaver, 373
Hermite, 138, 174, 290
hermitian, 170, 337
Hero, 20
Hessian, 195, 402
Hilbert Space, 135
history, blame, 415
horoscope, 282
hot road mirage, 390
Hulk, 50
Huygens, 36
hyperbolic functions, 2–3, 55, 95, 244, 250,

372
inverse 2

•
Iceland spar, 303
ideal gas, 411
idempotent, 170
impact parameter, 201
impedance, 82, 99
impulse, 78, 79
independence, 127, 283
index notation, 230, 239, 240, 299, 308
index of refraction, 48, 203, 210, 327
indicial equation, 75
inductor, 81
inertia:

moment of, 12, 149, 174, 191
tensor 145, 148–151, 170, 294, 297, 302,

322
infallible, 38
infinite series, 100
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infinite-dimensional, 134
infinitesimal, 183, 184, 312
inflation, 45
instability, 269, 281, 288
integral, 9–14

contour 349
fractional 381
numerical 273–276
principal value 290
Riemann 9
Stieltjes 12
surface 214, 218, 222
test 27, 252

intensity, 36–37, 38, 114, 204
interest rate, 45
interpolation, 267–292
inverse transform, 371
iterative method, 77
•
Jacobi, 176
Jacobian, 318, 427
•
kinetic energy, 46, 207, 412

density 188
kinks, 399
Klein bottle, 332
kludge, 414
Kronecker delta, 132, 153, 231
kurtosis, 411, 426
•
L-R circuit, 81
Lagrange, 385, 394
Lagrange multiplier, 196–199, 209, 285, 287,

396
Lagrangian, 396
Laguerre, 74, 291
Λ, 157
Lanczos, 276
Laplace, 124, 253, 255, 338, 392, 406
Laplacian, 228, 259, 265
Laurent series, 350, 353, 366, 367
Lax-Friedrichs, 289, 292
Lax-Wendroff, 289, 292
least square, 133, 194, 282, 283, 291
least upper bound, 130
Lebesgue, 11
Legendre, 47, 74, 87–89, 100, 138, 172, 208,

236, 266, 276, 292
Legendre function, 91
length of curve, 325, 384
lens, 404

limit cycle, 270
line integral, 328, 334, 349
linear:

charge density, 260
programming 211
charge density 43
difference equation 281, 292
equations 20, 83
function 294
functional 296, 297
independence 127
transformation 146

linearity, 143, 145, 322
Lobatto integration, 292
logarithm, 3, 25, 58, 81, 362
longitude, latitude, 189
Lorentz force, 337
•
m(V ), 410
magnetic field, 193, 206, 237, 311, 320

tensor 175, 302
magnetic flux, 337
magnetic monopole, 343
manifold, 311, 312, 318
mass density, 191, 225, 236
matrix, 131, 147–169, 283, 300

correlation 285
positive definite 196
as operator 160
column 129, 132, 148, 160, 173, 301
diagonal 161
diagonalize? 167
identity 153
multiplication 148, 152, 155
scalar product 131

Maxwell, 303
Maxwell’s equations, 125, 335, 337, 343
Maxwell-Boltzmann, 411
mechanics, 396
messy and complicated, 72
metric tensor, 298, 310, 317, 319
microwave, 254
midpoint integration, 10, 274
mirage, 391
Morse Theory, 404
mortgage, 45
musical instrument, 109
Möbius strip, 332
•
nth mean, 50
NASA, 187
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natural boundary, 369
New York, 132
Newton, 388, 396

gravity 225–229, 236, 238
method 269

nilpotent, 170, 175
NIST, 7
Noether’s theorem, 398
noise, 286, 291
non-differentiable function, 276
norm, 129–134, 138, 195
normal modes, 86, 130
nuclear fission, 404
•
Oops, 414
operator, 143, 146–169

components 147, 165
differential 106, 152
exponential 48, 208
inverse 154
rotation 143, 148, 154
translation 175
vector 225

optical path, 327, 390
optics, 390
orange peel, 183
orbital, 142
order, 351
orientation, 156
orthogonal, 170, 338
orthogonal coordinates, 189, 222, 312
orthogonality, 102, 106, 195, 246, 261
orthogonalization, 133
orthonormal, 132
oscillation, 68, 86, 87, 257

coupled 85, 96, 129, 164
damped 69
forced 73
temperature 246, 263

•
panjandrum, 409
paraboloid, 196
parallel axis theorem, 150
parallelepiped, 172, 213, 323
parallelogram, 155, 157, 172
parallelogram identity, 138
parameters, 39
parametric differentiation, 4, 5, 20
Parseval’s identity, 110, 114, 121, 373
∂i, 232, 239

partial integration, 14, 23, 106, 339, 386, 397,
412

∂S, ∂V , 329
partition function, 199
Pascal’s triangle, 47
Pauli, 173
PDE, numerical, 287
Peano, 123
pendulum, 129
periodic, 54, 255
periodic boundary condition, 257, 370, 378
perpendicular axis theorem, 173
Perron-Frobenius, 170
pinking shears, 360
pitfall, 270
Plateau, 400
Poisson, 228, 422
polar coordinates, 14, 63, 181, 207, 350, 396
polarizability, 146
polarizability tensor, 295, 303
polarization, 146, 204, 303
pole, 350, 354, 364

order 351
polynomial, 123, 364

characteristic 175
Chebyshev 141
Hermite 138, 174, 290
Laguerre 291
Legendre 47, 89, 97, 138, 172, 208, 238,

240, 266, 276, 427
population density, 409
Postal Service, 131, 210
potential, 47, 227, 228, 229, 238, 254–259,

391, 423
potential energy density, 207
power, 242, 251
power mean, 50
power series, 348, 385
power spectrum, 114
Poynting vector, 306
pre-Snell law, 210
pressure tensor, 298
prestissimo, 373
principal components, 286, 293
principal value, 290
probability, 7
product formula, 349
product rule, 9
Pythagorean norm, 132
•
quadratic equation, 49, 63
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quadrupole, 47, 193, 207, 209, 240
quasi-static, 73
•
radian, 1
radioactivity, 95
rainbow, 202–204, 210
random variable, 286
range, 146, 295
ratio test, 27
rational number, 135
reality, 252, 267
reciprocal basis, 307, 312, 315, 323
reciprocal vector, 317
rectifier, 119
recursion, 6, 20
regular point, 73
regular singular point, 73
relation, 295
relative error, 267
relativity, 46, 318
residue, 353, 376
residue theorem, 353, 354
resistor, 81, 206, 209
resonance, 112
Reynolds transport theorem, 336, 343
Riemann Integral, 9, 349
Riemann Surface, 359–361, 367
Riemann-Stieltjes integral, 12, 174
rigid body, 144, 148, 162, 294
roots of unity, 57
rotation, 143, 146, 148, 154, 217, 222

components 148
composition 153

roundoff error, 281, 291
rpncalculator, 6
ruler, 383
Runge-Kutta, 277, 293
Runge-Kutta-Fehlberg, 279
•
saddle, 196
saddle point, 194, 195, 209
scalar product, 104, 112, 130–134, 137, 138,

171, 231, 249, 256, 296, 307, 315
scattering, 201–204
scattering angle, 201, 210
Schwartz, 416
Schwarzenegger, 188
secant method, 270
self-adjoint, 170
semiperimeter, 20

separated solution, 248
separation of variables, 80, 243–259
series, 24–35

of series 29
absolute convergence 29
common 24
comparison test 27, 28
convergence 26, 45
differential equation 73, 97
double 258, 277
examples 24
exponential 174
faster convergence 47
Frobenius 74–76, 350
geometric 174
hyperbolic sine 250
integral test 27
Laurent 350
power 25, 219, 267
ratio test 27
rearrange 29
secant 29, 45
telescoping 47, 119
two variables 30, 46

setting sun, 344
sheet, 360, 362
dσ/dΩ, 201–204, 210
similarity transformation, 165
simple closed curve, 353
simply-connected, 334
Simpson’s rule, 274, 407
simultaneous equations, 83, 86
sine integral, 116, 121
sine transform, 378
singular perturbations, 98
singular point, 73
singularity, 351, 353, 363
sinh, 2, 55, 95, 107, 244, 387
sketching, 15
skewness, 411, 426
Snell, 390
Snell’s law, 406
snowplow, 95
soap bubbles, 400
Sobolev, 141, 416
solenoid, 192, 241
solid angle, 200, 201
space, 311
specific heat, 179, 242
spectral density, 379
speed of light, 385
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Spiderman, 50√
2, 135

square-integrable, 124, 126
stable distribution, 428
stainless steel, 262
Stallone, 188
steady-state, 83, 98
step function, 413, 415
sterradian, 200
Stirling’s formula, 31, 47, 198
stock market, 100
Stokes’ Theorem, 225, 332, 335
straight line, 387
strain, 217
stress, 298
stress-strain, 296
string, 139
Sturm-Liouville, 106, 264
subspace, 338
sum of cosines, 64
Sumerians, 1
summation by parts, 14
summation convention, 167, 174, 230, 308
sun, 238
superposition, 253
surface integral, 214, 216, 333, 335, 336

closed 218
examples 214

symmetric, 170, 302, 337
•
tails, 7
tanh, 2
Taylor series, 25, 350, 352, 366
telescoping series, 47, 119
temperature, 199

gradient 390
distribution 247, 250
expansion 383
of slab 245
oscillation 246
profile 245

tensor, 143, 218, 295
component 299
contravariant components 309
field 312
inertia 148–151, 162, 173, 294, 297, 302,

322
metric 298, 317, 319
rank 297, 298, 302, 303, 309
stress 298, 312
totally antisymmetric 303
transpose 301

terminal speed, 40

test function, 415, 417

tetrahedron, 346

Texas A&M, 124

thermal expansion, 383

θ(x), 413

thin lens, 404

time average, 114

time of travel, 326

torque, 144, 162

tough integral, 42

trace, 131, 159, 177

trajectory, 39

transformation, 143
area 156
basis 317
composition 161
determinant 156, 323
electromagnetic field 320, 323
linear 146
Lorentz 318–319, 320
matrix 318
similarity 143, 165, 166, 167, 176

transient, 83

transport theorem, 336

transpose, 301, 302

trapezoidal integration, 274, 394

triangle area, 15, 20

triangle inequality, 129, 134

trigonometric identities, 55, 58

trigonometry, 1

triple scalar product, 240
•
uncountable sum, 139

unitary, 170
•
variance, 282, 286, 287, 291, 411, 426

variational approximation, 392

vector space, 123–124, 134, 195, 311, 337, 412
axioms 124
basis 127
dimension 127
examples 124, 130, 138
not 126, 129
scalar product 130
subspace 127
theorems 140
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vector:
calculus, 311, 325
derivative 216
eigenvector 285
field 264, 311
gradient 186, 187, 197
heat flow 251
identities 239, 392
operators 225
potential 334
unit 192, 207, 208

volume element, 189
volume of a sphere, 191, 208
•
wave, 304
wave equation, 208, 242, 265, 287
Weierstrass, 347
Weierstrass-Erdmann, 400
weird behavior, 401
wet friction, 68
wheel-alignment, 162
Wiener-Khinchine theorem, 379
wild oscillation, 280
winding number, 360, 362
wine cellar, 247
work, 327
work-energy theorem, 328
•
ζ(2), 28, 119
zeta function, 7, 26, 45
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